
Revista Brasileira de Física, Voi. 3, N." 3, 1973 

Three Phenomenological Potentials for the a-a Interaction* 

HÉLIO T. COELHO 

Instituto de Física , Unii~ersidarle Federal de I'ernatnbuco. Recqe I'E and 
Ph.vsics Departrnent, Unioersitv of Pennsvlvuniu, Philudelphiu,' I'ennsi~liuniu, 19104 

Recebido em 2 de Julho de 1973 

Three phenomenological effective g-a potentials, soft-core squdre well, hard-core square well 
and Eckart are constructed by a least squares fit of the a-a cross-section for low energy The 
theoretical method consists of matching wavefunctions in a region where only the Coulomb 
interaction is dominant Only the s, d and g partia1 waves were required to reproduce the 
experimental a-a cross-section. 
Constroem-se três potenciais fenomenológicos efetivos,  fazendo-se um ajuste deminui
erro quadrático da seção de choque ct-a a baixa energia, poço quadrado com caroço mole, 
poço quadrado com caroço duro e potencial de Eckart. O metodo terim  consiste em obter 
concordância de funções de onda numa região onde somente a interação coulombiana e 
dominante. Bastaram apenas as ondas parciais s, d e g para reproduzir a seção de choque 
a-a experimental. 

1. Introduction 

Various researchers have tried to construct a-a potentials from first prin- 
ciples using the Resonating Group Methodl. According to this scheme, 
one begins with a treatment of a11 of the nucleons, assumed to interact 
via 2-body forces, which can be written as a sum of three terms: a direct 
potential, a nuclean exchange potential anda polarization potential. For 
systems of 4n nucleons, the total wavefunction is then transformed so 
that its spatial dependence clearly exhibits an cz structure. For example, 
in 8Be, one has 

Y = A [ @ ,  @, %(r) W f f ,  711, (1) 

where A is an antisymmetrization operator, @, and a, the intrinsic wave- 
functions describing the spatial behavior of the a-clusters, and x an appro- 
priate charge-spin function. The function cp, describes the relative mo- 



tion of the clusters (r = r, -r,) and is determined from the variational 
principie 

J 
where H is the Hamiltonian of the cr-a system and E is the total energy, 
which is comp6sed of the interna1 energia of the clusters and the relative 
energy in the C.M. system. The variational calculation leads to the follo- 
wing integro-differential equation 

where 

and p ís the reduced mass of the a-cr system. E is the relative energy of the 
two clusters in the C.M. system. The direct Coulomb potential &(r), the 
direct nuclear potential VD(r) and the kernel K,(r, r') are given by the Re- 
sonating Group Method' and depend upon the explicit form of the nu- 
cleon-nucleon potential which appears in the eight-particle Hamiltonian 
operator, H. We should notice that 1 is the relative angular momentum 
of the two a-clusters. The non-locality of the total potential of Eq. (3) arises 
from the possibility of nucleon exchanges. We see that the Resonating 
Group Method shows that the a-a interaction i) is non-local; ii) is angular 
momentum state dependent (this is a consequence of (i)); iii) is energy 
dependent (this dependence is not very strong). 

By solving Eq. (3) with the proper boundary conditions, scattering phase- 
shift values can be obtained and, consequently, differential cross-sections. 
Clearly, constructing solutions for an equation like Eq. (3) is a dificult 
task. Therefore it is legitimate,to ask ourselves if it is possible to construct 
an effective local potential, F,,(r), which hopefully depends only weakly 
on E and 1, and for w h i ~ h ~ , ~ . ~  



By construction, &,,(r), should have the same physical properties as that 
(non-local) calculated from the Resonating Group Method. The effective 
a-a interaction should have the follawing properties (which are necessary 
if the a-particle model is to give a satisfactory description of 8Be): 

i) The a-a interaction must become strongly repulsive at a-cl spacings of 
less than 3 fm. This prevents the a's from overlapping and consequently 
sustains the a-particles'identities insBe. This is supposed to simulate the 
Exclusion Principie for the fermions which make up the a-particles; 

ii) To sustain the nucieus against electrostatic repulsion, the a-a forces 
must be attractive over spacing of 3-4 fm (this corresponds to the average 
spacing of two a's in a nucleus' ). 

In this paper three different kinds of local phenomenological a-cr potentials 
are studied. The three forms are (a) E ~ k a r t ' , ~  - type potential; (b) hard- 
core square well and (c) soft-core square well potentials. In fact, the main 
idea of this papa  was to study only the Eckart potential, because it has 
appeared in some recent papers6 but no formal study has been done prc- 
viously to determine how good it is as an a-a potential. The other two a-r: 
potentials were considered because of their simple mathematical shapes 
which helped to check the more complicated computer program for the 
Eckart potential. But from the study of the above potentials we learned 
some facts that were not quite in agreement with previous w o r k ~ ~ , ~ .  

