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Use is made of the basic approximation of the K-harmonics method to obtain the wave func- 
tion of the ground state of the alpha particle (4He) and its binding energy. This wave function 
is then used to caiculate the charge radius and the form factors of the alpha particle. Calcula- 
tions are made for seven two-body potentials commonly used in the literature. 

Usa-se a aproximação básica do método dos K-harmônicos para se obter a função de onda 
do estado fundamental da partícula alfa e sua energia de ligação. Essa função de onda é 
então usada para obter o raio de carga e os fatores de forma da particula alfa. Os cálculos 
são feitos para sete potênciais de dois corpos comumente usados na literatura.

1. Introduction 

The K-harmonia method, used for the quantum-mechanical treatment 
of the many-body problem, was proposed by Simonov and Badalyan1,2*3 
in 1966. The essence of the method consists in expanding the wave function, 
in the C. M. frame, of a system of A nucleons in terms of a complete system 
of hyperspherical and harmonic functions in the 3(A-  1)-dimensional 
vector space spanned by the position vectors of the nucleons relative to 
the center of mass of the system, analogously to the multipole expansion 
for one particle problems. These functions are the angular part of homo- 
gerieous and harmonic polync,mials (usually called K-harmonics) which 
are the 3(A- 1) generalization of the three dimensional solid harmonics. 
A method to construct such polynomials, taking into account the Pauli 
Principie, is proposed in Ref. 3. 

In the construction of the K-harmonics use is made of single-particle 
states and a shell structure emerges which, although being quite analogous 
to that of the nuclear shell model, has a more universal character. The 
introduction of a hyperdistance in the 3(A - 1)-dimensional vector space 
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allows us to treat the nucleons collectively, the overall interaction being 
represented by a kind of effective potential. Hence, the K-harmonics 
method has some features of an unified nuclear model. 

The K-harmonia method has been succesfully used in the determination 
of the wave function of the ground state and the binding energy of the 
light n u ~ l e i ~ ~ ~ - ~  and there are evidentes that it can be applied to heavy 
nuclei1° and even to the nuclear matter". 

In this paper the basic approximation of the K-harmonics method is used 
in order to obtain the wave function of the ground state of the alpha par- 
ticle, as well as its binding energy, charge i-adius and form factors for the 
two-body potentials commonly used in thl: literature. 

In Section 2, a summary of the method is given aiming to stablish the 
notation and to present the formulae which will be used in this paper, 
making it self-contained. In Section 3, the method is applied to obtain 
the wave function of the ground state of the dpha particle, whereas the form 
factors are studied in Section 4. In Section 5, an analysis of the results 
obtained is made. 

2. Summary of the K-Harmonics Methoii 

The Hamiltonian of a system of A nucleons of equal masses and inter- 
acting through a potential V is given by 

where a(i) and z(i) are the spin and the isospin operators acting on the 
particle i. 

In the K-harmonia method, the intraction potential V in (2.1) is usually 
taken as a superposition of two-body poteintials: 

with 



In (2.3), the P a '  are spin projectors of triplet and singlet state of the rela- 
tive spin of the pair of particles: 

Analogously, the Pj'' are isospin projectors [For the treatment of two- 
body potentials containing tensor forces,spin-orbit forces, etc, see Ref. 12.1. 
The indices 1 and 3 in (2.3) stand for singlet and triplet, respectively. 

In order to separate the relative motion from the center of mass motion, 
Jacobi coordinates E,(i) are introduced by the relations 

The coordinates c(i) for i = 1,2,. . . , (A - 1) are relative coordinates while 
c(A) is proportional to the center of mass of the system 

1 A 
E,(A) = ,,h R, with R = - r(i). 

A j = i  

The numerical factors in (2.4) and (2.5) were chosen such as to make the 
linear transformation relating the r(i) coordinates to the Jacobi coordi- 
nates E,(i) an orthogonal transformation, what simplifies the calculations. 
The kinetic energy operator in (2.1), for instance, splits into a relative 
(intrinsic) and a center of mass part. 

