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Schwarzschild (S-) coordinates constitute the easiest coordinates for any kind of local pro- 
blems concerning Kerr-like universes because they are "more" diagonal. On the other hand, 
as they contain pseudosingularities, some properties concerning their global structure have 
to be dealt with in other coordinate systems, which can be classified essentially into Kruskal 
or Eddington (E-) frames (the former ones being by far the less practical). However, there 
is no natural way to find the E-frames. In each case, it has been given explicitly what is the 
transformation law linking S- and E- coordinates and consequently the new shape of the 
metric tensor. In the present paper, we show a natural and systematic rnethod which allows 
one to find different systems of E-coordinates, each system corresponding to a specific choice 
of two analytic functions. From the whole set of E-coordinates for the Kerr-Nut metric we 
exhibit the Eddington null system which is simpler than the usual temporal E-coordinates. 
We also clarify the dynamical reasons for the existence of coupled systems of E-frames. 

As coordenadas de Schwarzshild (S) são as mais simples para qualquer tipo de problemas 
locais envolvendo universos do tipo Kerr por serem "mais" diagonais. Por outro lado, pelo 
fato de conterem pseudo singularidades, algumas propriedades de sua estrutura global têm 
que ser tratadas em outros sistemas de coordenadas. Esses podem ser classificados em sis- 
temas de Kruskal ou de Eddington, sendo os primeiros muito menos práticos. Não há, todavia, 
nenhuma maneira natural de se achar sistemas de Eddington (E). Em cada caso, a lei de trans- 
formação ligando coordenadas S com coordenadas E (e, consequentemente, a nova forma do 
tensor métrico) é dada explicitamente. Apresentamos, neste artigo, um método sistemático 
e natural para determinar sistemas. E cada um desses sistemas corresponde a uma escolha 
específica de duas funções analíticas. No conjunto de todos os sistemas e para a métrica de 
Kerr -Nut, exibimos o sistema nulo de Eddington, que é mais simples que as coordenadas 
temporais de Eddington usuais. Também esclarecemos as razões dinâmicas para a exis- 
tência de sistemas de Eddington acoplados. 

1. Introduction 

Since the paper of Finkelsteinl, where Eddington (E-) coordinates atta- 
ched to a Schwarzschil'd uniierse were rediscovered, each time problems 
concerning maximal analytic extensions are dealt with, either E- frames 
or Kruska12 ones have been found and exhibited. 
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However, there is no physical argument about the existence of pairs of 
E-coordinates nor suggestions about what to do in order to find analo- 
gous systems in forthcoming and more complicated solutions or, in other 
similar metrics, solutions to other-than-Einsteinian gravitational theories, 
like the Brans-Dicke theory where massive point particles still move along 
geodesics. 

In the next section, we are going to analyze locally the behaviour of the 
geodesics of the Kerr-Taub-Nut metric, carefully studied recently from a 
global point of view by Miller3, pointing out the following crucial result: 
there exist well defined limits of certain quantities defined on each geodesic 
(where the particle tends to the horizons) which do not depend on the ini- 
tially given values determining them. 

In Sec. 3, the properties of the family of E-coordinates are discussed and 
it is shown how could be found the simplest system of the whole family. 
It so happens that such an E-system contains a null coordinate. 

In the final section, an application to a recently given exact solution (the 
static quadrupole) is given and the conclusions are emphasized. 

2. Geodesics in the Schwarzschild Coordinates 

We shall start from the K e r r - T a ~ b - N u t ~ - ~  metric given in Scharzschild 
(S-) coordinates : 

- $) [dr - AdcpI2, 

where (r, t ,  8, cp) are dimensionless quantities, ais the Kerr rotational parame- 
ter, rn the mass of the source, e the charge and 1 the so called Nut parameter. 

