
Revista Brasileira de Física, Vol. 4, N.O 1, 1974 

Spherical Harmonics and Energy Polynomial 
Solution of the Boltzmann Equation for Neutrons*-I 

P. SARAIVA DE TOLEDO 
Instituto de Física, Universidade de São Paulo, São Paulo SP. 

Recebido em 12 de Outubro de 1973 

The approximate solution of the source-free energy-dependent Boltzmann transport equa- 
tion for neutrons in plane geometry and isotropic scattering case was given by Leonard and 
Ferziger using a truncated development in a series of energy-polynomials for the energy 
dependent neutron flux and solving exactly for the angular dependence. The presence in the 
general solution of eigenfunctions belonging to a continuous spectrum gives rise to difficult 
analytical problems in the application of their method even to simple problems To avoid such 
difficulties, the angular dependence is treated in this paper by a spherical harmonia method 
and a general solution of the energy-de~endent transport equation in plane geometry and 
isotropic scattering is obtained, in spite of the appearance of matrices as argurnent of the 
angular polynornials. 

Uma solução aproximada da equação de transporte de Boltzmann para neutrons, sem 
fonte, poli-energética, em geometria plana e espalhamento isotrópico, foi obtida por Leonard 
e Ferziger. Estes autores, utilizando um desenvolvimento truncado em uma série de poli- 
nômlos na energia para descrever a dependência energética do fluxo de neutrons, obtiveram 
uma solução exata para a dependência angular. A presença, na solução geral, de auto-fun- 
ções pertencentes a um espectro contínuo de autovalores, dá origem a problemas analíticos 
dificeis mesmo quando se consideram casos simples. Para evitar tais dificuldades, a depen- 
dência angular do fluxo de neutrons é tratada neste trabalho pelo método de esféricas har- 
mônicas. A solução geral da equação de transporte em geometria plana e espalhamento 
isotrópico é obtida, apesar do aparecimento de matrizes como argumentos dos polinômios 
angulares considerados. 

Introduction 

The source-free energy-dependent Boltzmann equation for neutrons in 
plane geometry has bem the subject of a considerable number of papers 
since 1962. The origin of this sudden interest in this problem can be tra- 
ced back to the fundamental work of Case' who developed the now caIled 
"singular eigenfunctions method". Case's work dealt with the energy- 
independent case and the extension to the energy-dependent case was basi- 
cally due to the Zelazny and Kusze112, Bednarz and Mika3 and Leonard and 
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Ferziger4,'. Whereas the work of Zelazny and Kuszell was based in the 
multi-group method, Leonard and Ferzigrr used the polynomial method 
to treat the energy dependence of the neutron flux. 

The method of Leonard and Ferziger gives an approximate solution of 
the source-free energy dependent Boltzmann equation in plane geometry : 
it is approximate as far as the energy dependence of the solution is concer- 
ned, but it is exact in the angular variablt:, and can be applied to infinite 
or finite medium problems. 

The use of an extension of Case's method by Leonard and Ferziger led 
to the appearance, in the general solution, of eigenfunctions belonging 
to a discrete as well as a continuous spixtrum of eigenvalues: and the 
presence of eigenfunctions belonging to a continuous spectrum of eigen- 
values gave rise to difficult analytical problems in the application even 
to simple practical problems. As a matter of fact, the angular dependence 
is obtained exactly but only formally. When one wants to apply their 
general solution to real problems on finite media, the exactness of the 
angular dependence is ultimately lost, since the Fredholm equations that 
result must be solved approximately. 

Such diffículties motivated the work to 9e pressented in this paper. in 
which the angular dependence of the neutron flux is treated approximately 
by the wellknown spherical harmonics method and a general solution of 
the Boltzmann equation in plane geometry can be obtained in a form 
that closely resembles the solution of the energy - independent case. 

