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The scattering of pions by deuterons has been studied under the Impulse Approximation 
for incident pions with a kimtiç energy of 225 MeV. The differential cross-sections for the 
elastic and elastic plus helastic processes have been obtained by the usual scattering theory 
and also by means of the Chew-Low amplitude for the pion-nucleon scattering. Numerical 
calculations were carried out and comparison has been made with the experimental results. 
The validity of the Impulse Approximation is discussed for this range of energy. 

O espalhamento de pions por deuterons é estudado usando a aproximação de impulso para 
pions incidentes com uma energia cinética de 225 MeV. As seções de choque diferenciais 
para os processos elásticos e elásticos mais inelásticos foram obtidas pela teoria de espalha- 
mento usual e também por meio da amplitude de Chew-Low para o espalhamento pion- 
nucleon. Cálculos numéricos foram efetuados e é feita comparaç30 com os resultados expe- 
rimentais. A validade da aproximação de impulso é discutida na região da ressonância (3,3) 
de pion-nucleon. 

1. Introduction 

In this paper, we study the scattering of pions by de~terons using the 
so-called Impulse Approximation for incident pions with a kinetic energy 
of 225 MeV. The Impulse Approximation (IA), originally formulated by 
Chew and Wick', is essentially based on the assumptions that the incident 
particle does not interact strongly with two components of the target- 
system at the same time and that during the time of interaction, supposed 
very short, the binding forces of the target-system are negligible. However, 
when one considers incident pions with an energy close to the efiergy of 
the pion nucleon resonance (nearly 200 MeV), the pion and one of the 
nucleons can form a quasi-bound state and therefore the time of interac- 
tion will be longer. This has been used as an argument contrary to the 
validity of the IA for this range of energy2. 

In order to define the range in which the IA is a reliable one, many expe- 
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riments at different pion energies have been made and the results so obtai- 
ned have been compared with the corresponding theoretical values. In a 
general way, the predictions of the IA for the differential scattering cross- 
sections are in agreement with the experimental results at 85 MeV (Refs. 
3, 4) and 300 MeV (Refs. 2, 5, 6), but there is a disagreement at 140 MeV 
(Refs. 7, 8), mainly for Iarge scattering angles. On the other hand, the nu- 
merical results of the IA differ among themselves for pion energies near 
200 MeV (Refs. 7, 9, 10), depending on the particular procedure adopted 
for the calculations. 

We shall obtain the differential cross-sections for the elastic and elastic 
plus inelastic scatterings and compare them with the experimental re- 
sults". We will not consider charge exchange processes: 

2. Scattering Cross-Sections 

We now apply the "pure" IA to calculate the differential cross-sections 
for n- - D scattering, neglecting multiple scatterings. The matrix elements 
of the total reaction operator T are written as 

T'i = (iCl 9 (tp + tn) +i), (1) 

where the operators t, and t, describe single scatterings of a negative 
pion by a proton and by a neutron, respectively. We have initially an 
incoming pion which can be represented by a plane wave exp(iqo . r) and 
a deuteron described by a Hulthem wave function 

where r is the internucleonic distante, a = 45.7 MeV, and a = 7a. In the 
final state I,!I~ we can have a free pion and a deuteron, or a free pion plus 
two free nucleons, according to the process being studied. 

For the diffirential cross-section, in the laboratory system, for the elastic 
scattering we find the expression 



where E, and E are the initial and final values of the pion energy, W is the 
nucleon energy, U,, and Uf, are the initial and final energia of the pion- 
deuteron system, 8 is the scattering angle, a11 of them in the laboratory 
system, and v is the pion-nucleon relative velocity, E', k, 0' are the energy, 
momentum, and scattering angle of the pion in the pion-nucleon center 
of mass system, M is the nucleon rest mass, and E is the fine structure cons- 
tant. p(8) is defined as the ratio of 

which are the phase-space factors for the pion-deuteron and the pion 
nucleon scatterings. The function p(8) = J'/J is plotted against the scatte- 
ring angle in Figure (1). 
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Fig. 1 - The phase-space ratio p(B) - J'lJ Fig. 2 - The atomic form factor I(Q) at 
vs. scattering angle in the lab. systern. 225 MeV vs. scattering angle in the lab. 

system. 
The quantity I(Q), where Q = q,  - q is the momentum transfer, is given by 

I(Q) = 21;r-'-,f' {arctg (E) - 2arctg (zT) + arctg ($)I . (4) 

Z(Q) is the atomic form factor which is traced at 225 MeV in Figure (2). 
qTL = exp(ihTL) sin 6,, are the usual phase-shift functions, where T is the 
isotopic spin of a pion nucleon system and L is the orbital angular mo- 
mentum of the pion. For ?-waves, the second subscript is omitted accor- 
ding to the notation introduced by Fermi. 



