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An -'interior value problem" for the production of heat in a finite circular cylinder is solved 
by use of Laplace and finite Hankel transforms. 

O problema da produção de calor por um cilindro, considerado como  "problema de valor 
interior", e resolvido, fazendo-se uso das transformadas de Laplace e de Hankel (finita). 

1. In heat engines, cylindrical solids have an important role to play and 
hence a study of the temperature variation of these cylindrical solids 
which are used in the working of compound engines, air compressors, 
ordinary steam engines and internal combustion engines' are of great use. 

Many authors have attempted to solve problems of heat conduction in 
which boundary conditions are prescribed (such as temperature or heat 
flux) and the temperature at internal points is required. Such problems 
(which may be called "direct problems") can be solved by classical me- 
thods'. Masket and Vastano6 have solved a problem of transient heat 
conduction in which one is required to find the temperature or heat flux 
at the surface and named such probiems "interior value problems" as 
here one determines boundary values from interior values. Recently, Kalla3 

and Kalla and Battig" have also considered such type of problems. 

The object of the present paper is to consider a problem of transient heat 
conduction in a finite circular cylinder which is generating heat with a 
given temperature distribution on any interior plane which is normal 
to the axis of the cylinder, and to determine the temperature at any point 
on one of the flat surfaces of the cylinder when there is radiation from the 
cylindrical surface into a medium at a given temperature. 

The solution has been obtained by an appeal to Lapiace and finite Hankel 
transformss. Severa1 interesting particular cases are also mentioned. 



2. We shall denote the classical Laplace trarisform of a function f ( r ,  z .  t )  as 

a r .  r, p) = 10w e-' f ( r ,  r ,  t )  dt.  (1) 

The finite Hankel transform of a function , f ( r ,  z ,  t )  is defined as8 

where ai is a root of the equation 

If f satisfies Diricjhlet's conditions in the closed interval [O, a]  and if its 
finite Hankel transform is defineú as in (2 )  in which ai is a root of the trans- 
cendental equation (3 ) ,  then 

the sum being taken over a11 positive root:; of Eq. (3 ) .  

3. Let us consider the radial and axial heat flows in a finite circular cylin- 
der bounded by the surfaces z  = 0, z = h and r  = a, which is generating 
heat and is initially at temperature n(r,z) .  

Thus our problem may be described mai:hematically as: to obtain the 
solution of the partia1 differential equation 

{a2e i ae azo]  
at 

= k + - - + -z + A(r, z ,  t ) ,  
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subject to the following conditions: 

B(r, O,  t )  = m(r, t ) ,  z = O,  t  > O, to be found out (6) 

B(r, h, t )  = p(r, t ) ,  z = h, t  > 0, (7) 

B(r, s, t ) ,  O c s < h, is a known function. 



Taking the finite Hankel transform of both sides of Eq. 5, we get 

3 = k + a J0(aai) h4(zr t )  - &) + AJ(ai , Z ,  t),  (10) at 

with corresponding conditions 

@,(ai,  O,  t )  = m,(ai, t ) ,  z > O ,  t > 0 ,  

6,(ai ,  h, t )  = pJ(ai ,  t )  z = h, t > 0, 

@,(ai, z, O) = nJ(ai , z), t = O. 

Now, by an appeal to the Laplace transform, Eq. (10) reduces to an ordi- 
nary differential equation 

whose solution is 

sinh [z(a: + pik)'!'] 
+ "(" ' P )  rinh [h(a: + pik)l!'] 

where D is the usual differential operator and [ l j f ( D ) ] z  is that function 

of z which, when operated upon by f (D), gives z . f (D) = 0' - 



Now, the inverse Laplace transform of 

sinh [ (h - z) ( c# + - p k ) ' 1 2 ]  

+ [ ( ; ) l ! 2 ]  
sinh (h -z) a! + - 

ep' dp. 
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." . - I , X  sinh [ h  (L$ + $ ) l i 2 ]  

