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Calculations of the Curie temperatures of e Heisenberg ferromagnet with biquadratic exchan- 
ge are presented as a function of the strength of the biquadratic term for severa1 spins and 
lattices. The possible measurement of this strength is briefly discussed. - 

Apresentamos cálculos de temperaturas de Curie, de um ferromagneto de Bekenberg com 
termos de troca biquadráticos, em função da intensidade do termo biquadrático para vários 
spins e Iátices. Discute-se brevemente a possível medida dessa intensidade. 

The usual Heisenberg Hamiltonian' includes a bilinear exchange term 

and the Zeeman term 

for neighboring atoms i and j with spin angular momenta pSi,  j. J is the 
Heisenberg exchange integral and H the magnetic field. It is thought that 
this Hamiltonian should be extended in some cases by the inclusion of 
a term proportional to ( S i .  Some reasons for this are the following: 
It was suggested by Anderson2 that the superexchange calculation of 
Kramers3, when extended from third to fifth-order perturbation theory, 
would yield such a term. Another possible origin; suggested by Birgeneau, 
Hutchings, Baker, and Riley4, is the fact that in many rare-earth com- 
pounds the orbital angular momentum is not completely quenched. That 
?s to say that the spherical symmetry seen by the electrons of the unfilled 
inner shell is not completely destroyed in the solid. As a result, the Hamil- 
tonian can include a biquadratic term. Harris and O w e n b n d  Rodbell 
et aL6 found it necessary to use a small negative,biquadratic term to explain 
their paramagnetic resonance data on Mn pairs in MgO. Joseph7 used 
a similar Hamiltonian in calculating the high-temperature susceptibility 
series applicable to KMnF, . In this paper we will consider the effect 
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of biquadratic exchange that is positive and not necessarily small on the 
Curie temperatures of ferromagnets. 

For the first part of the calculation, we use the Hamiltonian 

X = - 2 J x [ S i . S j  + cr(Si.Sj)2]-pmxSiz. 
i j 

(1) 
I 

The íirst summation is taken over a11 nearest-neighbor pairs of spins and 
the second over all spins. The numerical parameter a indicates the strength 
of the biquadratic term. 

The partition function for N particles (/3 = l/kT), 

Z, = trace exp (- PX), 

is expanded in a power series in I/?: the coefficients in the series being 
traces of powers of X. This procedure is due to Kramers8 and was first 
carrisd through by Opechowski

g
. It has been used many times since. 

From the partition function, we obtain the susceptibility from 

p2 a2 x = -- -z ( h  Z,), 
N ~ T  an 

where 2 = pH/kT is set equal to zero after the differentiation. Since the 
exchange and Zeeman parts of the Hamiltonian commute, we can write 
the partition. function as 

2, = trace (exp(- pXe,) exp(- BX,)). 

Then, if the symbol ( ) is defined to mean, for any operator? Q, 

trace [Q ex~(- P X J I  (Q) = --------- 
trace [exp (- pXZ)] ' 

we see that 

Taking the second Â, - derivative of In Z,  , we find 



where 

t = kT/J, a, = 2fo(2 - a), 

a, = 2fo{[4(2f - 1) o - 11 + 20[(24p2 
- 20 + 4)/5 - 4fo] 

+ a2[- 12a2 + 5a - 1 + 2fo]], 
a = S(S + 1)/3, 2f = n = lattice coordination number. 

a2 
The first coefficient, a, , is porportional to -T (X,,) and the second to an 
22 -- - ( ~ ~ , ) ~ j .  Since a11 the neighbor pairs are equívalent, 

(?A2 . 

For the other term, we see that there are three topologically different 
terms and 

( X e x 2 )  = Nf ((Si . %I2) + 2Nf (2f - 1) ((SI . S2)(S2 . S3)) 

+ Nf(Nf -4f + l)((sl .S2)(s3 'S4)). 

All of these involve relatively sirnple traces'and lead to the results shown 
above. 

To find the Curie temperatures, we look for a singularity in X. This can 
be done by setting X-' = O (roots) or from the radius of convergence of 
the series, lim (a,/a,- ,), which in this case we take as a,/a, (ratios). For 

n+ ffi 

face-centered cubic (FCC), body-centered cubic (BCC), and simple cubic 
(SC) lattices with spins S = 1,2,3 the results are shown in kigs. 1, 2, and 3, 
the solid lines indicating the ratios, the dashed lines the roots. Also shown 
in Figure 1 by two black rectangles at cc = O and 1 are the results of two 
much more ambitious calculations?~'O in which the series for x were carried 
to 8 terms for the FCC with spin 1. These serve to verify that our three- 
term series is qualitatively correct. A more complete discussion of the 
figures will be given below. 

In the second part of the calculation, we use the Hamiltonian for a pair 
of spins: 

XI2 = -25 [SI . S2 i- a(S1 .S2)2] - p H M .  

Here H includes, as well as any applied field, the interna1 field introduced 
to account for the interactions of S,  and S2 with the rest of the lattice, 



Fig. 1 - The behavior of the Curie temperature, T,, with the strength of the biquadratic exchan- 
ge, a, for three lattices of spin-1 atorns. The solid lines refer to ratios, the broken lines to roots 
from Eq. 2. The circles are from the constant-coupling approximation for the FCC lattice 
(ref 1). Where the dashed lines end, the roots become complex. The constant coupling appro- 
ximation also has complex roots for S = 2 and 3 when the value of a exceeds that of the last 
circle shown. The points marked RW and AB are from refs. 9 and 3. 

and M = SI, + S,, . Using S = SI + S, and So = I S I  I = IS, I, the eigen- 
values of this Hamiltonian can be written down immediately: 

EsM = - (1/2)JS(S + 1) [aS(S + 1) + 2 - 4aSo(So + I)] +. ÂM + a constant. 

