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Elastic and inelastic partial proton widths and Coulomb displacement energia for the IAR 
of the Ground State of '08Pb are calculated in the Blair-Bund model. Exchange terrns are 
included and different optical potentials are considered. Comparison with the experimental 
widths is made taking into account the off-resonance cross sections predicted by the optical 
potentials. 

Larguras parciais de protons e energias de deslocamento coulombiano são calculadas para 
a ressonância isobárica análoga ao estado fundamental do '08Pb, a partir do modelo de 
Blair-Bund. Termos de troca são incluídos nas expressões das larguras parciais e nas energias 
de deslocamento coulombiano. As larguras parciais são calculadas para diferentes potenciais 
ópticos e comparadas com resultados experimentais, levando-se em consideração o espalha- 
mento elástico fora da ressonância. 

The analog resonance of the ground state of '08Pb, occuring at 11.50 Me'V 
proton energy, was studied experimentally by severa1 a ~ t h o r s l - ~ ,  who 
obtained its total width and partial elastic and inelastic widths with reaso- 
nable accuracy. Theoretically, some calculations have been made5 

-8 trying 
to fit these parameters, within the framework of different models. 

Since '08Pb, in its ground state, is a doubly closed shell nucleus, we assu- 
me a single particle model representation for the Iatter, and also for the 
target and residual nuclei of the elastic and inelastic proton channels, 
which arise from proton scattering on '07Pb. The states of the residual 
nuclei are thus described in terms of single neutron-hole states in the 
excess neutron shells of the ground state of '08pb. These are, in the order 
of increasing separation energy, known to be the 3pIl2, 2f&, 3pJI2, l i lJ l2,  
2f7/, and the lh, / ,  levels. 
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In this paper, we present results in which we try to improve our previous 
calculations, the basic m0de1'-~, however, has been kept unaltered, so 
that no derivation of the relevant formulas will be presented. In this model, 
a trial wave-function is introduced containing explicitly the analog state 
and the proton channels. However, orthogonality between these channels 
and the analog state is not imposed. This approach to analog resonances 
leads to appreciable simplifications, sisce antianalog statess need not 
explicitly be introduced. Further, in this model, the coupling between the 
proton channels and the compound states of the system, with normal 
isobaric spin, is assumed to be taken into account by the phenomenolo- 
gical optical potential acting in the entrance and exit channels. The coupling 
between the analog state and the compound states with normal isobaric 
spin and, also, direct coupling between channels are assumed negligible. 

In the present article we improve our calculations in severa1 aspects. First, 
the exchange terms for the partial widths and Coulomb displacement 
energy are introduced. Secondly, the phenomenological Coulomb poten- 
tial, which was formerly6 utilized in the direct part of those quantities, 
is now replaced by a Coulomb potential calculated through the single 
particle proton wave functions. The resultant charge distribution is com- 
pared with the experimental charge distribution. Finally, one uses impro- 
ved optical potentials, that is, potentials giving a better fit to the elastic 
scattering cross sections off-resonance. 

In Sec. 2, we give the formulas used in the calculations of the partial widths 
and Coulomb displacement energies. In Sec. 3, the potentials are described 
and, in Sec. 4, the results are presented. 

2. Resonance Paramaters 

Explicit expressions for the escape amplitude and Coulomb displacement 
energy are obtained by applying Eqs. (3.19) and (2.12) of Ref. 6, respecti- 
vely. Thus, for the escape amplitude corresponding to the decay of the 
analog resonance of 208Pb into channel v, with orbital angular momen- 
tum 1 and spin j for the residual nucleus, we get7 



where J?? is the partial width and qVlj the associated phase. In Eq. (2-1). 
T, is the isospin of the target, w,,,, the wave function of the hole in the 
parent state which describes the residual nucleus in channel v and w, , , ,~ ,~ ,  
are the wave functions of the protons occupying the parent state. Further, 
in Eq. (2-I), is the two-body Coulomb interaction, E, the neutron sepa- 
ration energy from the parent nucleus, E the proton kinetic energy in the 
entrance channel, and V, the Coulomb potential generated by the protons 
in 208Pb, given by 

Finally, p is the reduced mass and kv the momentum in channel v. The 
function in Eq. (2-1) is the partial wave scattering solution of the optical 
potential equation, appropriate to channel v 

( K  i- K,, - E,) url = 0, (2-3) 

where K is the kinetic energy operator, E, the proton energy in channel 
v and Vop,, a spin-dependent spherical complex optical potential (cf. Eqs. 
(3.1)-(3.5) of Ref. 6). 