The interaction potential (2.2), due to the fact that it depends on the 
spatial coordinates only through r(i)-r(j), depends only on the relative 
Jacobi coordinates. So, the Hamiltonian (2.1), with the potential (2.2) 
splits into a relative and a center of m a s  part.. The intrinsic properties of 
the system of A nucleons depend only on the relative coordinates. There- 
fore, from now on, we shall focus our attention only to the relative (intrin- 
sic) part of the Hamiltonian (2.1): 



2.1 Hyperspherical coordinates 

Let us consider the 3(A - 1)-dimensional vcxtor space E,,, - ,, spanned by 
the 3(A- 1) components of the vectors E,(i), i = 1,2,. . . , (A - 1) and intro- 
duce hyperspherical coordinates in this space. 

The radial coordinate p,  usually called hyperdistance, is defined by 

Using Eqs. (2.4) and (2.5), it can be shown t'nat the following identities hold 

where p(i) = r(i) - R are the position vectors of the nucleons referred to 
the center of mass of the system. 

Besides the hyperdistance, 3A-4, angular variables are introduced. The 
choice of these coordinates is obviously not unique. The choice which 
seems to us to be the more convinient is presented in the Appendix. We 
shall designate the angular coordinates cdectively by Qp . 

In the hyperspherical coordinates the ini:rinsic kinetic energy operator 
in (2.7) is written as1, 

where 9") is an angular operator. This operator, which is the 3(A- 1)- 
dimensional generalization of the angular momentum squared, is a Ca- 
simir invariant of R,(,-,, , the rotation group in 3(A- l )  dimensions. 
Its linearly independent eigenfunctions bdonging to a same eigenvalue 
R = K[K + 3(A- 1)- 23 carry a basis for the most degenerated irredu- 
cible representation [K] of R,,-,, . They are the angular part of har- 
monic and homogeneous polynomials of degree K in 3(A- 1) variables. 
From (2.10), it follows that 9") is invariant under permutation of the 
coordinates of the nucleons. Then, we cari contruct functions which are 
simultaneously eigenfunctions of Yt2) and antisymmetric under permuta- 
tion of the coordinates of the nucleons. These functions are usually cal- 
led K-harmonics. We shall designate them by Yff(Qp, u(i), u(i)), where 
u(i) and v(i) are SU(2) tensors of rank 1F! designating the states of spin 



and isospin of the ith nucleon and the label v distinguish the different K-har- 
monics with the same K. They can be taken orthonormalized in the unity 
sphere of E,,, - ,, : 

Now, the wave function of the intrinsic motion is expanded in terms of 
the K-harmonics as 

+@(i), u(i), v(i)) = p - ( 3 A - 4 ) / 2  C x K , v ( P )  Y 3 Q P  , ~ ( 9 ,  ~ ( i ) )  12.12) 
K ,v 

where the coefficients ~ , , ~ ( p )  are functions of p. To determine these func- 
tions we substitute the expansion (2.12) in the Schrodinger equation for 
H,,,, , multiply from the left by Y y ( Q p ,  u(i), ~ ( i ) ) ' ,  use the orthogonality 
relations (2.1 1 )  and obtain the infinite set of coupled differential equations 

where 
5f'K = K + 3(A - 2)/2, 

S A 

W ~ ? ' ( P )  = Y '  , ( i )  v i ) )  U @ í j  - r(k)) Y f ( R P  , u(i), v(i)) dQP . 
j < k = l  

(2.15) 

The infinite set of dífferential equations (2.13), the expansion (2.12) in 
K-harmonics and the matrix elements (2.15) of the interaction potential 
V are exact and form the basis of the K-harmonics method. 

2.2 Constructfon of the K-harmonics 

The Pauli principle requires that the wave function of a system of A iden- 
ticaI nucleons (fermions) be totally antisymmetric under the interchange 
of a11 variables of any pair of nucleons. As it is well known, the simplest 
way to obtain totally antisymmetric functions from single-particle functions 
tj j(p(i),  u(i), u(i)), O' = 1,2,. . . . . . . . . , A) is to construct the Slater determinant 



The single particle functions used to feed the determinant (2.16) are, to 
some extent, arbitrary. As the K-harmonic must be the angular part of 
harmonic and homogeneous polynomials of degree K, it is convenient to 
take the single-particle functions as homogeneous polynomials in p(i). 
Simonov and co lab~ra to r s~ . '~  suggest the functions 

which are homogeneous polynomials of degree Kj = 2nj + lj. [Ym(H) is 
here the usual spherical harmonic.]. 

