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Conformal symmetry in Lagrangian field theory is discussed for Lagrangians with deriva-
tives up to first order. Conditions for invariance and covariance of the Lagrangian and for
expressing the conformal currents as moments of an "'improved” energy momentum tensor
are discussed.

Discute-se a simetria conforme na formulacio lagrangiana da teoria de campos para o
caso delagrangianas com derivadas somente até a1.* ordem. Discutem-seas demais condigOes
para. invaridncia e covariancia da Lagrangiana, como também condicfes que permitam
expressar as correntes conformes, na forma de momentos do tensor de energia-momento
"melhorado™.

1. Introduction

The idea of approximate symmetry with respect to dilatation and to the
specid conformal transformation group d hadronic interactions has drawn
renewed interest in recent yeais. This development arose out o the expe-
rimentally observed scalking at high energies, which suggests the possibility
o a dynamical limit where dimensional quantities become unimportant.
The other important motivation has been the possibility of explaining, at
least in part, the masses d the stable particlesas arising from spontaneous
breakdown of dilatation invariance.

We discuss here symmetry of a Lagrangian fidd theory with respect to
scale and specia conformal transformation. The Lagrangian is assumed
to contain derivatives not higher than thefirst. Distinction is made between
the casesin which theinfinitesmal quantity [8.#] defined in Eqn. (2.16) va
nishes(invariance) and the casein which it is only a divergence(covariance).

It is shown that in both cases the “weak” conserved currents derived from
Noether’s theorem can be cast as moments d the 'improved’ energy mo-
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mentum tensor. We find also necessary and sufficient conditions for inva-
riance condition to hold and that a Poincare invariant theory is invariant
(covariant) simultaneouly, with respect to both scale and special conformal
transformations if the conformal deficienty vector V* vanishes.

In Section 2, we review the Lagrangian field theory and Noether’s theorem.
In Section 3, we discuss the variation of the field corresponding to infini-
tesimal conformal transformations. In Section 4, conforma currents are
constructed and the conditions of invariance and covariance of Lagran-
gians under infinitesimal transformations as wel as the condition for
expressing currents as moments o improved energy momentum tensor
are discussed. Dilatation symmetry is discussed in some detail. In Section 5,
applications are made to spin 0,1/2 and 1 field theories and a short Section
6 is devoted to the presence of fields with anomalous scale transformations.

2. Review of Lagrangian Field Theory and Nother's Theorem!

a) Notation

We will consider a classica fidd theory in four-dimensional space-
time. The dynamical system is described by N fidd components ¢ ,(x),
A =1,2,...N — the dependent variables — which are functions of the
independent variablesx = (x°, x', x?, x%). We assume that a Lagrangian
density function .# can be defined as a function of x*, ¢ ,(x) and deriva-
tives of ¢ 4(x) only up to first order.

The action integral is given by
b

J[¢1,...,¢N]=j

a

dxoj d3x L(x, ¢, 00)
R,

_ j dx L, 8, 00), M
Q

where R is a three dimensional region and Q is a cylindrical space-time
regionz. We use here the metric g¢** =g, =(1,-1 -1, -1), g*" = I =
01 #v)

The dynamical equations are then obtained from Hamilton's principle
by requiring that the functional J{¢,,...¢5] be an extremum for all
admissible variations 8¢ ,, with region Q kept fixed (e.g. x* =0). By
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considering the particular case o d¢, which vanish on the boundary o
Q, we obtain Euler-Lagrange differential equations

_ 0% 0¥ N\
[$]A=—M +ﬁ<aﬁpm>_0. ()
Here ¢, F = (’*i_“ Fare the usua partial derivatives where coordinates

other than x* are kept constant. We will use ¢,F| to indicate partial deri-

vatives w.r.t. x*, which regards coordinates other than x°, ¢, and all ¢,

as constants®. For convenience o notation, we introduce the vector
= (¢y, 92,... ¢y and tensor V¢ with components 6,4, , SO that

