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The problem of long range order (LRO) in two interpenetrating sublattice binary alloys 
with arbitrary concentration, via pair-wise potentials and pair-wise non-additive three-body 
potentials, is formulated in terms of an Ising antiferromagnet analog. The relevant Green's 
functions are decoupled in the fírst order (RPA) which is equivalent to the Bragg-Williams 
Approximation (BWA). The results indicate that, similarly to the disordered phase, the effects 
of the three-body potentials in the ordered phase also are given by a concentration dependent 
two-body potentiat 

O problema da ordem de longo alcance (LRO) em ligas de duas sub-redes interpenetrantes 
com concentrações arbitrárias, via potenciais a dois e a três corpos, é formulado com auxílio 
de um análogo antiferromagnético de Ising. As funções de Green relevantes são desacopla- 
das em 1." ordem em RPA, que é equivalente h aproximação de Bragg-Williams (BWA). 
Os resultados indicam que, semelhantemente a fase desordenada, os efeitos devidos aos po- 
tenciais a três corpos na fase ordenada também são dados por um potencial a dois corpos 
que depende da concentração. 

Order-disorder phenomena in binary alloys has been the subject of many 
studiesl-'. These studies have assumed that the total configurational 
energy is entirely made up of pair-wise potentials whose strength is de- 
pendent both on the interatomic separation as well as the identity of the 
atomic pairs but is independent of the surroundings of the relevant pairs. 

The observed behavior of some Cu-Zn, Co-Fe (Ref. 4), Cu-Au (Refs. 5, 6), 
Au-Ni, Al-Zn and AI-Ag (Ref. 7) seems, however, to indicate composition 
dependence of the pair-wise interactions. Clearly, the concept of compo- 
sition dependent pair-wise potentials is in violation of the premise of 
two-body central potentials which assumes that for an assembly of n 
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atoms the total potential energy is made up of n(n - 1)/2 pair-wise additive 
terms such that when one of the n atoms is displaced, only its ( n  - 1) pair- 
wise bonds with the other ( n -  1) atoms are affected; the rest maintaining 
their values. 

Fr0m.a more fundamental viewpoint, the pair-wise non-additivity of the 
interatomic forces has long been realized8. Moreover, the ubiquitous viola- 
tion of the A +-+ B interchange symmetry (according to which a11 thermo- 
dynamic properties of A, B l - ,  and A , - ,  B, alloys are the same9 if the 
confígurational energy is made up of composition independent pair-wise 
potentials) suggest a need for examination of the consequences of inclu- 
sion of three-body potentials. 

In the extreme disordered region, it has been shown that the effects of 
three and higher-body potentials can be approximated by an appropriate 
composition renormalization of the two-body potential. However, the 
effects of the three-body potentials in the ordered region have previously 
not been investigated. 

Our objective here is both to formulate the problem in the ordered region 
in terms of an Ising antiferromagnet and to present a first order solution 
which describes the effects of the three-body potentials on the LRO. 

2. Fomulation 

Analogously to the disordered binary alloy", we consider only static con- 
figurational interactions, H(config). This interaction is dependent upon 
the particular configuration in which NA atoms of type A and N B  atoms 
of type B are distributed over a Iattice of N = NA + N B  sites. We assume 
that the sites form a regular, rigid lattice. 

1 .  + - 1' C w"n (ijl) 0~oj.a: 
3 ! 2 ,p . v  i, j,, 

The primed sums are over the indices A and B  and the unprimed sums 
range over the entire lattice. The occupation operators, õn, etc., have the 
usual meaning: 

o: = + 1, if the i-th site is occupied by a /Z atom, 
=- 0, otherwise. (2) 



The two-body interactions have the property 

Vnv(ij) = VÃV(ji) = Vv"ij), 
Vh(ii) = O . 

Symmetry dictates that the three-body potentials obey the relations 

To insure the irreducibility of the three-body potential we require 

Wb""(ijl) = 0, whenever any two or more of the indices, 
i, j, 1, coincide. (5 )  

Introducing the transforrnation 

and requiring that 

o.,? = .ja; ; 0.0: = o. 6n,p ' (7) 

we identify S; to have the character" of the z-component of spin-112, i.e. 

The grand canonical operator, 8, is nowreadilyfound to be 

Here we have used the notation 

J(ij) ,= JGi) 

= VAA(ij) + VBB(ij) - 2PB(i j )  

1 + [WAAA(" + WBBB(ijl) + W AAB ( i j l )  + WBBA(ijr) 
I 

- WAAB(ilj) - WAAB(jli) - WBBA(ilj) - WBBA(jli)] , (10) 



Iúote that the A ++ B interchange is achieved by Sf H- Sf and conse- 
quently under such an interchange J tt J and K tt - K. The cheinical 
potencial p is determined by fixing the concentration, i.e. for N + z: 

1 I 
pA = NA/N = - a? = (a;), 

N i 
(12) 

t 

where 

(. . .) =Tr[exp(- #/kT). . .]/Tr[exp(- Af'lkT)]. (13) 

Here k is the Boltzmann constant and T is the Kelvin teinperature of 
the system. 