9 (2.16) p = 

Filling the determinant (2.16) with the functions (2.17), we obtain homo- 
geneous polynomials of degrees K = K,,, , Kmin + 1 ,  Kmin + 2 , .  . . , K,,, 
being a function of A. 

where use was made of the notation t,új(i) = y?j@(i), u(i), v(i), í j  = 1 ,2 , .  . . , A). 

* l ( l )  *1(2).  . . * 1 ( 4  

* A I )  $2 (2 ) . .  . $z(A) 
. . . . . . . . . . . . . . . . . . . . .  
* A ( U  *A(2) - . . * A M  

Of particular interest in what follows is lhe polynomials (2.16) of degree 
Kmin. The construction of these polyno~nials is given in Ref. 2. Suffice 
here to say that these polynomials, as wt:ll as the polynomials of degree 
K,, + 1 ,  are automatically harmonic and for nuclei such that Z and 
N = A - Z are of the form 

there is only one polynomial (2.16) of degree Kmin. 

2.3 The Basic Approximation 

When the non-diagonal matrix elements ~ ; ; " ' ( p )  of V in (2.13) do not 
vanish, the system (2.13) is an infinite system and there is no hope of sol- 
ving it, even numerically. Then, what is usually done is to retain in the 
expansion (2.12) only the K-harmonia with K smaller and equal to some 
fixed value K,,, and truncate the poteritial V by considering only its 
matrix elements between K-harmonia with K < K,,, , what implies in 
taking Wg:' = O if K or K' is greater than K,,, . Within this approxima- 
tion, (2.13) becomes a finite set of coup'ed differential equations which 
we then try so solve. 



The simplest of those approximations is to take K,,, = K,,. This it the 
basic approximation, also called the drastic approximation. Besides the 
mathematical simplicity, there is a a posteriori reason for studying the 
basic approximation: the experience with the application of the K-harmo- 
nics method to light n ~ c l e i * . ~ * ' ~  have shown that the main contribution to 
the wave function and to the energy of the low-lying nuclear states is due 
to the first terms of the expansion (2.12), i.e., to those with K = K,,. 

The basic approximation is specially convenient for the double closed 
nuclei (nuclei such that A and N are of the form (2.18)), since for each of 
these nuclei there is only one K-harmonic with K = Kmin . In this case, 
the system (2.13) reduces to a single Schrodinger-type equation 

with 

The physical reason to believe that for these nuclei this is a good appro- 
ximation is that they have the most symmetric, spherical and compact 
spatial configuration. 

3. Ground State of the Alpha Particle 

The alpha particle is the only bound system of four nucleons since 4n and 
P= 4B do not exist and 4H and 4Li are unbond. The ground state is 

an S state with J" = O'. Its binding energy is 28.3 MeV, which gives the 
value of 4.7 MeV of binding energy per nucleon pair, the greatest value 
of this quantity to be found among the entire range of nuclides. From this 
fact we may infer that the nucleons mus lit very close together, a suppo- 
sition corrobarated by the strinkingly low value of the charge radius 

R,, = 1.63 + 0.04 fm. (3.1) 

Since the alpha particle is a double closed shell nucleus, in the basic 



approximation of the K-harmonia method, its wave function (Eq. 2.12) 
is given b y  

with 
YKmin(l(Zp , ~ ( i ) ,  u(i)) = p-Kmin lDKmin(p(i), ~ ( i ) ,  u(i)). 

For the alpha particle Kmin = 0, therefore 

. . . . .  ~ + ( l )  ~ + ( 1 ) .  ~ + ( 4 )  V+(4) 
. . . . .  . u+( l )  v - ( i ) .  u+(4) L ( 4 )  = N  

U-(1)  v + ( l ) .  uJ4) v+(4) 
(3.3) . . . . .  

. . . . . .  ~ ~ ( 1 )  v- (1) U -  (4) v -(4) 

[We shall use the following convention: ,)-(i) designates a proton state 
and v+(i) a neutron state]. 