The partition function then follows by summing exp(- PE,,) over M from 
- S  to S and over S from O to 2S,. 

To evaluate the unknown interna1 field, we proceed as follows: Consider 
the one-spin Hamiltonian (molecular field theory) 

Hl =-pH'S 2 .  

Here H' also includes the interactions of S with its neighbors. The parti- 
tion function requires only a sum over S, from -S, to S, of exp(- &%',). 
Let us now form the two density matrices 



Fig. 2 - Same as 1 but for spin 2, The last circle shown (a . 79  indicates where the roots 
for T, from the constant-coupling approximation become complex. 

Fig. 3 - Same as 1 and 2 but for spin 3. 



By a theorem due to Peierls", the molecular field theory is known to be 
the best one-particle approximation. Hence we take the trace over the 
spin'of one particle in p,, and require that the resulting density matrix 
equals Pi with the additional condition that, when there is no applied field, 
the two interna1 fields are related by 

I$ .= nh and H = (n - 1)h 

for the same h. This procedure, it turns out, is equivalent to a method 
known as constant coupling12 but is formally simpler. It is also equivalent 
to calculating the average magnetization from the two partition functions 
and requiring that they be equal, with the same conditions imposed on 
H and H'. The last is the simplest for purposes of calculation and is the 
method actually employed, namely, we calculate the average magnetiza- 
tion from both Z, and Z , ,  and set their difference equal to zero. The 
resulting function is then expanded in a power series in h. (It must be an 
odd function.) The vanishing of the coeficient of the linear term in h gives 
T, , the Curie temperature. 

Returning to the figures, the results are: 

1. There is generally close agreement between the values of Tc found as 
roots or ratios. 
2. The constant-coupling approximation shows excellent agreement with 
the roots and ratios for spin 1, good agreement for spin 2, and only fair 
agreement for spin 3. 
3. For a11 spins and lattices, as a increases, T, (eventually) decreases, more 
rapidly for larger spin. 
4. In a11 cases shown, except for the FCC for spin 1, the roots of X-' = D 
and from the constant-coupling approximation eventually become com- 
plex for large enough a. 

The decrease of Tc between a = O and 1 can be explained on the basis of 
the degeneracy of the ground state of the operator (S, S,) + (SI.  S2)2 
for spin 1. This explanatio8 is modified for spin 2 and 3 when the decrease 
is even more drastic, the roots becoming complex and the ratios negative. 
Here one finds that degeneracy occurs for a < 1, and the ground state 
changes from that of maximum total spin 2s for a = O to the state of zero 
spin at a = 1. For example, for spin 2, one finds that the following eigen- 
values (e.v.) (See Fig. 4.): 

Total spin (S, + S,) 4 3 2 1 O 
e. v. of (SI . S,) 4 O - 3  - 5  - 6 
e. v. of (SI . S,) + (S, . S,), 20 O 6 20 30. 



There is the interesting possibility that another type of transition occurs 
in the region of complex roots. There could be a first-order transition6, 
or quadrupolar ordering13 could take over for large a. Our calculations 
would not detect such transitions but the abrupt fall-off of Tc with a and 
the occurrence of complex roots suggests the possibility of their existence 

Finally, let us brieflyconsider an experiment to ascertain the presence of 
biquadratic exchange. Thermodynamic properties such as the specific heat 
capacity or the spontaneous magnetization show a strong a-dependence1", 
but a is not an experimentally adjustable parameter. (Actually, if one could 
form solid solutions of two materials with different a's, the effective a would 
depend on the composition in a predicatable way.) A more direct test 
might come from electron spin resonance experiments" Here one measures 
indirectly the separations of the energy levels, i.e., the intervals W,,,-, . 
Electrori spin resonance determines the multiplicity of the levels (2s + 13, 
and relative intensity of the transitions belonging to different levels' as a 
function of temperature fixes their separations. Consider the intervals 
between the S-levels of the operator 

For spin 2, they are 

Fig. 4a - The energy levels, E,, of the operator (3), for spin-2 atoms 



Fig 4b - The intervals, W,, , between the ground state and the excited states, both in units of 2 5 ,  
- - - , - to 1st excited state, 

- - - - - - - - - - -  to 2nd excited state, 
- - - - - - - - - - - -  to 3rd excited state, 

to 4th excited state. 

Note the region near cc = 0.1 where the levels for S = O, 1, and 2 are approximately degenerate, 
leavihg only two intervals (in the ratio of 3:4) to be fixed. (If we apply the same analysis to 
an antiferromagnet, the ground state would be the degenerate levels.) Slightly away from 
this region, the experimental situation might be very confusing with the levels too far apart 
to be considered degenerate and yet elose enough to produq overlapping signals. For large 

(> 1/2), the situation would be much improved with large intervals which means very diffe- 

rent Boltzmann factors for different levels. In addition, this is the region where T, is decreasing 
rapidly thus enlarging the paramagnetic region toward lower T allowmg the values of WlkT 
to be increased further. 

where S is the total spin with eigenvalues O + 4. The energy levels and the 
resulting intervals are shown in Figs. 4. The experimental problem is to 
attempt to find a unique value of a that fits the measured level multiplicities 
and intervals. The large number of possibilities for various a's is an em- 
barrassment of riches. However, if the value of J is fairly well known and 
the actual energy level spectrum is close to the ideal shown in Fig. 4( in 
which various possible perturbing effects are ignored), it does seem possible 
to make an unambiguous determination of a by this method. 
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