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The solutions of the linearized Boltzmann collision operator for hard spheres can be sepa- 
rated into spherical harmonics and investigated respectiveiy ior each angular index I .  The fact 
that an infinite sequence of discrete eigenvalues exists below a continuum has been established 
elsewhere for the cases I = O  and I = 1. For the case 1 = 2, however, the single gas and the 
foreign gas problems have markedly different spectral profiles below the continuum. For the 
latter, there is no discrete eigenvalue in that region while there is still an infinite sequence 
for the former. For the I = 3 case, no discrete eigenvalue exists below the continuum for 
both problems. 

Para esferas duras, as soluções do operador de colisão de Boltzmann linearizado podem 
ser separadas em harmônicos esféricos e investigadas separadamente para cada valor de I .  
Já foi mostrado que existe, para I = 0 e 1 = 1, uma seguência infinita de autovalores discretos 
abaixo do continuo. Para 1 = 2, todavia, os gases sem e com perturbação apresentam perfis 
espectrais marcadamente diferentes abaixo do continuo. Para o gás com perturbacão,  -
não há autovalores discretos nessa região, ao passo que para o gás sem perturbação, há uma 
sequência infinita de tais autovalores. Para 1 = 3, não há autovalores discretos abaixo do 
continuo em nenhum dos casos. 

I .  Introduction 

In a previous paperl, we have indicated the difference of the spectral pro- 
file between the l = 2 case and the l = O  or l = 1 case. We conjectured 
that the discrete relaxation constants or the 1 = 2 case are infinite in num- 
ber for the single gas problem while only finite for the foreign gas problem 
and suggested that the method of KuSCer and Williams be tried to resolve 
the question. In this paper, we shall carry out the actual computation 
following that suggestion. Furthermore, we shall extend the calculation 
to include the case of 1 = 3. 
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2. Existence of Discrete Relaxation Constants 

(a) Case 1 = 2 

For a spatially uniform hard sphere gas without applied field, the linea- 
rized Boltzmann equation is given by'y3 

a 
- 4(v, t )  = - V(v) &V, t )  + K(v, v') 4(v', t )  d3v', 
at S 

with 

and 

K(v, v') = E- 312 exp(- vf2) LI -- v :v, exp {($g} - 

where v stands for (m/2kT)'l2 v, t  for 4 n ~ ~ p 1 : 2 k T , h z ) ' ~ ~  t  and y for the follo- 
wing : 

y = 1 for the single :;as problem, 

y = O for the foreign gas problem. 

Assuming exponentially decaying solution; and decomposing them into 
spherical harmonics, 

we are led to the equation for 1 = 2 (Refs. 1,  4): 



with 

Both the single gas and foreign gas problems contain the continuum 
2.rr-l!' = L* j Ã < m, covered by the values of V(v) ,  as a part of their 
spectra'v6. However, we are interested in the discrete spectra below this 
continuum. 

By making the following transformation, 

we obtain from (4) the equation 

P ( L )  $ 2 ( ~ )  = K 2 . L ( ~ ,  U )  $ 2 ( ~ )  du + K 2 . 2 ( ~ .  V )  $ 2 ( ~ )  (6)  

where 

C 
K2(v, 4 

K2,,(v3 u) = -- 
I , ,  V U )  - ) & ] I ! ,  ( 0 4  exp - - (vW + u2) 2 (7) 

[VCv) - 4 , C ( [ :  1 
and CY(3,) is a new constant corresponding to the eigenvalue of equation 
(6). 3, being treated as parameter. 

As our original problem corresponds to CY = 1, the relaxation constants 
I,, which we are searching for, correspond to the roots of Cn(Â) = 1. 

As long as Â. < 3," = 2n-'I2, it can be verified directly or inferred from 
the results of Grad' and Dorfman7 that K,,,(v, u) is a compact (comple- 
tely continuous) self-adjoint linear operator in the Hilbert space L,@, x;). 
Therefore, for any A < A*, there exists a nonempty set of real discrete 
eigenvalues C1;(?,), not accumulating at any nonzero . value8. Moreover, 



it is continuous, monotonic and cannot change sign due to the fact that 

holds, as can be easily verified from (6 ) .  However. as 3, = A*. K2, , (v ,  u)  
is no longer compact, because of the singularity at u t O, u t O created 
by the factor 

This limiting kernel can be represented as a sum 

KZ.lr;(v. U )  = H 2 , 1 * ( ~ ,  U I  f A2(v. u), 

where H2,,,(v, u )  is a simplified model kemel which takes away that singu- 
larity so that the remaining term A, is compact. 

