
Revista Brasileira de Fisica, Vol. 3, N o  3, 1973 

Raman Scattering from Superconductors* 

F. G. DOS REIS and R. LUZZI 
Instztuto de Física Gleb Wataghin , Universidade Estadual de Campinas, Campinas SP 

Recebido em 17 de Agosto de 1973 

A study of the Raman spectrum of light scattered by a superwnductor is presented. The 
formalism described in previous article (Rev. Brasil. Fis. 2, 337 (1972)) is used. The dielectric 
constant of the superconducting media, which enters into the expression for the cross section, 
is approximated by the RPA result of Rickayzen It is shown that Coulomb interaction bet- 
ween electrons produces a sereening of the quast-elastic single-particle scattering and of 
the scattering from plasma waves The dependence of this spectra on the experimental geome- 
try is discussed. 

Apresenta-se um estudo do espectro Raman de luz espalhada por um supercondutor, 
utilizando-se um formalismo descrito em artigo anterior (Rev. Brasil. Fis. 2, 337 
(1972)). A constante dielétrica do meio supercondutor, que entra na expressão da 
seção de choque, é aproximada pelo resultado de Rickayzen, obtido pela aproximação 
RPA. Mostra-se que a interação coulombiana entre os eletrons produz um screening 
do espalhamento quasi-elástico de partícula independente e do espalhamento por 
ondas de plasma. Discute-se a dependència desse espectro com a geometria. 

1. Introduction 

In a previous article', hereafter referred to as (I), a semiclassical study of 
surface Raman scattering was presented and the connection between the 
scattering cross section and the imaginary part of a generalized suscepti- 
bility was discussed. In this work we make a specific use of those results 
by studying Raman scattering by a superconducting sample. The response 
of superconductors to electromagnetic fields is of particular interest because 
it can produce information on the excitation spectra. However, up to 
present day, only infrared absorption experiments have been successful. 
Studies of photoluminescence and Raman scattering have not produced 
clean results2,? However, it is believed that improvement in detection 
techniques could render this kind of experiments worthwhile. 

Abrikosov and Falkovskii performed a calculation of Raman scattering 
upon reflection of light from the surface of a superconductor, by evaluating 
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the relevant S-matrix using diagramatic techniques4. We reconsider here 
Raman scattering from a superconducting sarface using the unified for- 
malism described in (I). Electron-electrón interaction is included. This 
interaction produces screening effects on the portion of the Raman spec- 
trum associated with scattering from single-particle excitations and an 
additional line at the plasma frequency o,. The first line, quasi-elastic 
scattering from excitations of the Cooper-pairs, predorninates in the case 
of experimental geometnes that produce large momentum transfer. In 
this case, we show that our results go over to those of Ref. 4. On the other 
hand, in conditions of small momentum transfer, almost a11 scattered light 
is concentrated in the line at the plasma frequency and the line-shape is 
almost identical with that of a normal metal. 

2. The Scattering Cross Section 

Since charge density fluctuations are responsible for light scattenng in 
charged materials, one needs to make in Eq. (3-2) of (I) the identifícations 

where po is'the electron density, o, the plasma frequency and p(q) the 
Fourier amplitude of the charge fluctuation of wavenumber q, the rno- 
mentum transfer. 

Next, we use the fluctuation-dissipation theorem [Eq. (3-13) of (I)] to 
obtaink 

where ~ ( q ,  o) is the space and time Fourier transform of the dielectric 
constant. Using the time-dependent Bogoliubov's average field approxi- 
mation, Rickayzen6 derived the dielectric constant ~ ( q ,  o) of a supercon- 
ductor described by the Bardeen-Cooper and Schrieffer theory7. Neglecting 
the fluctuations in the Cooper pairs density, it reads at T = 0°K: 

1 l = C -  1- 
1 
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where = k2/2m is the normal phase one-electron energy, E, = [E: + A2I1l2 
is the luperconductor excitation energies, A being the energy gap and 
~ d q )  = Ek + Ek +<I 

Defining 

we finally obtain 

where the different quantites appearing in Eq. (2-6) are defined in I. Since 
T = O°K, only the Stokes line ( o  < 0) appears. 