J] = f Pl 6,V dx 3
Q
and
‘;‘f + o, =0, @)
where
nﬁ=b£%—), = (nf,... 7R (5)

We assume throughout that partial derivativa o % exig up to seconcl
order w.r.t. all its arguments and are continuous.

b) Noether's Theoren

We now consider arbitrary infinitesimal transformations
=t ot ) = a0 F b+, (©)
or
Bpax) = Gux)=bal0) = 3, T ..., ()

where

v

Sxt =% g Chy(x, b, V)

k=1
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and

r

0pa = ). &BY(x,$,V) (8

k=1

are arbitrary functions of x, ¢, V¢ and e, (k =1 2,...,1), are ther essen-
tial parameters of the transformation. We also introduce

Ad(x) = P4(X)=Palx) =04 + ... )

with

3¢pa="Y & BYAx, b, V). (10)

k=1

It is easily shown that

3(3,0) = 8,069), 6 =0 + (O,p) I,
8(0,8) = 6(8,9) + (6,0,0) 0x" =7 (86) ~ (0, ) 7, (3x"). (11)

These relations lead to a relation between the functions B, B and C. The
transformation carries J{¢] to

JP'] = J LIx, ¢,V ()] dx’
. (12)

cx’'

Y

= J LV, )
Q

dx = J L'(x, H,Vih, VVhH)dx,
Q

where Q is mapped into a new region & and Z'(v,,VH, VVH) =
L, "V p')y|éx'/éx| may contain second order derivatives. The varia-
tion of the action functional is thus

A = J[f/f]—,»’[-oﬂ = J

Q

[AZ] dx. (13)
where.

[AZ] = L[x, P (X), VH(x)] ‘ %! — L x, p(x), Vih(x)]

= L(x, .V, VVh) = L(x. h.Vh)
=[6%]+.... (14)

A =48] + ... {15
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Here 6J, [6.#], indicate the terms up to first order in the infinitesimal
parameters. Clearly,

oJ :j [67] dx, ( 5)
E
Q
where

[62] = [Z2(X.h, V) - L(x,h, V)] + L(x,h,Vh)E6x"), 117
on using

ax’
ol

GA

=1 + A,(5x%). (18)

On making a Taylor expansion, we have

L cF o o
[62] = = | ox" + "p 5 00 + T, 0) + 20,00)
= D ox + ot + w00 - 05X, + LX) (19)

This can be recast as*
[6L] =_[V], 8b, C O(nh 80 + Lox¥)
=-[L)40b, + A (n50b - 1°6x,). (20)

Here summation over components A = 1... N is understood and ** is
the canonical energy momentum tensor:

™=k &V, — gt o
= T, - 4L . 1)

It may be remarked that, due the to arbitrariness in the region Q, 6J =0
implies [6.#] = 0 and vice versa.

If the action is invariant under the infinitesimal transformations under
consideration, we find
EC, 2t =[L),00,, (22)

where eZ* = n% §¢, -1"8x,. For constant parameter transformations,
this leads to the "weak continuity" equation®

£ 8,78 20, (23)
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where £ indicates the equality when the fields satisfy Euler’s equations
of motion. For invariance under coordinate dependent parameter transfor-
mations, like gauge transformations, we obtain identities. We will be con-
cerned in this paper with the constant parameter transformations. The
linear independence of ther parameters lead to r weak continuity equations.

It is clear also that weak continuity equations can be defined even in the
case the actions are' not invariant.

For the case®
[6£] = &7 A", (24)
we clearly have
g/t = hok , — 10X, — eAH (25)
and'
et F =L 0h, 20 (26)

This case is important since Euler’s equations corresponding to [6.#]
are then satisfied identically®. This would then assure that Euler’s equa-
tions calculated from the transformed action J[+'] are the same as those
derived from J[#]. In other words, the equations of motion are form
invariant w.r.t. the infinitesimal transformations like in the case with
[6#] =0, even though the invariance of action may be lost. For the
case under discussion, we call the theory cocariant, while the former case
will be caled an invariant theory ([6.#] = 0).