Besides these physical parameters, it is convenient to introduce the pure 
numbers 

Ã a ,  p r ma-', r ea-I, ( 1 4  



and to recall the definition of the functions A, A, p, o, we write 

A(8) sin2 O - 22 cos 8, (1 -c) 

A(r) = r2 - 2pr + 1 + c2 - ,I2, (1 -ci) 
p2 - r2 + (A + cos O)2 (1 -e) 
02 L p2 + A  = r 2  + A' + 1. (1-9 

The metric (1-a) has only one non-vanishing off-diagonal element g,?. 
In spite of this apparent simplicity, the Schwarzschild form of the metric 
presents too many singularities. In fact, the components of the metric 
tensor g,, become infinite at the points 

p2 = r2 + (A + cos O)Z = O (2-a) 

and 

while g det (g,,) = - p4 sin2 8 vanishes at either p2 = O or 0 = (0,n). 
For A # 0, the singularities at 0 = (O, n) have to be treated in a specific 
way because they are not the usual degeneracies of spherical coordinates 
on the 2- sphere, as has been done in Miller's paper3. For IA 1 > 1, p2 > O 
throughout the variety and just in the 1 there is a ring of esseri- 
tia1 singularities given by r = 0, sin 8 contained in the equa- 
torial plane. 

The other problem of the S-metric is the vanishing of the second order 
polynomial A(r), which has two different real roots, a double real root 
or no real root, according to whether 

,u2 + A2 $ c2 + 1 * rn2 + 1' $ a2 + e2. (3) 

If A does not vanish, S- caordinates do not contain pseudosingularities 
and they constitute a reasonably good system of coordinates to deal wíth. 

In the case where A has two or one real roots, S- coordinates have to be 
circumvented because the presence of those pseudosingularities, denoted 
as r+ , with 

r, E ,u 5 (,u2 + 3,' -c2 - l)lI2. (4 

The aim of this section is to analyze the local behaviour of the physical 
geodesics in the vicinity of the 2 horizons r, and therefore to achieve some 
insight in order to get rid of such kind of apparent troubles in a systema.- 
tic way. 



A complete set of differential equations governing the evolution of a massive 
or massless test particle along a geodesic is (we use the notation p, r g,, xa, 
D( )/DS ( j): 

2 ' a t = p-' sinP2 8 .  A-l{(sin2 8 a4 - AA2) e + (AA- a2  sin2 O)), (5-a) 
a2cp' = p-' sinP2 0 .  A-l{(sin2 0 .  a2 -AA) e + (A-sin2 O)), (5-b) 

2 2 '  a p 8 = p , ,  a2r=p-2A(r)p , ,  (5-c-d) 
p, = - e = const., p, = j = const., (6-a-b) 

U - ~ P ,  = - sin 0 .  (A + cos 0)(e2 + A-' r2) 
+ sin 8 .  p-4{a4p2 + o4 sin2 O(Â + cos 8) - AA(Â + cos @(A + 2p2) qj2 

+ 2 sin 8 . o2 P-~(Â. + cos 0){c2 - 2pr - 2Â(A + cos 8)) t'@ 
+ sin 8 . p-4(p2 + (A + cos 8)(sin2 8 - ~))(t')', ( 6 4  

a-' Pr = A-'{rA - p2(r - p)) r2 + re2 
+ P - ~ { A ~ [ ~ A  - p2(r -p ) ]  + r sin2 0 .  a2(2p2 

- 

+ 2A p-4{r sin2 8 + p2(r -p)- rA) t'@ 
- ~ - ~ { p ' ( r  - p) + r sin2 8 - rA) (i)', ( 6 4  

with the first integral 

Each geodesic is determined by the values initially assigned to e, j, O,, r,, 
and pro ; p,, can be calculated through Eq. (7), and (q,, to), the initial 
values of the hidden variables associated with the Killing vectors, are 
immaterial. In Eq. (7), E ,  takes the values (+ 1, 0, - 1) according we are 
concerned with a temporal, lightlike or spatial geodesic. So, as a matter 
of principle, each trajectory can be imagined to be a function of the affine 
parameter s and of the five initial numbers (e, j, O , ,  r,, pro). 