Each of the potentials contain a few essential parameters which are fitted 
to a-a scattering data. We preferred to fit the differential cross-sections 
instead of the usual nuclear phase-shifts (actually the differential cross- 
section is the only measured quantity). In Sections (2), (3) and (4) those 
mentioned potentials are studied and the results discussed; in Section (5) 
we give a conclusion. An Appendix is added to give the mathematical 
method used here. 

2. Hard-Core Square Well Potential-Calculations and Results 

The effective potential, %,(r), is defined to be8 



where V, is the attractive part, and a and b are the inner and outer radii res- 
pectively. V ,  is the Coulomb potential and and a are free parameters 
to be determined from a least-squares fit of the differential cross-section 
d~/dR, as described in the Appendix. It is obvious that one could rewrite 
?La (r) as8 

Iá, (r) = v:' (r) + W ) ,  (6') 

where 

and 

V,(r) = (4e2/r) x 8(r - b), (6' ") 

in agreement with the notation used in the Appendix. The parameter b 
was fixed at 4.1 fm. (b is expected to be weakly 1- and E- dependent' ). 

' Potentials of this form were considered previously by Kermode3, and 
by Van der Spuy7. 

By matching the wavefunction inside the nuclear domain with the one 
outside, one finds the nuclear phase shifts v,(E) and subsequently d~/dQ.  
The matching point was taken here to be r = b. The data for the nuclear 
phase shifts and differential cross-sections at energies less than 20 MeV 
(laboratory system) were taken from referentes 9-13. We found that only 
the 1 = 0,2,4 partia1 waves were required to reproduce the experimental 
cross-sections. The parameter values obtained were 

a=2.17fm and V,=11.46MeV. 

Defining the variance of the residuals as the unbiased quantity 

(unbiased since it treats a11 of the experimental points equally although 
please note that since it is not dimensionless it is not the usual x2), where 
0,;s are the theoretical differential cross-sections (our model) and ae,,'s 
are the experimental ones, one finds x2 = 19.8 mbarns/steradian (from 
now on let us represent the units of X2 by u). The parameter values above 
give a local effective a-ci potential, approximately 1 and E independent 



(E,,, < 40 MeV) which reproduces the experimental cross-sections, as illus- 
trated in Figs. (1) and (2) for some typical fits. It should be mentioned that 
an attempt was made to include in the data the resonance point3 

E,,, = 184.24 + 0.1 keV for I = 0, 
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Fig. 2. Similar to Fig. 1. 
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Fig. 1. a-a angular distributions at different bombarding energies. The absolute differential 
cross-section is in the C. M. scattering angle. &(r) is taken to be a hard-core square well 
potential. 
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(1.e. v, = 90°), but we found it impossible in this model. Consequently, 
that point was deleted from the data set. One can expect to reproduce 
the experimental differential cross-sections for lab. energies less than 
40 MeV. In the interval 40-50 MeV, there are some resonances in the 
experimental nuclear phase shifts which are not well understood and pro- 
bably originate from nucleon exchange. Since we did not take into account 
the nucleon exchange term in our phenomenological potential, we did 
not expect to exactly reproduce the resonances with our method. 

3. Soft-Core Square Well Potential. Calculations and Results 

Define Ka(r) as 

r I a, 
Ka(r)= -E,  a < r < b ,  (8)  

K r 2 b, i" 
where T/, , and a are the free parameters to be determined by the least- 
squares fit. They represent the repulsive interaction, the attractive inte- 
raction and the inner radius, respectively, of Ma@). Once again, b was 
taken to be fixed and equal to 4.1 fm and it will be the matching point. 
K(r) is the Coulomb interaction. Similar analysis to the previous case was 
carried out here. No attempt was made to include the 1 = O resonance 
point at E,,, = 184.24 keV. The best set of parameter values found were 
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Fig. 3 - Similarly to Fig. 1, here V,, (r) is taken to be a soft-core square well potential. 



V ,  = 18 MeV, = 13.78 MeV, a = 3.015 fm, with x2 = 17.5 u. As is 
shown in Fiy.  (3) and (4), a fit of the experimental cross-section has been 
obtained and only 1 = 0, 2, 4 partia1 waves were required. 
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4. Eckart-Type Potenfial. Calculations and Results 

The Eckart potential has the functional form 

n(n + 1) V, (r) = x aa (2;;') ( 1  - 1 erlR - I ' 

where p is the reduced mass, and n, R and are the adjustable parameters. 
This potential simulates the exclusion principie, which is one of our re- 
quirements and,, besides, if we use it in the 1 = O effective two-body Schro- 
dinger equation 

it gives for qo(r) the function 



which has been successfully used by Noble6,13,14, and by Coelho1' to 
represent single partide a-cluster wavefunctions in 1 6 0 .  K ,  is related to 
the a-a binding energy (in the absence of Coulomb repulsion) by 