There is a still more general case’, viz, [6Z£] = & ,A* — f. with f 20
and f # [£]464,, where we can write a wesk continuity equation with
Z* given in Egn. (2.25); the form invariance of the equations of motion
may however, also be lost.

3. Conformal Group. Transformation of Fields

a) Conformal Group®

The connected conformal group containing the identity (called. for sim-
plicity, conformal group) may be defined as the group of the following
transformations on the real space-time coordinates x* of a vector X in

the four-dimensional Minskowski space:
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1 Trandlations
Xt = x* + at;

2. Restricted Lorentz group o transformations
(Ax) = Ax; g, NsAy =g,,, Ag>1 det A=1
3. Scde or dilatation transformations, (gpX)* = x* =e~? x* p red;

4. Specia conformal transformations:
(gex) = x* = —c"x*)[1-2¢x + c*x?].

These transformations constitute a 15 parameter group and the special
transformations are non-linear. Each o these sets of transformations

constitute a sub-group which is abelian except for the case of Lorentz trans-
formations. Note that translations do not constitute an invariant subgroup.
The infinitesimal transformations are given by

Translations:

Ox* = g* = —ig, P’ x*;
Lorentz transformations:

i —_
Oxt == gh xt = 73,,0 MPT xH,

ex'yo
T
Dilatations.
Oxt =—ex* =ieDx"
ox'
== =1 -4e);

Special transformations:;

Sx* = n,2x" x* — g x?) = in, K* x*,

ax' , )
(;ﬁ =(1 + 8- x), (1)
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where P* =iS, M?° =i(x*°-x°3?), D = i(x-9) and K® =-i2x" x* -
x?g¢**) ¢, are the fifteen infinitesimal generators. The Lie algebra of these
generators also determines the Lie algebra o the abstract (connected)
conformal group whaose generator will be indicated by P*, M?°, D and K*.
The Lie algebra is found to be

[D,P]=-iP,, [D.K]J=+iK,, [D,M,]=0
[Ky s Kv] v= 0’ [Py s Pv] = 0’ [Pa_’ M,uv]= i(ga'u ‘Pv“gav Pp)>
[Ka > Muv] = i(gau Kv_gav Kg), [Ku s Pv] = _ZI(guvD + Muv)’
[Muv ’ Mpo‘]" = i(gua Mvp _gvo' Mup —gup Mva + gvo‘ Mua)' (2)

Note that the commutation relations imply
e’ P, e’ =’ P,, PK, e ="K, 3)

and that K, transforms as a four-vector. The exact dilatation symmetry
(with an integrable generator D that takes one-particle states into one-
particle states) implies that the mass spectrum is either continuous or
all masses are zero.

Introducing J45(4,B =90,1,2,3,5,6), where J ;5 = —Jg,, by

t
Juszuva J65:D7 JSuza_(Pu‘Ku)s

1
JGM 27 (Pu + Ku)s ] (4)
one has
xr» Tand = gun Jinr + Giae Jxw —9xar Jon — Gin Jxad)s
Gaa =(+ - - —+), gug =0 (4 # B), (%)

which is the Lie algebra o SO{4,2). Thus, the conformal group is locally
isomorphic to the non-compact group SO(4,2) whose covering group is the
spinor group SU(2,2). Three Casimir operators are then easily obtained:

JpJ*® =M, M* *+ 2P K 4 8D -2D?,
eapcppr 3 I 5 and J4BJ 3P U,

b) Trandormation of Fields

We postulate that, for every particle, there exists an interpolating field
(with a finite number N o components) which transforms according
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to a representation o the conformal algebra. Thus, corresponding to a
transformation

x'* = (gx)", g e Conformal. group,
the field ¢(x) = (¢, ,...¢y) transforms as
T(g) p(x) = ¢'(x) = S(g, x') p(x), (6)

where {T(g)} is an N-dimensional representation of the conformal group.