By expanding the expression (7) in powers of t and u. and by imposing 
an arbitrary cut off speed v , .  we are led to the following choice: 

Substituting H,,,,(v, u )  for K, . , , ( c .  u). Eq. ( 6 )  becomes 

Applying a theorem due to Vidavys. Appendix) to Eq. 10. we readily see 
that the spectrum of H2,, , (v ,u)  consists cf a11 the points of the interval 
[O, C;], where C: = 2Y 24/25.  Hence, the spectrum of K2, , , ( r .  u )  also con- 
sists of the interval [O. C:]. It has been shown2 that K,(c .  u )  converges 
strongly toward K,(v,  u )  and that the eigenvalues C ; .  consequently. must 
fill the interval [O, C*] ever more densily as 3, -+ %*. Remembering that 
C is continuous and monotonic. we are led to the conclusion that an infi- 
nite number of eigenvalues C,(),) must cross the line C = 1 as i, + j.* 

for the single gas case. as C2 = 2(24 2 5 )  > 1 for that case. The crossing 
points mark an infinite set of discrete relaxation constant R,.  On the other 



hand, as Cf = (24;25) < 1 for the foreign gas case, no eigenvalue C,(),) 
can reach the value 1. Therefore, no discrete relaxation constant below 
the continuum exists for the foreign gas problem. However, the question 
of possible discrete eigenvalues inside the continuum remains open. The 
situation below the continuum, for the 1 = 2 case, can be illustrated by 
Figs. 1 and 2. 

Fig. 1 - Schematic picture of eigenvalues C"().) for a single hard-sphere gas showing the crossing 
points I.,, as the discrete relaxation constants below the continuum. (not to xale). 

(b) Case 1 = 3 

For this case, the kernel of an equation similar to (4), obtainable from 
(I), is given by10 



and the limiting kernel similar to (9) is given by 

= O, otherwise. (12) 

Therefore, the equation corresponding to (10) now reads 

and the spectrum of K,,,(v, u) consists of the interval [O, C : ] ,  with 
C,* = 2Y(24,i49). 

Fig. 2 - Schematic picture of eigenvalues C:(?,) for a foreign hard-sphere gas showing no dis- 
crete relaxation constant below the continuum. (not to scale). 

Now, for tfie single gas problem C: = (4:3/49) < 1 and, for the foreign 
gas problem, C,* = (24i49) < 1, so we carinot expect C(%) to reach the 
value 1. Therefore, we conclude that in the case of 1 = 3 there is no discrete 
eigenvalue below the continuum for both the single and foreign gas pro- 
blems. The situation is similar to that illustrated by Fig. 2. 
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Appendix 

In this appendix. Vidav's theorem is reproduced in a slightly generalized form 

Let us define an integral operator Ir: acting in the Hilbert space L2(0, l), by 

and its adjoint operator T* by 

T* d(x) = a[-, xl-' v-' d(v) dv. I 
The operator T is not compact but is known to be bounded". 

It can be easily verified thai, for any complex number m, with Rem > - 1j2, 

e,(x) = (1 + 2y)'I2 xm, y = Rem z - 112, 64-3) 

is an eigenfunction of T, with norm 1, corresponding to the eigenvalue 1 = + , ( l  + m)-'. 

According to (A-1) and (A-2), the products TT* and T*T are the following operators: 



By changing the order of integration, we obtain 

T T *  d ( x )  = --L(T + T * ) d ( x ) ,  
21- 1 

T*T d ( x )  = [T  + T * - P] &x), 21-1 

where 

Consider now the sum A = T + T*. This is a bounded self-adjoint operator defined by 

v'-' Q(v) dv + xl-' v-' d ( v )  dv . r,' i 
Let us put 

e, being the function (A-3). Since Te,, = 1.e,, with 1, = a,_  ' ( 1  + m ) - ' .  we obtain by applying 
T* on both sides of this equation and using (A-5), 

with 

Pe, = 3,(1 + 28)u2 ti-'  

Therefore. 

Ae, = ( T  + T * ) e ,  = ?.e, + f, 
=,i [ 1 + )-'I e -  (:rll - 1  ) - '  Pe,. 

Let us write m = r + is. If y -t - li2, s being fixed. ttien the term 

tends to zero and the expression 1. [ I + ( ' , :I~'?*- -- I ) - ' ]  converges to the vaiue 

4(21- I )  a , + ,  f(21- 1)' + 4s21. Hence. the norm of tlie function 



4(2l- 1) a,-, 
Ae, - ------ 

(21- + 4szem 

is arbitrarily small if is suffícientlv dose to (- 1!2). It follows that e, is an approximate eigen- 
function of A and the number 4(21- 1) a,- ,{(21- 1)' + 4s2] belongs to the spectrum of A. 
Since this holds for each real S. the spectrum of A consists of a11 the points of the interval 