Taking N = (4!  Qp)-112 = &,i(16n2), PO turns out to be normalized in 
the unity sphere of E,. This reduces the normalization condition for $, 

S í ( p ,  . v<i>); ~ N P ,  a,, 14i), i i ) )  d~ = 1, (3.4) 

simply to 

Expanding the determinant (3.3) we have 

m x  P%4), u(i), 4 i ) )  = - 8nZ 

The interest in gathering the particle in pairs as in (3.6) is because the 
interaction potential we use is a two-body potentiai. The coupling of the 
spin and isospin pairs in singlets and triplets makes obvious the action 



of the projectors P',') and P'," and shows explicitly that P0 has total spin 
and isospin equal to zero. Since PO is of degree zero, it has positive parity. 
Therefore P0 has built in the spin, isospin and parity characteristics of 
the ground state of the alpha particle. 

The "effective potential" (2.20) assumes now the form 

where use was made of the explicit expression of PO, Eq. (3.6). 

Using the angular variables given h the Appendix, W(p) takes the form 

for two-body nuclear central potentials of the form (2.3). In the present 
paper we used two-body nuclear central potentials of the form 

U(r) = U,(r) P(- ' + U,(r) P r  ' , r = 1 r(i) - r(j) 1, (3.10) 

where 

and similarly for U,(r). For these potentials, the expression of W(p) is 
the same as (3.9) with the replacements UI3 -+ U, and U3, 4 U,. The 
potentials we studied have the parameters a,, Pk and the shape functions f 
given in Table 1 and the "effective potentials" (3.9) they lead are plotted 
in Fig. 1. 

Table 1 - Parameters and shapes of the potentials (See Eq. 3.11) used in this paper. The supers- 
cripts indicate the references. 
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Since the alpha particle has two protons, besides the nuclear interaction 
we have also to take into account the Coulomb repulsion between the 
two protons. To this end we need to calculate the "effective potential" 
Wco,,(p) due to this interaction. The Coulomb potential between nucleons 
i and j is given by 

where r,( i)  is the z-component of the spin operator of the nucleon i. Now 
we use (3.12) and (3.3) in (2.20) and obtain 

where use was made of the experimental result eZ = 1.44 MeV fm. 

Now that we have the K,,-harmonic Y O  - PO, the nuclear W ( p )  and 
Coulomb Wco,,(p) "effective potentials", the next step is to integrate Eq. 
(2.19) to determine the ground state energy and the corresponding radial 
part R(p) = x(p)/p4 of the wave-function. 

First of all, we put (2.19) in a dimensionless form by defíning the dimen- 
sionless variable 

In this variable, Eq. (2.19) reads 

The integration of Eq. (3.15) was done by the Matching Method'*16 using 
the Numerov formula17. The results obtained for the ground state energy 
of the alpha particle for the potentials of Table 1 are given in Table 2. 
The radial parts of the wave-functions are plotted in Fig. 2. 
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4. From Factors of the Alpha Particle 

The charge form factor of a nucleus of charge Ze is defined as the Fourier 
transform of the charge density p(r): 

where Tzq is the momentum transfer. It can be directly related18 to the 
square root of the ratio of the differential elastic-scattering cross section 
to the Mott scattering. The charge density is given by 

J 
where pp(r) and p,(r) are the proton and neutron charge densities and 
Ii +(r) are the expection values, relative to the ground state, of the operators 

which give the density of probability of finding either a neutron or a pro- 
ton, respectively, at a definite point r' in the space. 

Potential E (MeV) R (fm) 

Table 2 - Values of lhe binding energy and 
the charge radius of the alpha particle for 
the potentials of Table 1. 

Substituting (4.2) in (4.1) and using the convolution theorem we get 

FCh(q) = f + (q) + (q) + f - (q) - (q), (4.4) 

where 



The functions f,(q), which are the charge form factors of the neutron 
and the proton, are due to the finite size of' the nucleons. They were obtai- 
ned experimentally by Janssens et al.19 fitting the parameters of expres- 
sions for f,(q2) obtained in the three poles approximation of the dispersion 
theory. Their explicit expressions are 

where q2 in given in fm-'. 

4.1 Charge Form Factor of the Alpha Psirticle 

The expectation value of the operators (4.3) relative to ground state of 
the alpha particle, Eq. (3.2), gives 

Substituting (4.9) in (4.6) changing the o~der  of integration and integra- 
ting in r we have 

F +h) = F-(q) = F(q) = exp(- i$ q . &3)/2) xZ(p) d& (4.10) 32n4 

[F(q) is usually called bod,v form factor.]. 