For the infinitesimal transformation

15

T@xI+i) gl+..., ()

k=1

where the essential parameters are labelled &s ¢, k = (1,...,15) for con-
venience. We find

36(x) =i Y & I $lx). ®)
The generators I, satisfy the Lie algebra o the conformal group.

When the fields are quantized field operators acting on the state vectors
| ) in Hilbert space which carry the representation according to

[P - U@ |¥), ©)
U(g) being a unitary operator, we obtain the supplementary constraint"
¢'(x) = Ulg)™ &(x) Ulg). (10)
For infinitesima transformations,
Ulg) = TI+ i}k:E G, (11)
it follows
B =iTalsm6l (12)

where the G, satisfy the Lie algebra o the conformal group. Since it is
easier to calculate the commutators in quantum fied theory, where x*
is smply a parameter, we will frequently calculate the variation of ¢ re-
garding the ¢’s as quantized operators.

Homogeneity of space with respect to trandations, according to specia
relativity, requires for any (observable) fiedd 0(x),

0'(x) = 0(x) = O¢-1 X), (13)
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when
() = x* = x* + ¢,
thus
3:0(x) =0
and
6:0(x) = - 6“0 = ig, P* O(x).

Regarding the field as an operator in Hilbert space (Ut ~

61 0 = i¢g,[0(x), P].
Thus,
[0(x), P¥] = io* O(x) = P* O(x),

from which follows
0(x) = P 0(0) e~ =P,

(14)

(15)

"), we have

(16)

17)

Homogeneity w.r.t. space-time rotations requires that the interpolating
N-component field 6, transforms according to a (non-unitary and irre-
ducible) representation of the homogeneous Lorentz group, viz.,

¢'(x) = S(A) p(x),

(18)

S(A) congtituting a representation of the Lorentz group. For infinitesimal

transformations, we define

i

S(A) =1-~¢,, 5

2 e
so that
o= "‘é‘ Epe 277 P,
and
where

mPe = TP 4 i(xP0° - x" 7).
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Taking the field operator point of view,

Up = 71 e, MP9, (23)
and
5.6 == ey [00), M), 4
so that 7
[¢(x), M*] = m"® (). (25)
Using Egn. (3.17) and the identity
[A(x), MP"] = &= [$(0), M™"(= x)] e~ ™7, (26)
where (MP" = M""(0))
M?(=x) = M** + (x? P = x7 PP), (27)

we can show that
[¢(0), M*7] = 27 $(0) (28)

Conversaly, if we take this relation as a definition d Z#°, we can recover
Eqgn. (3.20).

For dilatations, we define

[4(0), D] =i L $(0), 29)

where L isan N x N matrix and D = D(0). We may now use the identity
similar to Egn. (3.26) to obtain [4(x),00. In the present case,

DCx) =D + x*P,, (30)
so that
[#(x), D] =L * x.77) p(x)
= d (). 31)
Then,
8p H(x) = —ig[H(x), D] = ~ied H(x), (32)

where U, ~ ¢~ P, It follows that
P(x) ~ & o x).
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Comparing with ¢'(x) = S(g, X)#(g~* X), we see that under finite dilata-

tions, x* = e~ * x*,
P'(x") = et P(x) = efL P(e” x),
and, correspondingly, U, = ¢~ "?, that is,
€™ p(x) e 7P = & e X).
Also,
Spp =e L p(x),  Ox =_ex"

(33)

(34)

(33)

For speciad conformal transformations, we define that the field operator

$(0) satisfies®
[4(0), K,] = x, $(0).
From
K (~x) = e *P K, &*F
=K, t2x,D+x M) +2x,x.P_x>P,)
and an identity analagous to the used above we find
[#(x), K*] = K* $(x),

where ,
k, =K, +i(2x,x-0-x208,) + 2x,iL + x'%,,)
and
S ¢(x) = in,[d(x), K*] = in, k* $(x)
or
¢'00) ~ [I + in"{2(x, il + x* £,,)) + x,}] $g™" x),
or '
S@c, x) = I + if*{2x, iL + x* £,)) + K,}.
Thus, ‘

Sep(x) = in*{2(x, iL + x» Z,,) + Ky} P(x).