2~ K ,  = B, where B = 2.63 MeV (Ref. 1). 
h 

Taking for n the same value (n  = 4) as that used in the paper by Noble 
and CoeIho13, one has R and V, as free parameters. Since the fitting pro- 
cedure is non-linear, it is very important to start with a reasonable guess 
for R and V,. Substitution of Eq. (11) into Eq. (10) gives the following 
relation between the parameters: 

R is expected to be of the order of 2 fm, so that V, 525  MeV 

The V,(r) potential here is defined as 

L ( r )  = K:" (r)  + K(r). (13) 

Using the same set of data and proceeding exactly as in the two previous 
cases, onde finds the following set of parameters R = 1.489 fm, V, = 52.78 
MeV. X 2  turned out to be large, X 2  = 837 u. As already mentioned, the 
fitting procedure is non-linear and, consequently, possible different sets 
of starting values of the parameters should be analysed to see whether 
we have found a local minimum. However, after severa1 trials it was con- 
cluded that the set found above is probably the best one. We could not 
obtain good fits of the cross-section. We conclude that the Eckart-type 
potential does not represent very well the effective a-a potential. It should 
be mentioned, however, that we could fit the 1 = 0 experimental nuclear 
phase shift v, very well with R = 2.479 fm and V, = 23.05 MeV. It is 
worthwhile also to mention that attempts were made to consider V$ (r) as 

where R, # R,. However, we always obtained the best fits for R ,  = R, 
Fig. 5 shows some fits to the experimental cross-section. 
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Fig. 5 - Similarly to Fig. 1, here V,,(r) is taken to be an Eckart potential 

5. Conclusion 

Considerations of nucleon-wavefunction antisymmetry (the Resonating 
Group Method) imply that acceptable a-a potentials must simulate the 
Exclusion Principle, must become strongly repulsive at E-a spacings of 
less than 3 fm and must be attractive over a-a spacings of 3-4 fm. The 
reason for constructing a local, effective &(r) is to simplify calculations 
in contrast with the corresponding calculations using the non-local po- 
tentials of the Resonating Group Method. The goal here was to construct 
potentials which are approximately 1-and E- independent (at least for low 
energies), and are able to reproduce the experimental cross-sections. 

The first a-a potential considered was the Hard-Core Square Well and 
the set of parameter values found reproduced the experimental cross-sec- 
tions for E,,, < 40 MeV. The Hard-Core Square Well potential has also 
been considered by Kermode3. However, his parameter values a r 1.7 fm., 
5 = 5.422 MeV are different from the ones found here. The only reaso- 
nable explanation is that he used an effective range analysis, which is 
not as precise as the method used here. 

The next potential analysed was the Soft-Core Square Well, which has 



been used in some K-harmonic~'~," calculations and in a paper on for- 
ward a-particle scattering by 160 by Coelho". The set of parameters 
found reproduced the experimental cross-sections for. E,,, < 40 MeV. 

The last potential examined had the E ~ k a r t ~ , ~  form. It was disappointing 
to find that this potential was unable to give a good fit of the experimental 
cross-section data, except for the s-wave nuclear phase shift. It is clear 
then that the Eckart potential is applicable only in the case of low energy. 

Only s, d and g partial waves needed to be included in our analysis. As could 
be seen in Fig. (6), for low energies (E,,, < 40 MeV), higher partial waves 
do not give any important contribution to the cross-section. To see how 
strongly I-dependent a given L ( r )  is, we made a comparison of parameter 

LAB ENERGY ( M N )  

Fig. 6 - Experimental nuclear phase-shift versus laboratory energy of the bombardinga-parti- 
cle. The s-wave nuclear phase-shift could very well be reproduced for ali three a a  potentials, 
for different sets of parameter values (for E,,, < 40 MeV). 



values obtained from s-wave nuclear phase shift fitting with those obtained 
from a cross-section fit which includes s, cl and g partial waves. The results 
for our potentials are summarized in the table. It is interesting to point 
out that for a11 three potentials, the s-wave nuclear phase shift can be 
very well fitted with more than one set of parameter values. This is a con- 
sequence of the non-linear nature of the fitting procedure. For instante, 
for the hard-core square well, the 1 = 0 parameter values a = 1.4 fm., 
b = 4.1 fm. and = 5.422 MeV, also obtained by Kermod3, give a very 
good fit of the s-wave nuclear phase shift. For the soft-core square well, 
the range of variation of the parameters in the case of 1 = O is much wider, 
with varying from 100 to 10 MeV, b kept fixed at 4.1 fm., and T/, and a 
approximately stable. To the extent that we add more partial waves, the 
location of an absolute minimum for x2 becomes more visible and res- 
tricted. We may say that for low energies, we could obtain a set of parameter 
values, approtrimately 1-and E- independent, for hard-core and soft-core 
square well potentials which reproduces the a-u differential cross-sections. 
We finally should say that in passing from soft-core to hard-core square 
well potentials, the attractive part, I/,, varied from 13.78 to 11.46 MeV 
and the inner radius, a, from 3.015 to 2.170 fm in a continuous way (b was 
kept fixed at 4.1 fm). 