The direct term in Eq. (2-1) is interpreted as giving rise to the decay of the 
analog state by emission of a proton lying in an orbit corresponding to 
the excess neutron shells. The exchange term describes the decay of a pro- 
ton from the closed proton shells, the hole being then filled by a proton 
from an orbital corresponding to the neutron excess. 

For the Coulomb displacement e n e r g ~ ~ ? ~ ,  assuming that the radial wave 
functions corresponding to protons and neutrons with identical orbital 
quantum numbers are the same, one obtains the expression 



where, for the protons the summation extends over a11 the levels occupied 
in 208Pb, while for the neutrons, it covers only those levels belonging to 
the neutron excess. 

The "experimental" Coulomb displacement energy is obtained ihrough 
the expression 

E, = A, + A(E,) - E, , (2-5) 

where E, is the proton energy at resonance, E, the neutron separation 
energy from the parent nucleus and A(E,) the resonance displacement 
energy defined through Eq. (3.13) of Ref. 6. This energy shift arises from 
the interaction of the analog state with the other compound states and 
with the open channels. 

In what follows, we shall denote by (A,),, and (A,),,, the Coulomb displa- 
cement energies, obtained respectively from Eqs. (2-4) and (2-5). 

3. Potentials 

In the calculation of the wave functions of the bound neutrons from the 
excess neutron levels, as well as for those corresponding to the bound 
protons and to the protons in the continuum, a Woods-Saxon central 
potential well and a Thomas spin-orbit potential were utilized. For the 
protons, a Coulomb potential generated by a uniform charge distribution 
was added to these potentials. For the protons in the continuum, one has 
in addition an imaginary surface potential which was selected to be of 
the derivative Woods-Saxon form. 

The potentials employed may be summarized by the following expression : 

where 1 is the orbital angular momentum, 012 the spin operator of the 
nucleon, A a projection operator for the proton states, and W is zero 
for the bound states. 

In Eq. (3.1), f ;  f, and A are given respectively by 

f ( ~ ,  , a,, r) = [I + exp (::)]-I, 



d 
f;.(Ri, a , ,  r) = - 4ai - f ( R , ,  a , ,  r). dr 

For the Coulomb potential, one has 

The radii introduced above are given by the relationships 

R, = r, A'I~,  R,, = r,, A1I3, Rc = rc A1I3, Ri = ri A1I3, (3-0) 

where A is the mass number of the target. 

3.1. Dessription of t h e h u n d  Protons and Neutrons 

For the bound protons, the potential parameters given by ~ o s t ~ ,  which 
describe fairly well proton particle and hole states in 208Pb, were utilized; 
these parameters are presented in Table 1. 

The charge distribution generated by the proton wave functions is plotted 
'in Fig. 1 (curve a) and.has a r.m.s. radius of 5.42 fm7. The radius obtained 
from electron scattering and from the energy levels of mesic atoms is 
5.50 fm" ; curve b of Fig. 1 represents an empirical charge distribution 
obtained in this fashion". The Coulomb potential obtained from the shell 
model wave functions, through Eq. (2.2), and that obtained from the charge 
distribution of Fig. i-, curve b, were found to be very close to each other. 
This comparison will be carried further in Section 4, where the results for 
the partia1 widths obtained by utilizing both charge distributions are given. 

The procedure followed in the evaluation of the single particle wave func- 
tions of the neutrons, corresponding to the neutron excess shells, was 
different from that used for the bound protons. For the neutrons one 
adjusts the central well depth for each energy level, by fitting the corres- 
ponding experimental separation energy. The reason in following this latter 
procedure lies in that one needs to describe the tail of the neutron wave 
functions as correctly as pos~ible'~. 



Fig. 1 - a) Charge distribution of 208Pb corresponding to the sheU model; b) charge distri- 
bution which fits electron scattering and the energy levels of the mesic atomsl'. 

For the neutrons, the radius of the central potential as well as the diffu- 
seness were treated, within reasonable limits, as variable parameters. For 
the spin-orbit potential of the protons as well as of the neutrons, the values 
r, = 1.01 fm and a,, = 0.75 fm were used For the magnitude of U ,  we 
took the value 7.4 MeV for the 3p, 5.0 MeV for the 2f and 6.0 MeV for 
the l i  and l h  neutron shells. 