(36)

(37
(398
(39)
(40)
QY
(42j

(43)

It may be noted that in 66, (or éx*) no derivatives d the iield appear. It
follows that [§.%#] contains derivatives only up to first order. In this case®,
A* isafunction of x and 6, alone. Note also that P, nP", d, k* saisfy the
commutation relations o the Lie algebra of conformal group and that
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x* makes transitions between fields with different Lorentz transformationi
laws;we will assumeit to vanish in the discussions to follow. Also it follows
that [L,X*] =0 and, if the field ¢ congtitutes an irreducible representa-
tion of homogeneous Lorentz group, L is a multiple of identity matrix.

4. Conformal Currents as Moments of a Symmetric Energy-Momentum
Tensor

We may now calculate [6.#] from Egn. (2.19):

[0F] =¢, I8 &+ ; E e 7L +eln L + 1, It 2, (1)
where
0
=5

MWWWMMWH@WMMWQ

+ (nf 3 —n° %) &,
%

o = x40, % |-4% '+WL¢+ (L + 12, ¢

L = Qx* X"~ g x?) 0, £ |- 2x* (x" 8, £ | + [,2)

+ 2x,([x* g"* - x* g"*] (”lgl—I{“i")Jr V”+l<ﬁ¢ K'd+ ik ﬁlq’))
2)
where
VY = 2 m(iLg** + =% ¢ (3

is the conformal deficiency vector (note that V¥ does not depend on 6.%/8¢.
Also, we will assume x* = 0.

The currents in conformally "' covariant™ theory, satisfying the wegk con-
tinuity equation, are aso easily found. Writing (the sign in front of Jy
being a matter of convenience)

- 1
eZt =g, J¥ + > Ea JP#o 1 et 4+, JE,

eA =g, A¥ + %ﬁpa AP + e Ap + 1, AT, )
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We have, in Poincaré invariant theory (A, = A, =0,

J).u — Tlu .
T . ’
JWr = _Jlor = _ingt TP p + (xPT0 — x7 1),
Jp=x, ™ + n* Lo~ A},
JE = -(2x" x,~ g} x?) T + 2ix, nMiLg™ + ¥ ¢ + int kP - ALY (5)

where
& Jr L0 6)
Poincare invariance leads to restrictions:
oL
| = 0 @)

eg, & cannot depend explicitly on the coordinates, and

z((ﬁ P G+ mh aﬁ") =@ & -7 ) ¢, @®

&
which may be used to determine the matrices C™.

Exploiting the fact that J* and J* + 8, y* where ¥* = - y** have the
same divergence and charge (if y® vanishes sufficiently rapid at the surface
at infinity), we can write the currents in a simpler form. In terms of Be-
linfante tensor!®

O =t 4 é—&v X )
where
Zzup [ i[nl pa q;) — AP q/) e d)]- (1())
The currents take the form (k" = O
J=0M JPT = (x 0% —x7 0Y),
1-

J6 = xuélu_?

JE = —(x" x, - gl x?) 0 + x* VI AL (1)

VA_AL,

A further simplification can be achieved by introducing "improved ener-
gy-momentum tensor!!, @*:

o = O + %51 8, X, (12)
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wherei, 2,74 is symmetric and divergencelesson theindices ¢ and v and
1 ' .
Z)_,mv — g/lp o_‘iv + guv 0./3!)~g/1u O.z_p_‘g/lv O.;:L/) + ‘3‘“(9“1 gvp _g;n glP) O-iaz; (13)

o** being any arbitrary tensor function o the fields and ¢%" = 3[¢"* £ o**].
The currents then become