Transforming the variables (k, 8 , 4 )  to the new set E, = E, E, +, = E' and 4, 
the Jacobian of the transformation being mz/k2q, one obtains 

Performing the infegration in Eq. (2-7) results 

O for o < 2A, 
G(q' o) = {(m2/2n2q)A F(a) for w > 2A, (2-8) 

where 

with a = ( o  - 2A)/A. E and K are elliptic functions. In the limit A + 0, 
one recovers the result for a normal metal namely, 

G,(q, o )  = m2w/2nq. (2- 10) 

53 3 



Fig. 1 - The function I of Eq. (2-11) times I KY, + l 2  vs. L = q,,/ 1 ~ 1 1  + KY,/ .  Doted lines 
refer to the values to be roughly expected in case of normal incidence. 

Eq. (2-8) clearly shows that scattering can only occur at frequencies above 
the absorption edge at w = 2A. Another important factor in Eq. (2-6) is 
the scattering coherence length [see (I), Eq. (3-4)]. Taking into account 
the fact that the imaginary parts of < and k,, are much larger than their 
real parts, one gets the approximate result 

where Â = q l l / [ ~ Z I  + ky,]. The function I is displayed in Fig. 1. 

3. Discussion and Conclusions 

Had we neglected Coulomb correlation between electrons in the calcula- 
tion of the dielectric constant, we would have obtained a formula similar 
to Eq. (2-6) except that le I2  in the denominator would not be present. 
This factor produces a screening of the single-particle scattering cross 
section and introduces a new line in the spectrum at the frequency w, at 
which ~ ( q ,  w,) = 0, due to scattering by plasma oscillations. 



The single particle scattering arises from the individual motion of Cooper- 
pairs, and is nearly elastic. In the limit of o - 0, one has 

4 9 7 4  = 1 + (Js19)Z> (3-1) 

where the screening factor J: is given by 

If qZ JS,  the dielectric constant is nearly unity and one recovers Abri- 
kosav and Falkovskii result4: 

Snce F(0) = 742, F(w) = 1 and F(a) = in O < a < 1, the shape 

of this function will be like that shown in Fig. 2. For incident light entering 
normal to the surface and using typical values for the parameters involved, 
it can be estimated that (da/dR), -10-26 cm2. Since the skin depth is 
of the order of 10-%m the scattering efficiency is small, roughly 10--*. 

A 
Fig. 2 - The function - F(a), which measures the ratio of cross sections in the superconduc- 
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ting and normal states [cf. Eqs. (3-3) and (2-9)]. 

On the other hand, if the momentum transfer is much smaller than the 
screening parameter, the dielectric constant, for values of o in the single- 
particle range, is large and the scattering cross section is greatly reduced 



Fig. 3 - Typical qualitative Raman spectra to be expected for light scattered from a super- 
conductor under different experimental geometries as explained in the tert. 

by a factor of ( q l ~ , ) ~ .  Since the integrated cross section is roughly 
(e2/mc2)2 (q /JJ2,  in the small q limit most of the intensity of the scattered 
light will be collected at frequencies around the plasma frequency. Fig. 3 
shows the qualitative form of the Raman spectra in both cases. It should 
be remarked that in the limit of A = O one recovers the results obtained 
for the case of a normal plasmas. 

In conclusion, we may say that inelastic scattering of light may provide 
an additional way to study a superconctucting plasma. However, as pre- 
viously mentioned, the scatteríng eficiency is small, requiring a good expe- 
rimental resolution for a proper observation. Futhermore, this observation 
can be greatly impaired by a background of luminescence and by strong 
absorption. 

One of us (FGR) gratefully acknowledges a fellowship from the Fundação de Amparo a Pes- 
quisa do Estado de São Paulo. 
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A review of the magnetic properties of Ideal Quantum Gases is given. The use of the Mellin 
transform representation for the logarithm function allows us to give a mathematically unified 
treatment of the magnetic properties of fermion and boson gases. In this formulation, ali the 
thermodynamical phenomena are determined by the analytical behavior of the integrand 
of a contour integral which defines the logarithm of the grand partition function. The main 
advantage of our formulation is its extreme simplicity, but yet it 1s rigorous and elegant. The 
known results are quickly obtained by simple mathematical procedures. 

