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Conformal symmetry in Lagrangian field theory is discussed for Lagrangians with deriva- 
tives up to first order. Conditions for invariance and covariance of the Lagrangian and for 
expressing the wnformal currents as nioments of an "improved" energy momentum tensor 
are discussed. 

Discute-se a simetria confmme na formulação lagrangiana da teoria de campos para o 
caso de lagrangianas com derivadas somente até a 1P ordem. Discutem-se as demais condições 
para. invariância e covariância da Lagrangiana, como também condições que permitam 
expressar as correntes conformes, na forma de momentos do tensor de energia-momento 
"melhorado". 

1. Introduction 

The idea of approximate symmetry with respect to dilatation and to the 
special conformal transformation group of hadronic interactions has drawn 
renewed interest in recent yeais. This development arose out of the expe 
rimentally observed scallkg at high energies, which suggésts thepozsibility 
of a dynamical limit where dimensíonal quantities become unimportant. 
The other important motivation has been the possibility of explaining, at 
least in part, the masses of the stable particles as arising from spontaneous 
breakdown of dilatation invariance. 

We discuss here symmetry of a Lagrangian field theory with respect to 
scale and special conformal transformation. The Lagrangian is assumed 
to contain derivatives not higher than the first. Distinction is made between 
the cases in which the infinitesimal quantity [S2] defined in Eqn. (2.16) va- 
nishes (invariance) and the case in which it is only a divergence (covariance). 

It is shown that in both cases the "weak" conserved currents derived from 
'Joether's theorem can be cast as moments of the 'improved' energy mo- 
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mentum tensor. We find also necessary and sufficient conditions for intia- 
riance condition to hold and that a Poincare invariant theory is invariant 
(covariant) simultaneouly, with respect to both scale and special conforma1 
transformations if the conformal deficienty vector V' vanishes. 

In Section 2, we review the Lagrangian field theory and Yoether's theorem. 
In Section 3, we discuss the variation of the field corresponding to infini- 
tesimal conformal transformatjons. In Section 4, conformal currents are 
constructed and the conditions of invariance and covariance of Lagran- 
gians under infinitesimal transformations as well as the condition for 
expressing currents as moments of improved energy momentum tensor 
are discussed. Dilatation symmetry is discussed in some detail. In Section 5, 
applications are made to spin 0,1/2 and 1 íield theories and a short Section 
6 is devoted to the presence of fields with anomalous scale transformations. 

2. Review of Lagrangian Pield Theory and Nother's Theorem' 

a) Notation 

We will consider a classical fíeld theory in four-dimensional space- 
time. The dynamical system is described by N field components 4,(x), 
A = 1,2 , .  . . N - the dependent variables - which are functions of the 
independent variables x = (xO, xl,  x2, x3). We assume that a Lagrangian 
density function 9 can be defined as a function of xp,  $,(x) and deriva- 
tives of 4,(x) only up to first order. 

The action integral is given by 

where R is a three dimensional region and Q is a cylindrical space-time 
region2. We use here the metric gWp = g,, = (1, - 1, - 1, - I), 8 p v  = g p ,  

O (P f v). 

The dynamical equations are then obtained from Hamilton's principle 
by requiring that the functional J[8,, . . . gi,] be an extremum for a11 
admissible variations 64,, with region i2 kept fixed (e.g. 6xp = O). By 



considering the particular case of 6 4 ,  which vanish on the boundary of 
Q, we obtain Euler-Lagrange differential equations 

a 
Here 2,F = - F are the usual partial derivatives where coordinates 

axP 
other than xp are kept constant. We will use c?,F 1 to indicate partial deri- 
vatives w.r.t. x", which regards coordinates other than x

p
,  4 ,  and a11 ?vj, 

as constants3. For conveniente of notation, we introduce the vector 
4 = , 4 2 , .  . . $ N )  and tensor Vd, with components a,$, , so that 

(3 1 

and 

where 

We assume throughout that partial derivativa of Y exist up to seconcl 
order w.r.t. a11 its arguments and are continuous. 