Ji = g Jie & (X0 0% X7 0%),

1

Jé = Xu()lu—i‘

(VA £ 22, )~ Ab.
JE = —(2x" x, —gh X2) 0% + XV 4+ 20, 6%) = 20" — AL, (14)

where the equality = means that we have dropped all terms whosi:
divergence w.r.t. index / vanishes identically. /

The arbitrariness in the choice of ¢*' may allow is to write
Jh=x, 0% JE = -(2x"x,— g} x?) 0™ (15)

Since, in a Poincare invariant theory, 0* and ** can be shown to besymme-
tric tensors, it is then easily shown that

IR R0E, 0 & 2xV 0, - 2xT (16)
or
d d
JO 3 — )Ou 3 % e 33
s = 2 Jx,‘( Px J 0 dx,
L N (N 17
—(lt ¢ X = X v,a’x. ( )

In such a theory, the trace ¢% determines whether the dilatation and con-
formal charges are conserved or not. It may be remarked that 6% is much
'softer’ than the trace of the canonical energy-momentum tensor in the
sense that it involves less derivatives of the field.

The necessary conditions in Poincaré invariant theory, to obtain Egns.
(4.16) and (4.17) are

~ 1
Ca [‘2‘(1//l + 20,0+ A}l =0,

2 [x (V4 28, #%) 226" — AF] =0, (18)
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while the conditions that theory be conformal ‘covariant' are, from Egns.
(42) and (44),(I.¢ =1,.%9) =0:

Ipl =N, NP =X [P+ V=0, A, (19)

where we have assumed x* = (0 Note that «* makes transitions between
fields with different L.T. laws). It is clar from Egns. (4.19) that'' a scale
invariant theory is also invariant w.r.t. the special conformal transforma-
tions if and only if

V' =0. (20)

In this case, we may choose ¢** = 0 to satisfy Eqgns. (4.18). In case Eqn.
(4.20)is not satisfied, the scale invariance leads only to special conformal
'covariance’ (c-covariance) and V' = &, AY. Eqgns. (4.18) can then be sa-
tisfied by the choice

o = _%Ag;. 1)

This is the case, for example, with the massless scalar 4* theory and the
improved tensor 0* involves a contribution from scalar fields but not
for example from a massless spin 1/2 field for which V' r Q

If the theory is c-invariant we have V' = 2x'I,% so that c-invariance
implies a scale invariant theory if and only if V¥ = Q If this is not the
case only 'covariance’ w.rt. scale transformations is obtained. In this
case, we can satisfy Eqgns. (4.18) by choosing.

o*? = —x*Ap. (22)

For a theory with only 'covariance’ w.r.t. scale and c-transformations,
we have

V=2, A+ 2XM 3, AR (23)
and the choice for ¢** is
o = —(—;— ALr + x* A”D> (24)

Thus, if the theory has symmetry w.r.t. conformal transformations and
is Poincaré invariant, it is always possible to write the currents in the
form of Eqn. (4.15) and the conservation of dilatation and special confor-
mal currents implies then

0- L0 (25)

"
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We also note that a Poincaré invariant theory has symmetry w.r.t. con-
formal group only if we may write the conformal deficienty vector V'
of the Lagrangian in the form given by Eqgn. (4.23), from which A, and
A, can be identified and the improved traceless tensor 6** then defined
with a choice of ¢** given by Eqn. (4.24). For the case of conformal inva-
riance, the tensor 6% may be identified with the Belinfante tensor 8%
whose trace must vanish. The lack of vanishing of * thus provides a
measure of lack of (exact) conformal invariance in a Poincare invariant
theory but if does not exclude conformal ‘covariance’, for which &% is r<-
quired to vanish. Egn. (4.19) shows that if V' = 0 the theory with confor-
mal symmetry is either invariant or 'covariant'’ w.r.t. both scale and special
conformal transformations.