Potential Uo r, a, Uso r,, a,, W r, a, r, 
(MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) 

Table 2. Parameters of the optical potentials; (*) - variable (according to Ref. 13 and Ref. 1, 
W = 11.4 MeV for BG and ÚI = 6.33 MeV for P). 



3.2, Description of the Protons in the Continumn 

For the description of the proton wave functions in the entrance and 
exit channels, basically two optical potentials were considered, that of 
Becchetti and Greenlees13 (BG), and that of Pereyl (P), the depth of the 
imaginary potential being the only parameter which was allowed to vary. 
We performed an independent fit of the cross sections for proton elastic 
scatteringl on '07Pb at 12 MeV in which the imaginary depth W was 
varied. 

In Table 2, the numerical values of the several parameters of these optical 
potentials are given. In Fig. 2, cross sections for several values of W and 
the corresponding xZ are presented. The values which gave the best fit 
are W = 6.4 MeV for the potential P with x2 = 1.4, and W = 13.0 MeV 
for BG with x2 = 7.4; however W = 10.5 MeV for BG gave also a good 
fit, with x2 = 8.0. 

Table 3. Results for the optical potential P for the proton. W is the depth of the imag~nary potential, (ao),, 
and (r,). are respectively the diffuseness and radius of the central neutron potential, Ti is the partial width 
already multiplied by the correction factor t, (Ac),, and (Ac),, are the theoretical and experimental Coulomb 
displacement energies, given respectively by Eqs. (2-4) and (2-5); r, is the r.m.s. radius of the neutron excess 
distribution. Also given are the x2 and the normalization factor f l  corresponding to the fit to the off-reso- 
nance scattering cross sections. The last Iine corresponds to the experimental values for the Ti and r,, 
given in Refs. 4 and 10, respectively. 

4. Results and Conclusions 

In order to compare the results from Eq. (2-I), for the partial widths, with 
those obtained from experiment, one needs to perform corrections arising 
from the energy dependence of the resonance parameters. 

If for the resonance diplacement energy and total width a linear depen- 
dente on the energy6 is assumed, one obtains for the escape amplitude 
and partial width 
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where the channel independent correction factor 5 ,  given by Eq. (5.6) of 
Ref. 6, is 

where A' and r' are respectively the derivatives of the resonance displa- 
cement energy and total width with respect to the energy. In the evaluation 
of the latter quantities, Eq. (4.12) of Ref. 6 was utilized, with the effective 
Coulomb potential V, given by Eq. (2-2). 

In what follows, we shall delete the tilde, referring to Ti and Aj as the 
energy independent partial widths and escape amplitudes. 

Tabk 4. Same as Table 3 for optical potential BG. 

In Table 3, we present a summary of our results with potential P, where 
W takes the values 6.33, 7.5, 9.0 and 10.5 MeV. The values for the radius 
of the neutron central potential (r,), were 1.1 1, 1.13 and 1.15 fm, and for 
the diffusiness (a,), we took the values 0.65 and 0.70 fm. For each W ,  we 
present those cases which give reasonable agreement with the experimental 
results. In Table 4, similar results are given for the potential BG. 

We observe first that the best results for the partial widths were obtained 
by using the potential BG with W = 6.0 MeV; in the other cases, Til2 
is usually appreciably larper than the corresponding experimental value. 
We also note that the fits to elastic scattering off-resonance for the P-type 
potentials are better than those obtained through the potentials BG. 

For the P-type potentials we arrive at the following conclusions: (1) within 
the theoretical and experimental uncertainties, an acceptable agreement 



for the partial widths has been attained for W in the range from 7.5 to 
9.0 MeV; (2) for these values of W we have also a good agreement between 
the Coulomb displacement energies, good values for the x 2 ,  however the 
r.m.s. radii r ,  of the excess neutron 'distributions fall appreciably below 
those obtained through other meansl0. It seems however possibk to 
improve somewhat the fit for these radii. For instance, in the case in which 
(a,), = 0.65 fm and W = 10.5 MeV, by increasing the value of (r,), to 
1.17 fm, the neutron excess r.m.s. radius becomes 5.8 fm, while the values 
of the partial widths and Coulomb displacement energies are also expec- 
ted to -improve. 