NO\ - - C  use the expansion of the plane wave in spherical components 

and observe that in the integration i .  (4..10) only the 1 = 0 component 
contribute. Gi,(kr) in (4.11) is the spherical. Bessel function.]. After a little 
manipulation we finally get for the alpha particle body form factor the 
expression 



Since ~ ( p )  was obtained only numerically, the same happens to F(q)  and 
F,(q). The values obtained for FCh(q) are plotted in Fig. 3. 

Figure 3 - Charge form factors of the alpha particle lead by the potentials of Tabie 1. The 
biack circles are the experimental values given by Janssens et al.19. 

From the charge form factor we obtain the mean squared radius of the 
charge distribution through the relation. 

Using Eqs. (4.4), (4.7), (4.8) and (4.12), Eq. (4.13) reduces to 

The values of J(r2)Ch for the potentials of Table 1 are found in Table 2. 

5. Discussion of the Results 

From Table 2, one can see that I: and V2 give excellent results for the 
binding energy, while V3 and V6 give reasonable results and the remai- 
ning give bad results. 
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It was quite reasonable to expect that VI and V, would give good results 
for the binding energy since they were obtained by fitting the experimental 
binding energy and the dimension of the alpha particle in calculations 
by the Hartree-Fock method. But besides that, the values of Table 1 for 

and V, show that for the alpha partide, the K = O harmonic gives 
the major contribution to the binding energy, as it already happened in 
the three nucleon ~ystems*,~.  In view of that, we should abandon V4 and 
V7 in the higher approximations of the K-karmonics method to the alpha 
particle since they will give a very low value for the binding energy. We 
have also to abandon V3 since it clearly overbinds the system. Potentials 
V, and I/, can give good results in higher a.pproximations. Unfortunalely, 
potential V< has no physical interest sina: it makes the nuclear matter 
to c ~ l l a p s e ~ ~ .  

About the charge radius, VI and V, give reasonable results, while the 
remaining give values much smaller than the experimental one As the 
higher approximations tend to spread the system to higher values of p, 
they certainly will raise these values. 

About the charge form factor, we see from Fig. 3 that the best results are 
given by V4 and V7 , although they are riot very good. Unfortunately, 
these potentials give very low binding energy. Potentials VI and V, , which 
give the best results for the binding energy, give charge form factors which 
are not extremely bad and we hope that the higher approximations will 
improve these results. Comparing Figs. 1 and 3 we see that the more repul- 
sive is the core of K ,  the best is the corresponding charge form factor. 

We plan to repeat these calculations for the higher approximations of 
the K-harmonics in order to study the convergente of the method for the 
alpha particle and check the conjecture, suggested by the values of the 
binding energy given by VI and V,, that the major contribution to the 
binding energy comes from the K = O terrn of the potential. 

Appendix:Hyperspherical Coordinates in E ,(, - ,, 

The radial coordinate p is defined as in (2.8), namely 

(A. 1) 

The 3 A- 4  angular coordinates may be define in sweral different ways We choose the 
following definition : 



i) 2(A- 1) angles are taken as the polar and azimuthal angles of the vectors t(i), defined in 
the usual way 

ii) ( A  - 2) angles are taken as the interconexion angles among the E,(i) and E,,,-, , defined by 

15(1)1 = PCOS)LI 3 

1 5(2) 1 = p sin L, cos i., , 

15(3) I = p sin Â, sin Â, cos 1, , 

1 c ( ~ - 3 ) l  =psinÃ,sin/i, . . . .  ~ i n Â ~ _ , c o s I . ~ - , ,  

(C(A - 2)( = p sin i,, sin I,, . . . . sin i ?  , cos I,, -, cos p, 

(S(A-1)1 =psinÂl sini, , . . . .  ~ i n i , ~ - ~ c o s 3 , ~ - , s i n p ,  

O 5 Li., < n 2. i = 1 2 .  (A-3). 

The volume element is 

from which we obtain the solid angle element 

where dRle,,,, is the usual three-dimensional solid angle element of the E, of the vector c(i). 
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