A remark on the scale invariance condition mey be interesting. Working
with natural units # = ¢ = 1 all quantities in the Lagrangian have dimeri-
sions of a length L. Let us denote them by

[m]=L""' [¢ =L" [8,0,1=L""", [f] =LY (26)
where T are the coupling constants appearing in the Lagrangian. Since
in Poincaréinvariant theories [¢] = L™* we obtain on applying Euler’s
theorem for homogeneous functions

0 ; 0% 0% ,
_43’_7l¢+ a(l-1)3, ¢ - Zma + ZI, 7 (27)
where 1= (I,1,) is a diagonal-matrix. Then,
A g '
ID,?’— (L+l)<,4)+7r(L+l)8,1q’) m +Zlff 2%)

o f
We may write & = XZg, %, , where g, are coupling constants constructed
from the masses and couplings f. The last two terms can then be written
as xg,a, £, , where the dimension of g, is L*». Then,

0L,

IDS’:Z{ ¢(L+l)d)+n‘(L+l)61</>+oc f}gy. 29

The scale invariance condition then implies that for each dimensionless
coupling we must have

0L
o¢

LL+Dp+adL+Do¢p=0 - (30
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and, for each dimensional coupling, the expression inside the curly bracket
{ } must vanish. If we assume(see remarks at theend o Sec. 3)L =-1=
—(l, 6,45 no dimensional couplings may be present if scale invariance
holds. For interacting field theory, it is clear that not all the masses need
to vanish in the scale invariant limit.

5. Hlugrations for some Field Theories

a) Scalar Fiedd Theory

To illustrate our discussion, we study the following Lagrangian for a
scalar fidd ¢:

= 1 L 2 9 i
@ = L1 80, 0 - 671+ L+ S0, 0
g, S g+ 4 ®

Euler’s egns. are ((J = o* é,):
(O + m?) ¢ = gop* + 49> @)

The Lorentz invariant condition is verified to be satisfied with X = 0.
The energy-momentum tensor is

™ = = (F PN P) - g &, @)
B = —(0" 60, 9) + 2m* ¢7 - F-gp* - 19* # 0. 5)

The theory, therefore, can at best be conformal covariant. This may also
be seen from the conformal deficiency vector
Vi=-20"¢) Lp = -L*$* =-L0,g" ¢?) (6)

which does not vanish due to the kinetic energy term'2. It also shows
that w.r.t. special conformal transformations we may at best obtain ‘co-
variance’, while scale invarianceis not excluded. Since ¢ and g have length
dimension (- 1) the scale invariance condition is

(L—l)(@“cf)) 2,0) + m*Q-L)¢*> + ¢ (L—_%) ¢+ AL-1)¢* =0. )]

(Itisinteresting to note that if we apply a scale invariance transformation
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d'(x") = p~1d(x), X = px, to Euler’s equation, one can see that it is left
invariant also with the choice L =2, m =0, 2 =0).

For the kinetic energy term, (L - 1) (?*4) (¢,4), to vanish identically, one
must have L = 1; it then foIIowsm —Oand g=0.

A masdless scalar theory with
|
9= — D)D) + b (8)

is thus scale invariant. We find
e =" a0, )

so that AY =-¢°* 4$* and ¢* = %g”‘ 2.

The improved energy-momentum tensor of Eqgn. (4.12) can be easily cal-
culated:

0 =i _.é-(al - g* ) ¢ (10)
and
08 = p[-Ap> + O ¢] + 2m? ¢2—%g¢3 (11)
8 (j) 3 g(’)3

Thusm and g are responsiblefor breaking scaleinvariance. All the currents
can be written as moments of the tensor 6* according to Eqgn. (4.15).

b) Dirac Field Theory

&£ =%f‘?‘(iy'5—n1)q’ + i?‘(—iy'((?—m)‘l", (12)
_we woigp L _igui g
=9 m=3¥" = ‘P m¥p,
oY
R — (/0,\/” ‘{‘) ENTES =y <+—’\/ ¥ — m‘-}‘) (1’;)