Fig. 2 - Optical model fits for proton elastic scattering on '07Pb at 12 MeV, for P-and BG-type 
potentials, in which the imaginary depth W is varied. The size of the points indicates statis- 
tical uncertainties and B is the normalization constant. 

With regard to the BG potentials, we first discuss the results corresponding 
to values of W between 6.0 and 9.0 MeV, for which the best partial widths 
have been obtained. In this range of W we get also reasonable agreement 
for the Coulomb displacement energies, the best value of XZ being reached 
for W = 9.0 MeV. However, the values of the r.m.s. radii of the excess 
neutron distributions are still low, although for W = 9.0 MeV they are 
higher than those discussed previously for the potential P. We remark 



here that, for values of W close to 11 MeV for the BG potential, it is still 
feasible to improve slightly the agreement between the partial widths Tit2, 
the-Coulomb displacement energies and the neutron excess r.m.s. radii, 
by increasing (r,), by about 0.01 fm, at the cost of a slight disagreement 
for the partial width Ti'2. 

In Table 5, we present the contribution of the exchange part to the escape 
amplitude for the potential BG with W = 6.0 MeV, (a,), = 0.75 fm and 
(r,), = 1.11 fm. For these potential parameters, the ratio AClA?, of the 
exchange part to the direct part of the Coulomb displacement energy, 
was found to be 0.019. 

Re. Im. 

Table 5. Real and imaginar~ ratios between the total esbpe amplitudes A! + AJ and direct 
escape amplitudes AQ for potential BG with W = 6.0 MeV, (a,). = 0.75 fm and (r,), = 1.11 fm 

In Table 6, the dependence of the partial widths on the radii (r,), for the 
neutroncentral potential is studied for a BG - type potential with 
W = 6.0 MeV and (a,), = 0.75 fm. One may observe that the partial 
widths and the values of (A& decrease with decreasing (r,), whereas 
(A,),, increases. 

In Table 7, we show results for the partial widths and Coulomb displace- 
ment energies, whose direct part were evaluated by utilizing the Coulomb 
potential generated by the charge distribution of Fig. 1 (curve b.) For 
the exchange part of the escape amplitude, the expression 

A: = A ~ [ A P / A ~ ]  (4-4) 
was used, where A? and A? are, respectively, the direct and exchange am- 
plitudes obtained through the shell model (cf. Eq. (2-I)), and Ã!j the direct 
amplitude obtained through the empirical charge distribution". For the 
exchange part of the Coulomb displacement energies, an expression ana- 
logous to that of Eq. (4.4) was employed. 



-- -- 
(r,>" I 2 r;/~ r;312 / r;/~ 1 t I (Ac)th (Qrp 

(fm) (keV) (keV) (keV) (keV) (keV) (keV) (MeV) ( h 4 4  
- 

1.15 60.8 29.9 76.4 0.094 6.79 0.020 0.813 19.30 19.54 
1.13 57.2 27.6 71.9 0.083 6.28 0.017 0.820 19.43< 19.52 
1.11 53.8 25.6 67.7 0.074 5.82 0.015 0.826 19.57 19.51 

Table 6. Partial widths and Coulomb displacement energies as functions of (r,), ; the neutron 
diffuseness (a,), is 0.75 fm. For the protons, the potential is of BG-type with W = 6.0 Me'V. 

r p/z r312 r-312 r712 r912 I t l (Ach (4)e:ip 
(fm) (keV) ( k i ~ )  ( k i ~ )  (keV) (k;~) ( k e ~ )  (MeV) (MeV) 

1.15 60.3 30.1 75.8 0.096 6.62 0.020 0.816 19.29 19.54 
1.13 56.5 27.8 71.2 0.884 6.10 0.017 0.820 19.41 19.52 
1.11 53.4 25.7 67.3 0.076 5.68 0.015 0.830 O.54 1950 

Table 7. Partial widths and Coulomb displacement energies corresponding to the empirical 
charge distribution of Ref. 11. The potential parameters are identical to those of Table 6. 

By comparing Tablt 6 and Table 7, one notices that the differences between 
corresponding results of both tables are very small. This fact shows tha.t 
the resonance parameters are not sensitive to the details of the charge 
distribution. 
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