b) Noether's Theoren 

We now consider arbitrary infinitesimal transformations 

xrP = xp  + BxP, 0 > ( x )  = $,(x)  + $4, + . . . , 
or 

A$,(X) $ > ( x ) -  (iJA(x) cz + . . . , 
where 



and 
r 

84, = Bjqk)(x, $,V+) 
k =  1 

(8) 

are arbitrary functions of x, 4, V 4  and E,, (k = 1, 2 , .  . . , r), are the r essen- 
tia1 parameters of the transformation. We also introduce 

A+,(x) = ~ Á ( x ' ) -  +,(x) = + . . . (9) 

with 

It is easily shown that 

These relations lead to a relation between the functions B, B and C. The 
transformation carries J[4] to 

where Q is mapped into a new region n' and Y'(Y, 4, Gh,  V V 4 )  = 

Y(\-', $', V' 4') I i u ' i i u l  may contain second order derivatives. The varia- 
tion of the action functional is thus 

where. 



Here SJ, [ S Y ] ,  indicate the terms up to first order in the infinitesimal 
parameters. Clearly, 

where 

[ 6 9 ]  = [ V ( x l ,  h', V 'h ' )  - I"(x, h ,  V h ) ]  Y ( x ,  h, V h )  ip(6xP), 

on using 

On making a Taylor expansion, we have 

?2? 
[ 6 9 ]  = - 

Cx" 

- ?I" -- 
Cx" 

This can be recast as4 

[6&] = - [ V ] ,  $4, c i,(n$ $41 t 9 6 x 9  
= - [g],  $h, + i,(7c$6hA - zFv6xv). 

Here summation over components A = 1 . . . N is understood and zFv is 
the canonical energy momentum tensor: 

It may be remarked that, due the to arbitrariness in the.region SZ, SJ = O 
implies [ S 9 ]  = O and vice versa. 

If the action is invariant under the infinitesimal transformations under 
consideration, we find 

E ?,P = [ V ] *  $ h A ,  (22) 

where E%" = nA Sh, -?'Sx,. For constant parameter transformations, 
this leads to the "weak continuity" equation4 

E C,,%, 0, (23) 



where indicates the equality when the fields satisfy Euler's equations 
of motion. For invariance under coordinate dependent parameter transfor- 
mations, like gauge transformations, we obtain identities. We will be con- 
cerned in this paper with the constant parameter transformations. The 
linear independence of the r parameters lead to r weak continuity equations. 

It is clear also that weak continuity equations can be defined even in the 
case the actions are1 not invariant. 

For the case5 

[ 6 2 ]  = &ipAu, 

we clearly have 

e%" = 7~$61"~ - ~""d ' ; ,  - &A" 

and' 

E?,%" = [9IA Bhn 2 O. (26) 

This case is important since Euler's equations corresponding to [ 6 9 ]  
are then satisfied identically6. This would then assure that Euler's equa- 
tions calculated from the transformed action J [ h l ]  are the same as those 
derived from J [ h ] .  In other words, the equations of motion are form 
invariant w.r.t. the infinitesimal transformations like in the case with 
[ 6 9 ]  = O, even though the invariance of action may be lost. For the 
case under discussion, we cal1 the theory cocariant, while the former case 
will be called an incariant theory ( [h91 = 0). 

There is a still more general case
7

, viz., [ 6 9 ]  = &?,A"$ with f - O 
and f # [9],6/hA, where we can write a weak continuity equation with 
%" given in Eqn. (2.25); the form invariance of the equations of motion 
may however, also be Iost. 

3. Conformal Group. Transformation of Fields 

The connected conformal group containing the identity (called. for sim- 
plicity, conformal group) may be defined as the group of the following 
transformations on the real space-time coordinates s" of a vector x in 
the four-dimensional Minskowski space: 



1. Translations 

x'" = x' + a"; 

2 .  Restricted Lorentz group of transformations 

(Ax)" A W V x v  , gBV A: AI = g p Ã ,  A: > 1 ,  det A = 1. 

3. Scale or dilatation transformations: (g,.~)" - xfY = e - P  xY p real; 

4. Special conforma1 transformations: 

(gcx) ' x" = (x' - c'x2)/[1 - 2c.x + c 2x 2] .  

These transformations constitute a 15 parameter group and the specia.1 
transformations are non-linear. Each of these sets of transformations 
constitute a sub-group which is abelian except for the case of Lorentz trans- 
formations. Note that translations do not constitute an invariant subgroup. 