The plan of this paper is asfollows : in Part 1, the energy-dependent trans- 
port equation is reduced to a system of coupled matrix equations that is 
quite similar to the system of algebraic equations wellknown in the spheri- 
cal harmonics method of solution of thi: energy-independent transport 
equation, In Part 2, the equation that determines the eigenvalues is obtai- 
ned, as well as the corresponding eigenfunctions. The general solution of 
the Boltzmann equation in an arbitrary order of approximation in the 
energy and angle variables, for the case of isotropic scatt-ring and plane 
geometry, is also explicitly given. In Part 3, some conclus. -?s are pre- 
sented as well as the plan to extend this inethod to other geomeL:;es. 

1. The Transgort Equation in the Energy-.4ngle Polynomial Method 

For the case of plane symmetry, the source-free energy dependent Boltz- 
mann equation for a non-multiplying homogeneous and isotropic medium, 
can be written as follows: 



where Xf(E' -+ E) is the I- moment of the scattering kernel for neutron 
scattering from energy E' to E; p is the cosine of the angle between the 
direction of trave1 of the neutron and the x-axis. A11 distances are measured 
in terms of the maximum free path (l&(min)): a11 cross sections appearing 
in (1) are dimensionless. If the further assumption is made that the scatte- 
ring is isotropic, then 

and Eq. (1) reduces to equation (2.1) of the paper of Leonard and Ferzigers. 
This simplification will be made later on in this paper. 

Following the method of energy-polynomial approximation of Leonard 
and Ferziger (Ref. 4, hereafter referred to as F & L), 4(x, E, p) is developed 
in a series of a complete set of orthonormal functions of the energy, gj(E): 

An approximate solution of the exact equation (1) in the case of isotropic 
scattering kernel, was given by F & L by a truncation procedure: they 
retained, in the development (2) only the fírst (L + 1) terms: 

Such a truncation procedure can be expected to give good results as long 
as X,(E) is a smooth function of the energy; one can hardly expect this 
method to give good results in the resonance region of those media con- 
taining heavy elements, specially uranium and thorium. In the thermal 
region, &(E) varies smoothly and (4) can be expected to give good results 
with a reasonable low value for L and a suitable choice of the g,(E). 

Considering then only the thermal region, the moments of the scattering 
kernel satisfy the detailed balance condition7, that is: 

M(E) C:(E -+ E') = M(E1) C~(E' -+ E), 



where 

M ( E )  = E e - E  (6)  

is the Maxwellian distribution and the energy E  is measured in units of kT. 

It is usual, in this case, to symmetrize the scattering kernel. This is done 
defining $(x,  E, p)  by 

6 ( ~ ,  E, P)  = JWE) I H X ,  E,  p). 

Using (7), Eq. ( 1 )  can be written as 

where Zf,(E1 -+ E),  defined by 

M ( E f )  112 C: (E' -+ E),  

is symmetric due to Eq. (5). 
To simplify, let us put 

Eq. (4) is then substituted by 

and, by a suitable choice of the functions g,(E), the truncated development 
( 1 1 )  can be made to represent the deviation from the Maxwellian distribu- 
tion of the actual neutron spectrum. This, again, reinforces our argument 
that in the thermal region - where, in the absence of absorption, the 
neutron spectrum in an infinite medium deviates little from a Maxwellian 
one -- low values of L will be sufficient to account for deviations due to 
absorption or leakage in finite media. 

Substituting (10) in (8) and using (3), one obtains immediately 



where 

This is a system of finite coupled integro-differential equations in which 
Lhe expiicit dependence of the energy was eliminated. 

l f  & ( E )  is energy-independent (constant cross-sectiofi approximation, in 
the sense used by Davison7 or Ferziger and Leonard6), Vkj is a diagonal 
matrix and (12) can be reduced to the case considered by Ferziger and 
Leonard6, that is, to a set of uncoupled energy-independente problems. 