Let us study the behaviour of a definite geodesic which started at some 
point with r, > r+ , when the particle approaches the first horizon from 
the outside, that is, when r(s) -. r+  with r > r+ . As the particle comes 
close to the hypersurface r = r,, 8 approaches some definite value which 
we denote as 8, . Then, going back to Eqs. (5a-b), we have: 

a2 p2 ~i a: (a: e - j), (8-4 

a2 p2 A@ a: e - j, ( 8 4  

where o:(r+) - r: + A2 + 1. 



Computing the same limit in the first integral (7) by taking into account 
that 8 -+ O +  (18, I -: co) when r -+ r+ , and introducing Eqs. (5-c) antl 
(5-d) into Eq. (7), it turns out that 

4 4 . 2  
a P r ,,: ( d e  -A2, (8-4 

or, in an equivalent way, with e, = (+ 1, - 1) chosen according to the 
motion of the particle, 

2 2 .  
a P r ,q e2b:e -A. ( 8 4  

Now it is possible to imagine the geodesic parametrized by means of the 
radial coordinate instead of the afine parameter s and then to obtain a 
detailed description of the behaviour near the pseudosingularities. of tht: 
troubles concerning t(r) and cp(r). In fact, after Eqs. (8-a-b) and (8-d), 

d t  
A d, 

e20: = e2(r: + i12 + 1) = ~ ~ ( 2 p r +  + 21' -E ' ) ,  (9-a) 

These equations show where the pseudosingularities of the Kerr-Nut field 
in S-coordinates stem from. They constitute the Laurent part of the com-. 
plex functions (cp(r), t(r)), with a complete independence of the specific 
geodesic one is dealing with. This last property comes from the fact thal 
neither E~ nor E,  0: depend upon the particular constants (e, j, $0, ro, P ~ J  
of the chosen geodesic; on the contrary, the limits (9-a-b) are quantities 
depending only on the physical parameters (m, e, a, 1). 

This is the clue to direct the search for less singular varieties, as we are 
going to see in the next secion. 

3. A Family of Eddington Patches 

The non-geodesic dependence of the limits (9) along each geodesic in the 
Kerr-Nut field gives a hint on how to get rid of these pseudosingularities. 
Let us consider the family of functions 9 += { f (r) : f (r +) = 1). Obviously, 
any function g(r) of the same kind of smoothness as { f )  such that it takes 
the value o: on r+ has the structure g(r) = o: f(r). 

Let us pick up a pair (f, , f2) of functions belonging to F+and define the 
new system of coordinates (r, o,$, 2) by 



We assert ehat theKerr-Nut field does not present a pseudosingularity 
at r = r+ in the (i., 0, @, 2) representation, as we are going to see immedia- 
tely. By means of Eqs. (10), the Kerr-Nut metric can be written as 

a-2 ds2, E p2 A-'  df2 + p2 da2 
+ p-2(sin2 8. c4 - A2A)(dQ + .s2 f1 A-'  di.)2 
+ 2p-'(AA - c2 sin2 8)(dq" + e2 fl A- '  df)(dt + &,o$ f2 A-  'df) 
+ p-2(sin26-A)(d? + e,& f2A-'di.). (1 1) 

In this representation, we are paying a costly price for losing pseudosin- 
gularities: we have three off-diagonal non-vanishing components of the 
metric tensor {g,+, Q ,  g,í) instead of the unique non-nu11 off-diagonal 
component g,, that we have in the Schwarzshild coordinates. 

Computing (1 I), we get : 

which tends to 

Since (r+ -p) # 0, the disappearance of the pseudosingularity located at 
r+  in the Eddington-like representation given in Eq. (12-a) is evident. 



The r- pseudosingularitymay be treated in the same.form as we did with 
r+ with the replacement of 9+ by 9 - { f (r) : f (r-) = 1) whenever 
necessary in the arguments. 

Special interest lies in the subset (o$/o?)9+ n 9- = F+- . Had we 
chosen fl , f2 E 9+ - , we would have obtained a new metric where both 
pseudosingularities had been smoothed out. 

Each time we are considering an Eddington system originated from a 
pair (fl , f2) EF+ - , we are allowed to speak of double E-coordinates. 