3. Two Súb-Lattice Mede1 and the LRO 

We assume that the lattice is described by two inter-penetrating sub-latti- 
ces, a and p, such that any atom on the a sub-lattice finds a11 its nearest 
neighbors to be on the /3 sub-lattice and vice versa. Moreover we limit 
ourselves to considering only short range potentials. In particular, we 
assume that J(ij) will be non-zero, i.e. = J ,  only if i and j are nearest neigh- 
bors. Moreover, because those lattices that admit two, nearest neighbor, 
inter-penetrating sub-lattices, e.g. simple and body centered cubic lattices, 
do not contain nearest neighbor triangles, the shortest range three-body 
potentials will have the character that only two of the three sides of the 
triangle will be equal to the nearest neighbor separation while the third 
side will be the length of the second neighbor distance. 
The above described limitation of the range of the potentials rules out 
the presence of terms containing J(y,yJ and K(yiyjy,), where y = r or I?. 
Therefore, the grand canonical operator becomes: 

Here a, a , ,  etc., signify the various atoms in the a sub-lattice. Also the 
sums over these indices are taken over the entire a sub-lattice consisting 
of N / 2  sites. The notation for the /? sub-lattice is similar. As such 

J(afi) = J(Pa) = J ,  if a and fl are nearest neighbors, 
= 0,  otherwise, (13) 

K(y,y26) = K(y2y,G) = K, if 6 is first neighbor of y ,  and .i2, which are 
second neighbors of each other (Note that ;I and 
6 are on different sub-lattices) (14) 



Within the molecular field approximation (MFA)  the result for the sub- 
lattice magnetization can be obtained by elementary means. 'Jevertheless, 
with a view to future improvements on the MFA, we give a more powerful 
formulation below. 

Consider the retarded Green's function 

4 s: ( t ) ;  S i  (t') % = - 2ni O ( t  - t') ( [ S ;  (t) ,  S; (t')] - ) . (1: r 

Here O ( t  - t') is the Heaviside step function and the time dependence 1 

in the Heisenberg representation with respect to X. The Fourier trans- 
form of the equation of motion is 

where we have used the notation 

We introduce the first order, MFA decouplings, 

(Note that the sites a, a ,  and p are distinct. The same is also true of j?, , 
p2 and a). 

Consequently, the Green's function is given by 

4 s: ; S ã  $ - ( E ,  = 2 M a [ E - E ( @ ) ] - ' ,  (20) 
E(a) = p - MPJE, - M a M P K c  - (MP)2  Ky. (21) 

Here E, is the number of nearest neighbors and y the number of distinct 
equilateral triangles that can be formed with a given atom as the vertex 
between the two short sides, which are equal to the nearest neighbor dis- 
tance, and the long side equal to the second neighbor separation. For 
the simple and the body centered cubic lattices, E, = 6 and 8 and y = 1% 
for both the lattices. Here, 



Using the relation 

1 +Oo 

(BA)  = - - [im 4 A;  i? t i, + io>] do/(emfiT - 1) 
71 

(23) 
J- ,  

and re -arranging the result slightly, we get 

The chemical potential p is fíxed by the requirement 

The LRO parameter, L, is quite naturally described by the difference 

MQ - M ,  = L. (26) 

The sub-lattice magnetization Me and MB therefore have the description 

(Eqs.(27a, b) follow from the sum and the difference of Eqs. (25) and 26)). 
Here pA and pB are the atomic concentrations of the A and the B atoms 
in the alloy, i.e. 

Equation (24) is now readily solved. Subtracting (24) from the correspon- 
ding equation obtained from it by interchanging indices a and P, and 
re-arranging the result slightly, we get 

where 

J = J + (pA -8) Kq&. 

Except for the re-normalization of the pair-potential J to j, tthis result 
is identical to the well known BWA result'. The renormalization is con- 



centration dependent and is directly proportional to the three-body po- 
tential K .  

4. Interpretation of the LRO 

The introduction of the LRO through the relation (26) seems quite natural. 
It is interesting to examine how this LRO relates to the usual LRO pa- 
rameter, S, which is introduced through the relation' 

P,A = pA(l + S); p; = pA(l - S), etc. (32) 

Here pa is the probability of finding an A atom on the sub-lattice x. 

In terms of the occupation operators, p; can be represented as follow:; 

p t = ( o ; ) ;  ? , = A , B ;  y = x , p .  (33) 

Therefore, Eqs. (6), (18) and (27a, b) give 
1 L A 1 L p: =--  + Ma = p A  + -- ; py = + M I = p A -  ' 

2 2 2 '  

- 

In view of the above, the identification of L with S is immediate: 

5. Concluding Remarks 

We have presented here a formulation for the study of LRO in a binary 
alloy with pair-wise non-additive potentials. Within the inolecular field 
approximation we  have shown that the presence of three-body potentials 
only renormalizes the two-body potential with concentration. This result 
is entirely analogous to the result obtained for the disordered phase in 
the high temperature limit. Consequently, as for the disordered phase. 
we expect the presence of even higher -body potentials to also contribute 
to the renormalization of the effective two-body potential. 

It is clear from the structure of the renormalization given in Eq. (31) that 
within the MFA, the renormalization caused by irreducible i ~ b o d y  po- 
tentials will be proportional to (1)" - p")" 2. 

More refined solution of the Green's functions'' than given in Eq. (19) 



will in a11 probability introduce some LRO driven renormalization of the 
effective potential. Moreover, we expect such an analysis to show the exis- 
tente of additional details, resulting from the presence of many body 
irreducible potentials, that cannot be described by any simple renorrna- 
lization of the two-body potential. 
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