Faz-se uma resenha das propriedades magnéticas de gases ideais. O uso da transformada 
de Mellin para representar a função logaritmo nos permite dar um tratamento unificado 
das propriedades magnéticas de gases de bosons e fermions. Nessa formulação, todos os 
fenômenos termodinâmicos são determinados pelo comportamento analítico do integrando 
de uma integral de linha que define o logarítmo da função de grande partição. A principal 
vantagem de nossa formulação é sua extrema simplicidade, sendo, ainda rigorosa e elegante. 
Os resultados conhecidos são obtidos por procedimentos matemáticos simples. 

1. Introduction 

One of the early achievements of the new-bom quantum rnechanics was 
the study of the magnetic properties of matter. The unsuitability of classical 
physics for analysing magnetism was amply demonstrated by Miss Van 
Leewen'sl theorem, which proved that when classical physics is used to 
study the magnetic properties of any dynamical system, the magnetic 
susceptibility is identically zero. The conflict between experimental facts 
and the theoretical predictions of classical physics is obvious. However, 
it has been possible to explain the experimental results in a logical and 
consistent way with the help of quantum mechanics. We mention here 
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some. important breakthroughs in the understanding of magnetic pro- 
perties of matter, from which one can see clearly the quantum nature of 
magnetism. 

In 1927, Pauli2 applied Fermi-Dirac statistics to the free-electron theory 
of metals and showed that the spin susceptibility was small and almost 
temperature independent, in agreement with experimentaf results. Thr 
second important breakthrough was made in 1930 bv Landau3, who evalua- 
ted the correct diamagnetism of a free electron gas. The non-zero result 
for the Landau diamagnetism can be traced back to the quantization of 
the orbits of the electron in a magnetic field. Because quantum mechanics 
makes a definitive selection of the possible orbits, there is an average 
current at each point and a magnetic behavior of the system is possible. 

In 1930, de Hass and van Alphen4 (denoted hereafter by dHvA) found 
an oscillatory variaQion with the field in the magnetic susceptibility of 
bismuth at low temperature and they verifed that the amplitude of the 
oscillations decreased rapidly as the ~emperature was raised; the effect 
disappeared for temperatures above 40°K. A few years later, Peierlss pro- 
posed a very simple model to explain the physical origin of the dHvA 
effect. Using the quantized energy-leve1 of a single particle, he calculated 
the zero-temperature total energy of a two dimensional free electron gas 
in a uniform magnetic field, the field being perpendicular to the plane of 
the system. The plot of total energy against the inverse field strength shows 
a periodic discontinuity in the slope of the graph, as a consequence of 
a periodic magnetization. Even this unrealistic model reproduces remar- 
kably well the important observed features, namely the periodicity of the 
magnetization and the constancy of-the period of the oscillations. 

Severa1 attempts have been made to generalize the theory of free electrons 
in order to interpret in a better quantitative way the measured magnetic 
susceptibility of metals6. The contnbution of the electron spin has been 
taken into account. Although the spin paramagnetism does not show a 
dHvA oscillatory behavior, it modifies the phase of the oscillatory terms 
of the diamagnetic susceptibility. A discussion of the effects of the collisions 
of the electrons with impurities as well as the finite volume of the sample, 
on the magnetic properties of a system of free electrons, was given by 
Dingle7 and more recently the impurity problem has been studied by 
Hebborn and ~ a r c h ' .  Also, the anisotropy of the dHvA effect and the 
lattice field of the crystal have been consistently introduced in the free 
electron theory by considering an effective mass tensor for the electron 



as did Landau in 1938, assuming an ellipsoidal constant energy surface.). 
However, the first approach introducing the anisotropy of the effect was 
done by Blackman as a tentative generalization of Peierls' theory. 