Defining now the matrices 

[ V ]  = symmetric square matrix of order (L + I), with elements Vkj .  
[a'] = symmetric square matrix of order (L + I), with elements a:, , 
( f (x, p) )  = column matrix (vector) of .order (L + I), with elements &(x, p), 

the system (12) can be written, in matrix notation, as 

It is important to notice that the matrices [ V ]  and [a'] will couple a11 
components of the vector I f (x, p)). If a partia1 decoupling could be obtai- 
ned, the solution of (15) would be very much simplified. 

Such decoupling, in case of isotropic scattering, was done by F & L4, 
allowing these outhors to obtain exact solutions in the variable p, in any 
finite order of approximation L of the energy polynomial approximation. 



Considering (15) a partia1 decoupling wiil be obtained using the same 
method used by F & L. 

Since [V] is real and symmetric, there exists an orthogonal matrix [O] 
such that the similarity transformation 

[@I - [V] [O] == [B] (16) 

gives a diagonal matrix [B]. This similarity transformation gives also 

where CY'] is again symmetric but not diagonal. 

Using Eqs. (16), (17) and (18), one gets frc~m Eq. (15): 

The translational invariance of this systeni suggests to look,for solutions 
of the form: 

1 híx. P)) = expí- xlv) . I h(v, P)). (20) 

With the Ansatz (20). Eq. (19) gives 

where [I] denotes the identity matrix. 

Up to this point, but for the generality of the considering a fully anisotropic 
kernel, the treatment is the same as the one developed by F & L'. 

The solution of Eq. (SI), even with two lerms in the second member - 
linearly anisotropic scattering kernel - was not considered bp F & L and 
it seems that it will be ver-  hard to be obtained. 

Now there will be an essential departure from the F & L method: instead 



of trying to solve exactly Eq. (21), the spherical harmonia method will 
be used to solve for the angular dependence of 1 h(v, p)). 

Putting 

one gets, from Eq. (21), 

Since 

one gets from Eq. (23), upon multiplication by Pm(p), integration in dp 
and use of 

the following system of matrix equations: 

It is important to notice that now the matrices [ p ]  and [ym]  couple only 
the various components of each single vector like (Bm(v)):  the coupling 
of components of different vectors is completely absent: And furthermore, 
such coupling between components of a single vector is due only to the 
presence of the non-diagonal matrices [ym], since [ p ]  being a diagonal 
matrix does not bring any coupling. 

The number of coupling matrices [ym] is equal to the number of moments 
of the scattering kernel that one wants to consider. For example, if the 
isotropic scattering kernel is considered, as did F & L4, only the matrix 
[ y O ]  differs from zero, and (26) reduces to: 



So, the isotropic kernel couples only the ccmponents of the vector (B,(v)). 
Considering a linearly anisotropic kernel, there will be two matrices C y O ]  
and [ y l ]  differing from zero; and wherea.~ [ y O ]  will introduce coupling 
between the components of I Bo(v)), [r1]  will do the same between the 
components of I B,(v)). 

The diagonalization of the [ V ]  matrix of Eq. (15) was realiy important; 
without such a diagonalization, there would be in the left member of 
(27) a coupling between the components of a11 vectors and no only of the 
vector (Bo(v))  in the isotropic case. 

Finally, since [b] is diagonal, the system (27) has a structure that closely 
parallels the one of the system that occurs in the energy-independent or  
constant cross-section case and that has bem extensively studied and 
applied8 

v 9  3''. 

The coupling iiltroduced between the coniponents of I Bo(v)) in equation 
(27) can be dealt with without difficulty, as will be seen in Sec. 2. 

2. Eigenvalues and Eigenfunctio~ in the Energy-Angle Pohynanial 
Approximation: Isotropic Case 

Considering Eq. (26) and keeping only a finite number of ( N  + 1) terms 
in the expansion (22), one obtains the follov~ing system of matrix equations: 

If one considers, for the sake of simplicity, the isotropic case. only [ y O ]  
will be different from zero and Eqs. (28) and (29) reduce to 

The solution of (28), (29) for the linearly anisotropic case could be obtained 
without difficulty using a general method developed by Travelli". 