Euler’s egns. are
Ciy.a+mw =0, Piy-d+m=0. (14)
TheLorentzinvarianceconditionisidentically satisfied for Z° =(i/4)[y"y°];
note that
S ¥ = —{repa C"> S W* = %SPGZ*‘MT*

and

op WV =¢eLW, - OpW* =elFY.
We also use y, L'y, = L. For a free fiedd with canonical dimension
1 =-(3/2)1, the Lagrangian & has length dimension - 4. The scale inva-
riance is obtained for the masdess theory with L = 3/21. The conformal
deficiency vector vanishes identically even for the massive case so that

scale invariance also implies specia conformal invariafte, and 8** has no
contribution from a masdess spin 1/2 field.

c) Vector Field Theory

$=_1_F’”F —lmzA A

4 S
where " F* = _F"™ = oF 4* —0* A* 15)
oL ., 0L
57} =-m-A s m = (16)
. oF 2 o HF™ F,) oF
uy - 0 -9 s 13 — uv A
<Note that 0, A) g5 9-95 9 —Az) 2F‘ 3@, A
Euler’s equation are
o, = P A}, 0, AF = _Wlfaz 2, FP (17
For m # 0, then
(O + m)4* =0 (18)
Applying Lorentz invariance, Z*° may be eadsily found to be
(24, = ilgh 9, ~ g% 93)- (19)
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The commutation relations for £#* can be verified to be analogous to
Egn. (2.28).The conformal deficiency vector is
V' =2i{iF** L,, A° + F,(Z"* A)

=-2L,,-0,) F* 4°. (20)
It vanishes if

Ly, =gi, or L%=g;. @n
We also note that [4*] = L™'. For scale invariance, if L*= g2, theory
must be masdess which is well known and theory is then conformal in-

variant. There is no contribution to 6** from massless vector field. We
also note that

™ = FP ' 4, — g™ P, (22)
Fa =P (23)
Bk = B = g7 PR F - (0, P AT g &
L g PP Fy—m* A AT -g" L (24)
and
04 = (C, F*#) A, +2m? A, 4* £ m? A, A~ (25)

6. Fields with Anomaous Scale Transformations

To illustrate the consequences of a modified scale invariance condition
in case some of the fields do not have the normal scale transformation,
we consider a field theory with the fields {h,) = h with normal transfor-
mation and a single scalar field o(x) with a scale transformation given by

Ox* = —ex*, do(x) = eTo,,  @(60) =0, (1)
where o, isa constant field with thedimensions of a mass, i.e., [0] = [6,] =
L~ It is convinient to work with a dimensionless field p(x) = o(x)/M,

Po = 0o/M, where M is some mass. We have [p(x)] = [po] =L ° but
[c.p(x)] = L-", dp(x) = ¢Tp,. The invariance condition is

oL (”2

0P
I$=—4$-+ﬂLr’>+n*L+Irr’>+ Tpg + —— 2
where from Euler’s theorem
¥
—43— l(‘) + gl -1) &0 - ( ((lp) Zm Zf faf 3)
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Hence assuming that the fields with normal transformation have the ca-
nonical dimension, viz., (L = I) = O, the scale invariance requires

% o o |
7 TP0=“;"1W*§ﬂf? 4

Writing the Lagrangian ¥ =) g, ., . where the g, are quantities cons-

Y
tructed out of m and f, with dimension a,, we obtain
&

7p_yTp0=_aygys (5)
or
p(x)
fy = g‘yo’exp,:—ﬁoail, (6)

where #{ is independent of a(x) but may depend on (7,0). Thus o(x)
apprears in the Lagrangian in a very specific form. Consider, for example,
the kinetic energy term of the field; it is of the form (¢,0) (o) A(s) =
M*(?*p)?,p) A(p), where A(o) is a dimensionless function. Then,

gKE = P9 exp [2 %xo)] = % (*0)? exp [2 %—%))] ; 7

with appropriate normalization factors.

Another type of anomalous scale transformation is
I, 0 =eT[olx) - 0,]
or @®
[6'(x)-0] ~ + eT)[a(x)-0,].
The invariance condition may be discussed as above.
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