A much more profound discovery, however, was made by 01isager9, who 
was able to show a connection between the dHvA oscillations in the mar:- 
netic susceptibility and the electronic structure of metals. He showed thtt 
the period of oscillations should be proportional to the inverse of the extre- 
mal area of the Fermi surface normal to the direction of the field. Therefore, 
the measurements of the period of oscillations, for different orientatioris 
with respect to the field, give information about the size and form of the 
Fermi surface. For this reason, the dHvA effect became very importarit 
in the studies of electronic properties of metals. It should be mentioned 
that Onsager's result was also obtained independently by Lifshitz and 
Kosevichi0 

The first completely rigorous mathematical treatment of the magnetic 
properties of a free electron gas was given by Sondheimer and Wilson". 
The generalization to take into account the effect of the electron spin and 
the binding of the electrons, by introducing an effective mass, was made. 
A detailed discussion of the precaution needed in quantitatively inter- 
preting the measured magnetic susceptibility usi,ng the free electron model 
was also presented. 

The studies of the magnetism of a free charged Bose gas are more recent, 
but no less spectacular, than those of an electron gas. For instance, as 
Schafroth12 has shown, the most remarkable feature of a Bose gas, the 
Bose-Einstein condensation, is destroyed by the presence of the uniforrn 
magnetic field. Also, as long as the temperature is less than T, (the transi- 
tion temperature for the gas in the absence of the field), the system comple- 
tely expels a uniform magnetic field weaker than a certain field H,, and 
allows a uniform penetration for fields strongerthan H,. We must empha- 
size that this effect occurs even when there is no condensation into the 
ground state of the system. Above T , ,  the system has a normal behavior; 
i.e., the magnetization has a linear field (B) dependence and for T 9 T,  
the diamagnetic susceptibility is inversely proportional to ?: 

More recently, May13 considered the magnetic properties of an "n" dX- 
mensional charged ideal quantum gas in a uniform magnetic field. The 
purpose of his studies was to investigate to what exte?t the magnetic 
behavior depends on the dimensionality of the system. He observed that 
a fermion gas is diamagnetic (neglecting the spin contribution to the magne 



tic susceptibility) for a11 "n". For a boson system, however, the dimen- 
sionality plays a more crucial role: for n < 2, the Bose gas is diamagnetic 
and the susceptibility becomes very large as the temperature approaches 
zero, but does not show a perfect diamagnetism. For 4 > n > 2, the Bose 
gas exhibits a Meissner-Ochsenfeld effect below its transition temperature, 
although there is no condensation into the ground state, as shown by 
Schafroth. For n > 4, the presence of the uniform magnetic field has no 
effect on the condensation, and below the transition temperature T, the 
condensed bosons can expel a11 fields weaker than the critical field. 

2. The Grand Potential 

From the theory of the grand canonical ensemble, the grand potential 
" f" of an ideal quantum gas is given by 

where Ej is the energy of the single particle in its jih state, 5 is the chemical 
potential, B-' = kT, k being the Boltzmann constant and T the absolute 
temperature, E = 1 for bosons, E = - 1 for fermions, P is the pressure, R 
is the volume of the system, and the summation over j runs over a11 single 
particle states. For Bose statistics, we have always the constraint that 
5 < Ej for a11 j, which is equivalent to 5 < E M I N I ~ U ~ I ,  in order Eq. (2-1) 
to be true. 

Other thermodynamic properties of the system can be evaluated by appro- 
priate derivatives of f .  For instance the density p, the magnetization M 
and the magnetic susceptibility are given respectively by 

B being the magnetic induction field. 