The infinitesimal transformations are given by 

Lorentz transformations: 

Dilatations. 

6xp = - & x P  = i &  Dx" ,  

Special transformations: 

8x8  = qV(2xV xP - gPv x 2 )  = iq, i?' xP, 



where P' = iSv, Mpõ = i(xP da - xõ 89, D = i(x .d) and Kv = - i(2xv xx" - 
x2 gv") ?, are the fifteen intinitesimal generators. The Lie algebra of these 
generators also determines the Lie algebra of the abstract (connected) 
conformal group whose generator will be indicated by Pp, MP", D and Kp. 
The Lie algebra is found to be: 

Note that the commutation relations imply 

a i d  that K, transforms as a four-vector. The exact dilatation symrnetry 
(with an integrable generator D that takes one-particle states into one- 
particle states) implies that the mass spectrum is either continuous or 
a11 masses are zero. 

Introducing JAB(A, B = 0,1,2,3,5,6), where JAB = - JBA , by 

one has 

[JKL 7 JMNI = ~(QKN JLM + ~ L M  JKN -SKM JLN - SLN JKML 
SAA = (i - - ,  - +), SAB = 0 (A f B), (5) 

which is the Lie algebra of S0(4,2). Thus, the conforma1 group is iocally 
isomorphic to the non-compact group S0(4,2) whose covering group is the 
spinor group SU(2,2). Three Casimir operators are then easily obtained: 

JAB JAB = Mpv Mpv + 2P. K $ 8iD - 2D2, 
EF and JAB JBC JCD J D A .  EABCDEF J J J 

b) Transformatíon of Fields 

We postulate that, for every particle, there exists an interpolating field 
(with a finite number N of components) which transforms according 



to a representation of the conformal algebra. Thus, corresponding to a 
transformation 

x ' ~  = (gx)> g E Conformal. group, 

where {T(g)) is an N-dimensional representation of the conformal group. 

For the infinitesimal transformation 

where the essential parameters are labelled as E,, k = (1,. . . , 15) for con- 
venience. We find 

&(x) = i Ik $(x). 
i 

(8) 

The generators I, satisfy the Lie algebra of the conformal group. 

When the fields are quantized field operators acting on the state vectors 
1 Y) in Hilbert space which carry the representation according to 

ly) -+ U(d p'), (9) 

U(g) being a unitary operator, we obtain the supplementary constraint" 

4'lx') = W)+ 4(x1) w. (10) 

For infinitesimal transformations, 

U(g) - ii+ i E, Gk , 
k 

it follows 

where the Gk satise the Lie algebra of the conformal group. Since it is 
easier to calculate the commutators in quantum field theory, where xp 
is simply a parameter, we will frequently calculate the variation of 4 re- 
garding the @s as quantized operators. 

Homogeneity of space with respect to translations, according to special 
relativity, requires for any (observable) field O(x), 

O'(xl) = O(x) = O(t - ' x'), (13) 



when 

( t ~ ) ~  = xtP = xIi + E", 

thus 

6,0(x) = O (14) 

and 

B,O(x) = - E,, 3. O = i&,, PP O(X). (15) 

Regarding the field as an operator in Hilbert space ( U ,  = e'"'), we have 

8, O = i E,,[O(X), P". 

Thus, 

[O(x), Pp]  = iap O(x) - PW(x), 

from which follows 

O(x) = ()(O) e- 

Homogeneity w.r.t. space-time rotations requires that the interpolating 
N-component field 6, transforms according to a (non-unitary and irre- 
ducible) representation of the homogeneous Lorentz group, viz., 

6,'(x1) = w 4(x), (18) 

S(A) constituting a representation of the Lorentz group. For infrnitesimal 
transformations, we define 

so that 

and 

where 

586 



Taking the field operator point of view, 

U L  E e ( - i 1 2 )  epo MP", 

and 

Using Eqn. (3.17) and the identity 

[&(x), M P" ]  = eix" [d(O), M
p
"(- x)]  e- i x . p ,  (26) 

where (MP" = M
p
"(0)) 

MP"(- X)  = MP" + (xP P" - x" PP 1 9  (27) 

we can show that 

Conversely, if we take this relation as a definition of CP", we can recover 
Eqn. (3.20). 