7 8 



Up to now, v was an arbitrary parameter: now it will be determined by 
imposing the condition that the homogeneous system (30), (31) has non- 
trivial solutions. 

Following a method developed by Kofinkl2 for the energy-independent 
case, the following system of (N + 1) equations and ( N  + 2) unknowns 
is considered : 

the system (32)-(33) reduces to (30)-(3 1). 

Kofink's method consists in obtaining a solution of the system (32), (33) 
without any restriction on v; then, Eq. (34) will determine the values of v 
that allow the existence of non-trivial solutions of the original system 
(3% (31). 

It is easily shown that 

I B,(v)) = {P,([vBI) - K- ~([vPI) .  [vY']) I &(V)) (35) 

is a solution of the system (32), (33), with no restriction on v; and I Bo(v)) 
is an arbitrary vector, different from zero. 

In Eq. (35), W,-,(x) is the non-singular part of the Legendre functions 
of second kind13. 

It is worthwhile to notice that the diagonal character of the matrix [p] 
plays again an important part. Indeed, [vp] being a diagonal matrix, 
there is no difficulty at a11 due to its presence as argument of polynomials 
like P, or W,-, . 

Eqs. (34) and (35) give the characteristic determinantal equation 

II P,v+l([~Bl)k WN([VB]). [V'] I) = O (3 6) 

that determines the (L + 1)(N i- 1) eigenvalues v. 



if N is odd, a11 roots of (36) will be different from zero; and furthermore. 
the (L + 1)(N + 1) roots occurs in pairs, that is, to each positive root 
(+ 1 v,) there correspo~ds a negative one (- /v,)), with s = 1,2,. . . g ~  + 1) 
(L + 1). 

From now on the approximation in which there are (L + 1) terms in the 
energy polynomial expansion and (N + 1) 1:erms in the Legendre (angular) 
expansion will be called a PNLL approximation; and N will always be 
considered to be odd, as is usual in the energy-independent case. 

The characteristic equation (36) is in a form which is convenient for stu- 
dying the behaviour of the eigenvalues If: v, when N -+ x. This is due 
to the fact that the determinantal equation (36) is always of order (L + 1): 
when N increases, only the order of PN+, and WN will increase. 

The vector eigenfunctions ' 1 &(v)) (n = O, 1 . . . N) are now compietely de- 
termined by (35), with the only restriction that v is no more an arbitrary 
parameter but must be a member of the set Ai v,(s = 1,2,. . . &N + 1)(L + 1)). 

Finally, the general solution of the linear Boltzmann equation in the 
PNLL approximation (N odd) will be given, in the isotropic case and plane 
geometry, by 

+ ( N +  l ) ( L +  1 )  L 

Q(X. E ,  li) = a { 2 [C:+) A;( + v,) e x p (  X ~ V J  
s = l  j = O  n = O  

where the A'Jv) denote the components of' a vector (An(v)) which are gi- 
ven by 

or 

with 

[Hn] = P,([vb']) - K- Cvb']) . [v0]. (40) 

The C:+) and C:-) are (L + 1)(N + 1) arbitrary coefficients to be determi- 
ned by boundary conditions appropriate to a particular physical problem. 



The analysis of the behaviour of the eigenvalues and eigenfunctions given 
by (36) and (35) when N -+ x, as well as numerical comparison with some 
results given by F & L, will be presented in another paper. 

3. Concluding Remarks 

The general solution (37) has been applied to the solution of the energy- 
dependent Milne problem in a medium that scatters and absorbs neu- 
trons14. The study of the same problem but considering the influente of 
a linearly anisotropic scattering kernel was also carried outl', and both 
works will be shortly submitted to publication. 

As could be anticipated looking at the simple and compact nature of (37), 
it can be applied in a way that permits complete and detailed studies to 
be made, using even small computers and without too long computing 
times. 

The extension of this method to spherical and cylindrical geometries is 
being studied. 
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