540 



The Mellin transform representation of the logarithm function14 

where E' = (1 + ~ ) / 2  and O < a < 1, is now used in combination with 
Eq. (2-1). Thus we have: 

~f = - -- ~[cos(z~)]" t-  l csc(nt) exp(/?tt) . ai J a r i a  

.C  exp(- /?Ejt) dt. (2-6) 
j 

The one-particle partition function, Z = exp(- flEj), for a charged particle 
j 

in a uniform magnetic field has been evaluated by Sondheimer and Wil- 
son14. We emphasize that we are working in the Landau gauge in which 
the vector potential A = (O, Bx,O). B = V x A is therefore parallel to 
the z-axis. Z is related to the one-particle density matrix which satisfies 
a Bloch equation and an initial condition. They solved the differential 
equation without using the explicit knowledge of the Landau energy le- 
vels E,,,,,, = (r + i) hhw + pZ/2m - gopB. There are (2s + 1) possible va- 
lues for o, a11 with magnitude l e s ~  than or equal to the particle spin S. 
The harmonic oscillator quantum number is r. 

Their result for 2, generalized to particles with any spin S(S = 0,1/2,1 . . .), is 

where p = qh/2mc is the particle magnetic moment, o = qB/mc is the cyclo- 
tron frequency, L = ( 2 ~ h ~ / r n k ~ ) " ~  is the thermal wavelength and g is 
the particle Landé factor. The other symbols have their traditional meaning. 
We note that the factors in Eq. (2-7) are due respectively to the spin and 
orbital parts of the energy ELA,,,". 

The advantage of writing Z in this form, since eventually pB can be equal 
to hw/2, is because we can identify easily at any step the spin and orbital 
contributions in a11 forthcoming thermodynamic functions. 

The substitution of Eq. (2-7) into Eq. (2-6) gives us 
a+ i 

- d- a [cos(xt)]" eea4' sinh[(2S + 1) bt] dt f = -- -- -- - --- -. -. - - -. -. - - -. - - - 
sin(nt) t3!2 sinh(bt) sinh(at) ' (2-8) 



where we have introduced the dimensionless expansion parameters 
a = pho/2 and b = p,uBg/2. We observe that the spin factor 

sinh[(2S + 1) bt]/sinh(bt) 

is an entire function of t. The integrand has a branchpoint at the origin, 
the real negative axis being the branch cut; it also has simple poles at 
all real positive integers n = 1,2,3 . . . and at t, = npila, p = f 1, + 2,. . . 
The procedure to solve Eq. (2-8) will be to complete the straight line contour 
with the arc of a circle and a loop around the origin in order to close it 
(see Figs. 1 and 2), such that the integrand satisfies ali the conditions for the 
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Figure I Figure 2 
application of the residue theorem. The requirements for the vanishing 
of the integrals taken along the arcs in the limit of infinite radius, and 
the singularities of the integrand, which are important, will be different 
if we choose to close to the left or to the right for both boson or fermion 
systems. We can this way rederive in a systematic manner all the results 
already published in the literature''. 

3. The Classical Limit 

Consider the closed contour in the t-plane given by Fig. 1. Let r be a circle 
with its center at the origin with radius R = n + 3, so that the circle does 
not pass through any of the poles at t = n of the integrand, which are due 
to the factor csc(nt). In the limit of n going to infiníty, the integral Eq. (2-8) 
taken along the arc BCA of Fig. 1 tends to zero if 5 I a, 2Sb for fermions 



and flr c a-2Sb for bosons. Thus we can replace the integration along 
the straight line by the limit when n -, co of the integral over the closed 
contour ABCA, which can be easily obtained evaluating the residues of 
the integrand at t = n. 

Therefore, 

If we specialize to a system of electrons (S = 112, E = - 1, a = b), Eq. (3-1) 
reduces to that series obtained by Stephen". The resultant series was 
summed up in the limit of low temperature by expanding the coth(nb) 
in powers of exp(nb), and the steady terms of the susceptibility are then 
obtained. Stephen's series does not have an oscillatory behavior as he 
implies because of the restriction on T. The dHvA oscillation occurs only 
at extremely low temperatures and high fields, which correspond to po- 
sitive values of r, and are not included in the region of validity of Eq. (3-1). 

In the case of a spinless Bose gas (S = O, E = I), Eq. (3-1) gives the expression 
obtained by Schafroth. 