The standard form of the Kerr-Nut field in E-coordinates is obtained 
when it is chosen fl(r) - 1 and o: f2(r) E 2pr + 2d2 -c2. In such cases, 
the metric (12-a) becomes : 

~ - ~ d s % =  p-2(a2 + 2p? + 4dcos8-sin28 + 2d2-e2)d?2 
+ p2 dP2 + p-'(sin2 8" .  o4 - A2A) dg2 + p - 2(sin2 8 - A) dt2 
+ 2d4 di. c, p- '[o2 sin2 8 + ~ ( 2 p ) ?  + 2d2 

- c2 - A)] 
+ 2d@ d2(AA - o2 sin2 8) p-' 
- 2df dt E, pp2(2p; + 2Ã2 -c2 - 2A cos 8). (13) 

But the most interesting system of E-coordinates, it is our feeling, is the 
system constituted by the choice f, 1, o: f, 02(r) = r2 + ,I2 + 1. 
When we select this pair of key functions to determine the new double 
E-system, we get for the Kerr-Nut gravitational field the representation 

a-' = p2 dê2 + p-2(sin2 8. a4- A ~ A )  dqj2 
- P - ~ ( A  - sin2 8) dt2 + 2d4 d? 6, A 
- 2c2 d? d? + 2p-'(AA - o2 sin2 8) d4 d?, (14) 

and each choice of c2 = (+ 1, - 1) leads to a system of coordinates with 
the same properties, i.e., Igifl = 1 and g,i = O. This means that the lines 
of variable r become lightrays instead of space trajectories of the field 
as happens in the Schwarzschild representation. 

The lines of variable ? keep the same character they had in the S-repre- 
sentation (1-a). In fact, as 

a-' ds; = - - sin2<@ dt2 = a-2 dsi,, (15) 

the lines of variable 2 can be temeoral trajectories, lightlike or spatial 
paths whether the fíxed quantities (H,, i., , 4,) make positive, nu11 or ne-, 
gative the term [A(r,) - sin2 61. 



From the differential form (10) of the transformations, it is immediate to 
write down the finite corresponding transformation law. It turns out to be 

which are one to one in each interval of r where A and 02A- '  increase 
or decrease monotonically. It is also worthwhile to work out the starting 
metric (1-a) in terms of the nu11 Eddington systems (16). With dt - 0 2 d q  r 
dtNE - ~ ~ d @ ~ ~ ,  one easily gets 

where the nu11 anholonomous structure of the metric is emphasized. This 
kind of coordinates, when introduced into the standard Reissner-Nordstrom 
solution in Schwarzschild coordinates, lead to the wellknown null-E-re- 
presentation5 : 

or what is the same 

ds;, = d 6 -  2 d 2 [ ~ ~  d? + +(I- 2mr-' + e2 r - 2 )  d t ] ,  (18-a') 

while the starting diagonal metric is given by 

The differential transformation law linking (18-a) with (18-b) looks like 

f ; = r ,  8 = 8 ,  = d ? = d t - ~ ~ ( 1 - 2 m r - ' + e ~ r - ~ ) d r ,  (18-c) 

where t'w two possíbilities for nu11 E-systems stem again from the signa- 
ture of c 2 .  

4. Application 

It is worthwhile to apply the previous method to a Iess treated field, pre- 
senting singularities in the components of the gravitational field, which 
it seems could be annihilated through a coordinate transformation. 

Let us consider the static monopole-quadrupole field found by Winicour, 
Janis and Newman6 and independently by Young and Alton Coulter7 

on the equatorial plane (8 = n/2) in spherical coordinates: 



Â2 
- -- a(Â) b - '(L) dr2 - b(Â) dt2 s ds, - ~ 2 - 1  

= grr dr2 + lg, I dt2,  (19-a) 

where r - m(3, + 1 ) ;  a(Â) and b(3,) are given by 
3 

a ( i )  = exp q2(12 - 112 in2 (Â - 1 , ~  + 1 )  - 6q + q2(312 - 411 . 
[32  

. ~ - 2 ( l + q ) ~  . (1 + 1)' + q ( 2 + 3 a ) + q 2 [ 1  + g ( ~ n - 3 1 3 ) 1  . 