Table 1 below summarizes a11 the results obtained. 

Potential 
T Y P ~  

Parameter Values Partia1 Referente waves 

Hard-Core 1.7 4.0 7.2 
1.4 4.1 5.422 
1.45 4.1 5.45 
1.7-1.9 4.1 5.422 
2.17 4.1 11.46 

Soft-Core ' 3.015 4.1 13.78 18.0 0, 2,4 (3) 

Table 1 - Parameter values obtained for the three effective potentials compared with previouii 
works [(I) - Van der Spuy7; (2) - Kermode3; (3) - This work.]. 



Certainly, we may also try to take into consideration possible polarization 
and nucleon exchange effects. We may consider this in the future. 

A word should be said about the numerical method utilized to handle 
Eq. (15) which appears in the Appendix. We have used Hamming's modified 
predictor-corrector method with the help of a fourth order Runge-Kutta 
method for the starting values. The solution was carried out on the IBM 
360165 computer of the University of Pennsylvania. 

I would like to thank Dr. J. V. Noble for suggesting this problem. I am grateful for the finan- 
cial support of the Comissão Nacional de Energia Nuclear (Brazil) and the Universidade Fe- 
deral de Pernambuco (Brazil) through the BNDE and CNPq contracts. 

Appendin 

Let us denote by K(r) the effective a-a potential. The partial-wave Schrodinger equation 
for scattering wavefunctions can be written\as 

k2 - vn(r) - uc(r) - - 
r2 

vk.l(r) = 0, + (15) 

where p is the reduced mass, and 
2~ 2~ (N) k2 = -2E, v,(r) = - V,, (r) 
h hZ 

and 

corresponds to the Coulomb interaction, <(r), given by 

V$:' should be a short range potential (K,(r) = vg ' ( r )  + V,(r)). 

Let r, be the range of V:' (r), such that V:!' (r) O. Three intervals for the range of r are 

to be distinguished in Eq. (14): 

1) r < r, : y',:' (r) and K(r) are important. 

2) r, c r < R: In this region, V:!' (r) = O (R is assumed to be a very large number). 

Thus, for r r R, Eq. (15) reduces to the Coulomb equation 

where p = kr and = 4 ~ e ~ / h ~ k  (v is dimensionless). 



where F,(p) and G,(p) are the regular and irregular Coulomb functions, respectively, and 
v,(E) is the "nuclear" phase shift. Because of the interference effects between the Coulomb 
and nuclear potentizls, the "nuclear" phase shift v, is not equal to that phase v;  which wodd 
be produced by the same nuclear potential in the absence of the Coulomb interaction. 

3) r >R: In this region we have the asymptotic solutions of Eq. (16). 

The natural object to compare with experiment is the differential cross-section; du/dR. In 
order to determine du/dR one must findtanb,(E), By matching the interna1 (r < r,) and externa1 
( r ~ r , )  logarithmic derivatives of the wave-functions at a point b > r, (where v$'(r) is ne- 
gligible within a predetermined error e > O) we easily find that 

tan v , (E)  = - [Glp, JJ;J(~) - kFXpLyGW] 
1 P) - k G i ( ~ )  ?k,dr) r = b  

As a-particles are bosons, the nuclear scattering amplitude for the reaction should be fully 
symmetrized, and is given by 

f""(k, 8)  = f (k, O )  + f (k, n - O). 

The quantity f is defined as'' f = f ,  + f,, where f ,  is the nuclear amplitude and f, the 
Coulomb amplitude. Explicit expressions are 

where u,(E) is the Coulomb phase shift, O 1s the C.M scattering angle and 

f, = B, exp [2iu,(E) - 2iq log sin 0/2] (20) 

B, comes frorn the Coulomb Bom Approximation and 1s given by 

Symmetrizing f ,  and f,, only even values of 1 will contribute for the total amplitude. 

Finally, the differential cross-section is given by 

\ 
The parameters appearing in L ( r )  can be obtained through a non-linear least-squares fit 
to the differential cross-section da/dR. In order to do this, we need to know tanv,from Eq. (171. 
This requires the determination of the Coulomb functions, and !.,,,(r) (and &,,(r)). To obtain 
?,,,(r) and vL,,(r), one must solve Eq. (15) numerically. 
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