As an application of Eq. (3-I), we discuss here the weak field strength and 
high temperature limits on an electron and spinless Bose gas. In this re- 
gime a 4 1, b 1 and the high temperature limit implies that exp(8t) g 1, 
so the series for f converges extremely rapidly. We only keep the first 
t e m  in Eq. (3-1) which gives the dominant contribution. Then, for the 
spinless Bose gas, we have 

The chemical potential 5 is now eliminated from Eq. (3-2) by using a expres- 
sion for the density with no field dependence i.e., we substitute p = A-.' 
exp(P<) in the equation for " f ". The diamagnetic magnetization and suscep- 
tibility are then obtained by using Eqs. (2-3) and (2-4): 



The relation pB = ho/2 has also been used. 

For the electron gas, we have made the approximations: 

The total magnetization and total susceptibility are obtained similarly for 
the Bose gas: 

The last equality in both equations is obtained by putting a = b. 

We can see clearly the advantage of keeping both a and b different up to 
the end. The total magnetic susceptibility for the electron gas is positive, 
the diamagnetic (orbital) contribution being additive and equal to minus 
one third of the t e m  due to the spin. 

4. Low Temperature Límit 

As was mentioned above, in evaluating the integral in Eq. (2-8) we can 
close the path to the left as in Fig. 2. The radius R = (p + 1/2)n/a of the 
large arc of circle r centered at the origin has been chosen so that the 
integrand is an analytic function on the countour. When p tends to infinity 
and the radius of the small circle tends to zero, the integral over BC and 
FA will go to zero when /3< 2 2Sb-a for bosons and 85 > 2Sb-a for 
fermions; hence the value of the integral in Eq. (2-8) is equal to (- &Lp3 na) 
times the sum of the residues of the integrand at t, = npila plus the in- 
tegral around the contour FEDC (denoted by y). The residues are easily 
evaluated because the integrand is a ratio of two functions: f ( t )  = h(t)/q(t), 
where q(t) = sinh(at) and h(t) is the remaining part. Moreover q(t) and 



h(t) are analytic at t, , q(t,) = h(t,) = O and qf(t,) $ O. Therefore, the re- 
sidue b, is given by the expression 

Therefore, 

[cos(nt)le' h'' sinh[(2S + -e--.- 1) bt] dt 
sin(nt) t3I2 sinh(bt) sinh(at) 

2&a3I2 (- [cosh(n2p/a)]" 
+ npq3 2 T$n.&(2p/a)- 

sin [ ( 2 ~  + 1) npb/a] x ---.-.----,-OS 
sin(npb/a) 

=fi + f 2  (4-2) 

where we combined the residues at t, and t - ,  and them summed from 1 
to infinity. 

For the sake of clarity, we will proceed in evaluating the contour integral 
in the last expression for the cases of electrons and spinless bosons. 

For the fermion system, the leading contribution to the integral comes 
from the region of small 1 t 1. Therefore, expanding the circular and hyper- 
bolic functions, we find that f, can be approximated by 

2ni 
a ] dt. fl = 2anil-3 i j y e " t  [-& + (E + F) im-= (4-3) 

The next term is of order of t1I2. The integrals above can be performed 
with the aid of Hankel's formula for the gamma function. After an easy 
algebric manipulation, we have 

Using Eqs. (2-2) through (2-4), we obtain for the density, magnetizatiori 
and susceptibility, the following expressions: 



Eq. (4-5) gives the complete dependente of the chemical potential in terms 
of p, T and B. It consists of a series of oscillatory terms as well as a steady 
term. Since pB <. t, the series gives a negligible contribution to p, com- 
pared with the first term, and the particle density can be approximated by 

This is the relation used to remove 5 from a11 final formulae of interest. 

We see clearly that the branch point is responsible for the steady term 
in f and that the poles on the imaginary axis give rise to the oscillatory 
(with B - l )  series. 

Wilson and Sondheimer's results for the particle density, magnetization 
and magnetic susceptibility, are quickly reproduced 'if we put 

Bq fiB a = -  B@B and b = -.- 
2m*c 2mc 

in Eqs. (4-5), (4-6) and (4-7), where m* is an effective mass of the electron. 