The integrand has simple poles at p = - k(cízh2 + rn2n2)jh2, rn = 0, 1,2,.  . . , 
with the following residues: 

Similarly. the inverse Laplace transform (3f 

sinh [z (.: + 

sinh <.i + $n 
+ [ ( 

; ) 1 ! 2 ]  
sinh z + - 

ePt dp. 
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Here, also the integrand has simple poles at 

p = - k(rzh2 + rn2n2):h2. rn =0,1,2  ,..., 



with residues 

2nkm m z z  a?h2 + m2n2 
(- l lm -i;r sin exp [- 72- kt . I (15) 

Combining Eqs. (14) and (15) with the inverse of m(ai ,p)  and p(ai ,p) ,  
respectively, by the product theorem (ReE 7 ,  p. 38), we have 

%(ai , z, t )  = 

27ck " - m sin (7) $ai , T )  exp {- k  + F>'] ( t  - T i ]  dT 
h2 m=l  

271k " 
h m = ,  

) a , T )  exp {- x [a' + (v] it - T I }  i i ~  + 2- 1 (- l )m m sin - 

where 3- ' 
Replacing z  

is the inverse Laplace operator. 

by s in Eq. (13), we get 

sinh [h (a: + 
%(ai , p) = gj(ai , s, P )  - 

sinh [(h  - s)  (a) + f ) 1 1 2 ]  

sinh [s (a? + $ ) l i 2 ]  

- PJ(ai 7 P )  - + 
sinh [ (h  - s) (a' + f)'"] 

sinh [h ( a f  + f ) l i 2 ]  

+ (17) 



where 

Now, following the same procedure as we have in Eq. (16), we obtain the 
inverse Laplace transform of Eq. (17) as 

rnm 
[sin E OJ(ai , S .  T )  + sin p J ( a i  ,TI 

h - s  

where 

X ( S ,  T )  = 9 - ' [x&, P ) ] ,  

which reduces to the following form by use of the Hankel inversion theorem4 

[: exp [- k ( a i  + ( ~ y )  (r -- T)] P n  E OJ(ai, s. T )  + 

mns + siri - pJ(ai , T )  + sin h - s  h - s  

where the summation is taken over a11 the positive roots of Eq. (3). 

If m(r, t )  is known and the value of $(r, z, t) is to be determined, i.e.. the 
temperature at any interval point is required, then the solution can be 
obtained by applying the Hankel inversion theorem to (16) to obtain the 
following expression : 



{ m =  , 1 (- 1, m sin [: exp [- k (a: + (?r)] (t - T) T)<IT 

4. Let us consider some particular cases of the general result (19). 

If we set that there are no sources of heat present in the cylinder, the sur- 
face z = h, t > O, is maintained at zero temperature, that there is radiation 
into a medium at zero temperature and initially the cylinder is at a tempe- 
rature ES(O < s < h), then the expression for the temperature distribution 
at the surface z = O, at any instant, can be given in a simplified form (by 
using a result given in Ref. 2, p. 229) which reads 

4nk a' Jo(air) s 
m(r, t )  = - J l b i a )  . a2(h - s)' i h' + a; [JO(aia)]' ai  

mnh ( - l )m+lms in -~  
m =  1 h- s 

1 - exp(- y?t) exp(- afkt) - exp(- y2t) 
- 4 1  -(- 

y; +fk 

[ (E)'], B(r, s, r) = ps, ,u being a constant and the where yf = k a: + -- 

first summation is taken over all positive roots of Eq. (3). 

Similarly, if we set p(r, t) = q(z, t )  = n(r, t) = O, A(r, s, t) = 6 . s and 
8(r, s, t )  = ps, then, using Ref. 2 (p. 232), Eq. (19) reduces to the following 
form : 



6 exp(- a: kt) - i:xp(- yzt) + -(i -(- 1)"') -----7---- 

cx: y? - @;!k 
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