For dilatations, we define 

[NO), D] = i L $(O), 

where L is an N x N matríx and D = D(0). We may now use the identity 
similar to Eqn. (3.26) to obtain [+(x), D]. In the present case, 

so that 

C#(x), D] = i(L + x . i?) S(x)  
= d $(x). 

where Li, 2 e-'". It follows that 

$'(x) z e" +(eE x). 



Comparing with 6,'(x) = S(g, x )  d>(g-l x), we see that under finite dilata- 
tions, x'" = e-P x", 

6,'(x1) = e@L 4 ( x )  = e@L <i)(@ xl), (33) 

and, correspondingly, U D  = e-'PD , that is, 

eipD $(x)  e-iPD = e& 6,(eP x). (34) 

Also, 

6,ql = E L ql(x), 6xP = - &xP. (3 5 )  

For special conforma1 transformations, we define that the field operator 
6,(0) satisfies' 

C6,(0), KP1 = u ,  *(O). (3 6) 

From 

K,(- x) e- 'x 'P KP eix'P 
= K ,  + 2(x, D-+ xV M,,) + (2x,  x . P - x2 P,) (37) 

and an identity analagous to the used above we find 

where 

and 

or 

or 

Thus, 

It may be noted that in 66, (or 6 x 3  no derivatives of the iield appear. It 
follows that [i%] contains derivatives only up to first order. In this case6, 
A' is a function of x and 6, alone. Xote also that Pp,  mP", d, kk" satisfy the 
commutation relations of the Lie algebra of conforma1 group and that 



K" makes transitions between fields with different Lorentz transformationi 
1aws;we will assume it to vanish in the discussions to follow. Also it follows 
that [L ,  ZP"] = O and, if the field 4 constitutes an irreducible representa- 
tion of homogeneous Lorentz group, L is a multiple of identity matrix. 

4. Conforma1 Currents as Moments of a Symmetric Energy-Momentmi 
Tensor 

We may now calculate [ 6 9 ]  from Eqn. (2.19): 

where 

(2) 

where 

V" = 2i n,(iLgv% iv" 4 (3) 
is the conforma1 deficiency vector (note that V v  does not depend on ?9/F$. 
Also, we will assume K' = 0. 

The currents in conformally "covariant" theory, satisfying the weak con- 
tinuity equation, are also easily found. Writing (the sign in front of JT 
being a matter of convenience) 



iiJe have, in Poincaré invariant theory (A, = A, = O), 

where 

Poincare invariance leads to restrictions: 

e.g., 9 can:ot depend explicitly on the coordinates, and 

which may be used to determine the matrices CP". 

Exploiting the fact that J h n d  J" +a, ,where = - f <  have the 
same divergence and charge (if zi0 vanishes sufficiently rapid at the surface 
at infinity), we can write the currents in a simpler form. In terms of Be- 
linfante tensor1° 

where 

XLpp = - ~ " p  4 - 7cp ~ L P  4 - n~ CAF ¢)I. (10) 

The currents take the form (rcv = O) 
J? = &li, J?" = (XP &L" - 6 b), 

A further simplification can be achieved by introducing "improved ener- 
gy-momentum temor", e A P :  



where i,?,, zií'l"' is symmetric and divergenceless on the indices /i and i, and 

o'" being any arbitrary tensor function of the fields and a? = $[o"' i oVB]. 

The currents then become 

J+P + O", J?" . (x" 0"" - X" o"))), 

where the equality = means that we have dropped all terms whosí: 
divergence w.r.t. index R vanishes identically. / 

The arbitrariness in the choice of opv may allow is to write 

Since, in a Poincare invariant theory, @ a n d  8" ccan be shown to be symme- 
tric tensors, it is then easily shown that 

In such a theory, the trace 0; determines whether the dilatation and con- 
formal charges are conserved or not. It may be remarked that 8: is much 
'softer' than the trace of the canonical energy-momentum tensor in the 
sense that it involves less derivatives of the field. 