The treatment of the electron gas given by Isihara, Tsai and Wadati16 
is identical to ours and their results are obtained with the substitution 
of a = PpB, b = ga/2 and the use of a system where ti = 1, 2m = 1. 

Finally, we turn our attention to the spinless Bose gas, in which case Eq. 
(4-2) becomes equal to 



In the regime of weak fíeld strength and finite (low) temperature, we have 
ho 4 k?: which implies also 5 4 kT (as a consequence of the restriction 
c < EMINIMuM - $ho). Thus, after expanding the exponential and hyper- 
bolic functions and keeping leading contributions we obtain the following 
expression for the grand potential: 

t where we have introduced the dimensionless parameter s = 1 - - in 
PB 

order to compare our results with those of Ref. (12). 

The integrals are evaluated by using a contour integral representation of 
the Riemann Zeta function (see Appendix), namely, 

Then, we have 

We notice that the last t e m  in the expression above for " f" is propor- 
tional to the Hurwitz formula of the generalized Rieman Zeta function 
(Ref. 17) c(- 112, 512). 

The density p is immediately obtained, 

m 

p = 1(3/2) + 2(na)11' E p l "  cos (p - k) n. (4-14) 
p =  1 



These expressions for f and p were first obtained by Schafroth after an 
involved sequence of calculations. Once again we can verify the power of 
our approach in studying the magnetic properties of ideal gases. 

The above expression can be rewritten as 

where we have introduced the transition temperature T, for the system 
in a free field situation, defined by the relation 

The system magnetization is also easily obtained 

Now a final form for M is obtained after the elimination of s in the term 
of the density. This can be done expanding in a series the expressions for 
M and p, for small s, using the relation18 

We write the series of interest as real or irnaginary parts of F,(a). Thus, 

Therefore, the expressions for p and M are approximated by 

i3p [I -(g)3'2] 2 2(na)ll2 s l l ' ,  L3M = -2(na)"' s-ll2 p, (4-21) 



Thus, below the transition temperature there is a spontaneous magne i- 
zation. For temperatures T ( T, ,  a better approximation in the eva1i.a iolb 
of Eq. (4-1 1) is needed. 

5. Conclusion 

We have shown how to obtain the grand potential of a free gas in ; i11 
ciifferent domains of temperntlire and fieldstrength. The known results 
are always quickly and directly evaluated as particular cases of the more 
general and exact equations Eq. (3-1) and Eq. (4-2). 

The spin contribution was taken into account from the Irery beginning 
in Eqs. (2-7) and we identify itis effect through the parameter h. Also the 
equivalente of Eqs. (4-1 3) and (3-1) (with c = 1, S = 0) shown by Schafroth, 
after somewhat difficult mathematical manipulations, can now be infer- 
red at the outset without any further assumption. 

Concerning the Fermi system, an alternative rigourous treatment of the 
degenerate electron gas was performed, where the' simplification of the 
rnathematical machinery is better illustrated. 

One of us (SGR) would like to thank Prof. G. F. Leal Ferreira for stimulating discussions. 

Appendix - A contour-integral representation of tke Riemam Zeta function 

The integral 

can be shown to be equal to the Zeta function of argument z. [(r). The limits of integration 
[- -L, t O] signify that thepath of integration starts at "infinity" on the negative part of the 
real axis. encircles the origin in the positive sense and returns to the starting point; i.e.. iden- 
tical to the path ;. in the text. 



Consider the integral 

taken in the positive sense around the countour C which starts at the point - [ N  + (1/2)] 
and consists of a circle r centered at the origin with a radius R = [ N +  (1/2)] and a loop 

[-( N +  1/2), + O] of which the contour [- co, + O] is a limiting form The integral is an 
analytic and single-valued function of t inside and on C, except at t = n, n = 1, 2, . N ,  
where it has simple poles. Hence, after applying the residue theorem to evaluate the integral, 
we get 

where R, are the residues of the integrande at t = rr Now, the integral taken around I- goes 
to zero as N  -t m if Re z > 1. Making N -t x, we obtain the contour integral representation 
of the Riemann Zeta function. 
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