From the structure of the functions a(Â) and b( l ) ,  we see that g ,  has a 
singularity at the Schwarzschild radius r = 2m (Ã = 1) for values of q, the 
quadrupole moment, smaller than q ,  = 1 + 3. As 1 g,,l has a nonsin- 
gular behavior for values of q I 2, we are going to assume in this section 
that we are considering the case O I q 2, more similar to the classical 
Schwarzschild pseudosingularity in the sense that g, becomes infinite 
while g,, remains finite at the sphere r = 2m. 

Let us consider a radial geodesic contained in the equatorial plane. Its 
dynamical evolution is determined by the differential system: 

b(Ã) t' = e,  (20-a) 

Introducing the energy into the quadratic integral of motion (20-b), we 
have for Â(s) the equation 

which near the point Â = 1 has the structure 

m q n  + 1)-112 , .p(~)(~- l)+q(z-3n)++q2[1 ++(3n3-~.w A' -+ e2e, for Â -+ 1. 

From Eqs. (20-a) and (21), we reach the geodesic-independent behavior 
near the troublesome sphere Â = 1, which induces the choice of a new 
coordinate 2 (f (1)  = 1): 



with 
C = 21+3q+;q2 exp [$ q(q - 2)] = a l " ( l ) .  2-'" . P-'(i). (22-b) 

Now it is instructive to write down the Eddington form of the quadrupole 
field. From Eqs. (22-a) and (19-a), we get 

(A- I)Pa-pb-l dÂ2 
- b(A) de2 

- 2me2c b(A) f (L)@ - l )~~(" '+pa(~)-~~( ' ) -+  dÂ dt, (23-a) 

where f(L) could be chosen in such a way that the bracket in g" be of 
second order in (L- I), allowing consequently a regular behavior of the 
transformed g" near the singularity A = 1, because 

So we have for the metric, in Eddington coordinates, near A = 1, the 
structure 

which shows that, for q 5 2, the singularity at Â = 1 in grr disappears 
but has been shifted to a nonregular behavior of gfi,  independent of the 
choice of the function f (A). 

Such a situation corresponds to the fact that, when the 4- Riemann tensor 
had been calculated for the Schwarzschild metric (19-a), it should have 
turned out that A = 1 was a truly singular point for it, so that there is no 
hope for the search for a better coordinate system where troubles at this 
point could be avoided. Even so, the Eddington system (22) is better suited 
than Schwarzschild's because, in the whole interval O 5 q 5 2, 

which shows that the E-metric is "less singular" than the S-metric given 
at the beginning of this section. 



5. Conclusions 

We have shown how one could obtain Eddington systerns of coordinates 
in a natural way, starting from S-frames of reference, by analysis of the 
local behavior of the geodesics in the vicinity of the horizons. This analysis 
exhibits in a very clear way that pseudosingularities contribute with a pole 
structure to each geodesic. 

The pole structure for Kerr-like fields happens to be of the type a,(r - r,)- '  
whe; the residues s*, do not depend on the specifíc constraints of each 
geodesic but on the physical parameters (m, a, e, I )  describing the field. 

This gives the close connection linking Eddington systems, free of pseudo 
singularities, and Schwarzschild coordinates, allowing m e  to go, even in 
more complex fields, from singular quasi-diagonal systems to better sys- 
tems which constitute the unit patch in order to get maximal analytic exten- 
sions of the initial local field. 

It has been shown that the existence of two patches, related through the 
inversion of the signature of E ~ ,  stems from the quadratic first integral 
determining the parameter S. In other words, S-systems provide a11 the 
information needed in order to find better systems, in spite of seeming 
not so well suited because of their pseudo-singularities. 

Even in fields where the singularity at the point considered corresponds 
to a singular structure of the Riemann tensor, E-systems provide a less 
singular representation of the field than S-coordinates. 
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