The necessary conditions in Poincaré invariant theory, to obtain Eqns. 
(4.16) and (4.17) are 

C, -(V" +i,) o") + Aí!, = 0, L I 



while the conditions that theory be conformal 'covariant' are, from Eqns. 
(4.2) and (4.4), (I$ = 119) = 0: 

where we have assumed K' = O( Note that K' makes transitions between 
fields with different L.T. laws). It is clar from Eqns. (4.19) that" a scale 
invariant theory is also invariant w.r.t. the special conformal transforma- 
tions if and only if 

In this case, we may choose apv = O to satisfy Eqns. (4.18). In case Eqn. 
(4.20) is not satisfied, the xale  invariance leads only to special conformal 
'covariance' (c-covariance) and V' = ?i,Ap.  Eqns. (4.18) can then be sa- 
tisfied by the choice 

This is the case, for example, with the massless scalar d4 theory and the 
improved tensor 0"" involves a contribution from scalar fields but not 
for example from a massless spin 112 field for which V' r O. 

If the theory is c-invariant we have V' = 2xV I D 9  so that c-invariance 
implies a scale invariant theory if and only if V' = O. If this is not the 
case only 'covariance' w.r.t. scale transformations is obtained. In this 
case, we can satisfy Eqns. (4.18) by choosing. 

a" = - x X Ã I \ g .  (22) 

For a theory with only 'covariance' w.r.t. xa le  and c-transformations, 
we have 

V" ?i, A$% t x V P  ~g (23) 

and the choice for o'" is 

Thus, if the theory has symmetry w.r.t. conformal transformations and 
is Poincaré invariant, it is always possible to write the currents in the 
form of Eqn. (4.15) and the conservation of dilatation and special confor- 
mal currents implies then 

0; 0 o (25) 



We also note that a Poincaré invariant theory has symmetry w.r.t. con- 
formal group only if we may write the conformal cjeíicienty vector V' 
of the Lagrangian in the form given by Eqn. (4.23), from which A, and 
A, can be identified and the improved traceless tensor 6"' then defined 
with a choice of o'' given by Eqn. (4.24). For the case of conformal inva- 
riance, the tensor 6" may be identified with the Belinfante tensor &' 
whose trace must vanish. The lack of vanishing of 8" thus provides a 
measure of lack of (exact) conformal invariance in a Poincare invariant 
theory but if does not exclude conformal 'covariance', for which 6; is r<:- 
quired to vanish. Eqn. (4.19) shows that if V' = O the theory with confor- 
mal symmetry is either invariant or 'covariant' w.r.t. both scale and special 
conformal transformations. 

A remark on the scale invariance condition mey be interesting. Working 
with natural units h = c = 1 a11 quantities in the Lagrangian have dimeri- 
sions of a length L. Let us denote them by 

[m ]  = L-', [ d a ]  = LIA, [ap 4 A ]  = LIA-') [ f ]  = Lff, (26) 

where f are the coupling constants appearing in the Lagrangian. Since 
in Poincaré invariant theories [g] = L-4 we obtain on applying Euler's 
theorem for homogeneous functions 

where 1 = ( I ,  I,,) is a diagonal--matrix. Then, 

We may write Lf = Xg, 9,, where g, are coupling constants constructed 
from the masses and couplings f: The last two terms can then be written 
as Zg, a, 9,, where the dimension of g, is L%. Then, 

The scale invariance condition then implies that for each dimensionless 
coupling we must have 



and, for each dimensional coupling the expression inside the curly bracket 
( ) must vanish. If we assume(see remarks at the end of Sec. 3) L = - 1 = 
- ( iA  6,,) no dimensional couplings may be present if scale invariance 
holds. For interacting field theory, it is clear that not a11 the masses need 
to vanish in the scale invariant limit. 

5. Illustrations for some Field Theories 

a) Scalar Field Theory 

To illustrate our discussion, we study the following Lagrangian for a 
scalar field $: 

Euler's eqns. are (0 = i?' s,): 
(O + m2) $ = g$' + 2b3. 

The Lorentz invariant condition is verified to be satisfied with Zpa = 0. 
The energy-momentum tensor is 

The theory, therefore, can at best be conformal covariant. This may also 
be seen from the conformal deficiency vector 

which does not vanish due to the kinetic energy term12. It also shows 
that w.r.t. special conformal transformations we may at best obtain 'co- 
variance', while scale invariance is not excluded. Since $ and g have length 
dimension (- 1 )  the scale invariance condition is 

(It is interesting to note that if we apply a scale invariance transformation 



h1(x') = p-'h(x), x' = px, to Euler's equation, one can see that it is left 
invariant also with the choice L = 2, nz = 0, 3, = 0). 