For the differential cross sections for the elastic plus inelastic scatterings 
we obtain, in terms of pion-proton and pion-neutron cross sections3, 

daE+' doP don -- - - - + - + 21(Q) 
dQ dQ dQ ( 5 )  

A paralell calculation of these cross-sections has been made using the 
Static Model, according to which the pion-nucleon interaction occurs 
through the coupling of the pion field to an infinitely heavy nucleon. The 
pion nucleon scattering amplitude is the Chew-Low amplitude13 

where 

h , - ei6i sin & 
J--F-= and Pj(2, 1) = 4 (2, 1) (2,l). 

k3 

3 j  (2,l) and $j (2,l) are the operators of isotopic spin and angular mo- 
mentum, collectively denoted by the index j, and w.and k are the 
energy and mcmentum, taken in convenient units, in the pion-nuc ,On eon 
center of mass system. The expressions for the cross-sections and the 
details of the calculation can be found in the paper by A. Ramakrishnan 
et al.lO. 



Fig. 3 - The elastic differential cross-section, Eq. (3). The solid line is obtained with 6, = .2583, 
6, = .2705, 6 , ,  = ,1029, 6,, = 0.0, 6,, = - ,0366, and 6,, = 1.960. For the dashed lhe, 
6, = 0.0, 6, = 0.0, J i i  = ,13089, 4, = -.4799, 6,, = -.08726, and S3, = 1.96349 

3. Results and Conclusions 

The differential cross-sections given by Equations (3) and (9, and the 
corresponding ones obtained by means of the Chew-Low amplitude (6) 
have been calculated at 225 MeV and compared with the experimental 
data obtained by one of us", who studied the z--deuteron interaction 
using a bubble chamber. The final sample of this experiment, used to 
calculate the cross-sections, consisted of 5387 elastic and inelastic events. 
The phase-shifts used in the calculations are thosegiven by J. Deahl et al". 



Fig. 4 - The elastic differential cross-section as predicted by the Static Model, The curve is 
obtained considering only the dominant phase-shift, 6,, = 1.96349. 

As can be seen from the figures, the fit is in general good, but there is a 
considerable deviation for large scattering angles, mainly in the elastic 
scattering. This suggests that possibly the greater deficiency in our calcula- 
tions is the non-inclusion of the contributions from the double-scattering 
terms to the elastic cross section. As we know, the individual scattering 
amplitudes assume great values near a resonance and therefore the double 
scattering terms should contribute significantly to the cross-section. These 
terms interfere with those of simple scattering, and have their greater effect 
for large scattering angles. This is because the double-scattering form 
factor has a maximum value for backward scattering, decreasing to a 
very small value for forward scattering7. With regard to the double scatte- 
ring contributions, the reader is referred to a recent calculation by J. M. 
Wallace14, which also incorporates the nuclear Fermi motion. 
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Fig. 5 - The differential cross-section for the som elastic plus inelastic. The solid and dashed 
lines are obtained using the phase-shifts given in the caption for Fig. 3. 

Figures (5) and (6) represent the differential cross section for the sum 
elastic plus inelastic, according to the static model and the usual scatte- 
ring theory, for two sets of phase shifts. They show a good fit between 
the predictions of the IA and the experimental results. They also show 
that this agreement does not depend critícally on the adopted formalism, 
but it depends on our knowledge about some quantities such as the phase- 
shifts and the deuteron wave function. Our results indicate that a possible 
temporary pion-nucleon binding to produce a N* and other suggestions 
currently given for the non validity of the IA at this energy are not really 
significant. In conclusion, our view is that the Impulse Approximation 
is realiable to describe the pion-deuteron scattering in the neighbourhood 
of the (3,3) resonance and that the inclusions of the Fermi motion of the 
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Fig. 6 - The differential cross-section for the sum elastic plus inelastic, as predicted by the 
Static Model. Thecurve is obtained by considering only the dominant phase-shif, h,,  = 1.96349. 

nucleons and of the multiple scattering terms can improve the fitting, 
but are not essential to assert the validity of the approximation. 
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