For the kinetic energy term, (L - 1) (?h) (?,h), to vanish identically, one 
must have L = 1; it then follows m = O and g = 0. 

A massless scalar theory with 

3, 
i p n )  + d4 9 = - (  

2 (8) 

is thus scale invariant. We find 

I & 9  = v" - ?p(gP"2), (9) 

The improved energy-momentum tensor of Eqn. (4.12) can be easily cal- 
culated : 

Thus nz and g are responsible for breaking scale invariance. A11 the currents 
can be written as moments of the tensor 8" according to Eqn. (4.15). 

b) Dirac Field Theory 



Euler's eqns. are 
C 

(- iy . a + m) Y = O, F ( i y .  a + m) = O. (14) 

The Lorentz invariance condition is identically satisfied for EP" = ( i /4)[yP,  y U ] ;  
note that 

i I 
6 , Y = - - E  2 PU C"" 7 b L Y * = - ~ p a C * P a Y *  

2 

We also use y, L:  y, = L. For a free field with canonical dimension 
'1 = - (3/2)1, the Lagrangian lY has length dimension - 4 .  The scale inva- 
r i a n c ~  is obtained for the massless theory with L = 3/2 1. The conformal 
deficiency vector vanishes identically even for the massive case so that 
scale invariance also implies special conforma1 invaria&e, and 0'" has no 
contribution from a massless spin 112 field. 

c )  Vector Field Theory 

1 PV 1 9 s - F  F - -  
4 2 

m 2 A ,  A , ,  

dF," @;te that - - - d - & g$ W V  F'V) = 

a ( a p  4) A') 

Euler's equation are 

For m # 0, then 

(0 'r m2) A" O. 

Applying Lorentz invariance, CP" may be easily found to be 



The commutation relations for Cpv can be verified to be analogous to 
Eqn. (2.28). The conformal deficiency vector is 

V' = 2i { i~ '%, ,  A" t F,,(Cvp)"' A,) 
= - 2(L,, - g,,) FV"O. (20) 

It vanishes if 

We also note that [A" = L - ' .  For scale invariance, if L$= gb,  theory 
must be massless which is well known and theory is then conformal in- 
variant. There is no contribution to fPV from massless vector field. Wr: 
also note that 

zflv = FPV FV A,  - gPV 9, (22)  

and 

0: = ( C ,  F") A, + 2m2 A,  Ap m2 A,  A', (25) 

6. Fields with Anomalous Scale Transfonnations 

To iHustrate the consequences of a modified scale invariance condition 
in case some of the fields do not have the normal scale transformation, 
we consider a field theory with the fields {h,)  = h with normal transfor- 
mation and a single scalar field o (x )  with a scale transformation given by 

where o, is a constant field with the dimensions of a mass, i.e., [o] = [o,] = 

L-' .  It is convinient to work with a dimensionless field p(x) = o ( x ) / M ,  
p, = o 0 l M ,  where M is some mass. We have [p(x)]  = [p,] = L 0  but 
[ i ,p (x) ]  = L-', dp(x)  = eTp,. The invariance condition is 

where from Euler's theorem 



Hence assuming that the fields with normal transformation have the ca- 
nonical dimension, viz., (L - l) = 0, the scale invariance requires 

Writing the Lagrangian 2 = g, 2,, where the g, are quantities cons- 
Y 

tructed out of nz and S, with dimension a,, we obtain 

?9 -' Tpo = - a, L!??, 
?P 

(5 )  

where 9i0' is independent of o(x) but may depend on (i,o). Thus a(x) 
apprears in the Lagrangian in a very specific form. Consider, for example, 
the kinetic energy term of the field; it is of the form (i,õ)(?'a) A(o) = 

M2(iPp)(ipp) A(p), where A(o) is a dimensionless function. Then, 

with appropriate normalization factors. 

Another type of anomalous scale transformation is 

I ,  o  = E T[õ(x)  - oO] 

or 

[o'(xf) - o,] - ( I  t E T )  [ ~ ( x )  - a,]. 

The invariance condition may be discussed as above. 
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