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Schwarzschild (S-) coordinates constitute the easiest coordinates for any kind of local pro-
blems concerning Kerr-like universes because they are ""'more" diagonal. On the other hand,
as they contain pseudosingularities, some properties concerning their global structure have
to be dealt with in other coordinate systems, which can be classified essentially into Kruskal
or Eddington (E-) frames (the former ones being by far the less practical). However, there
is no natural way to find the E-frames. In each case, it has been given explicitly what is the
transformation law linking S- and E- coordinates and consequently the new shape of the
metric tensor. In the present paper, we show a natural and systematic method which allows
one to find different systems of E-coordinates, each system corresponding to a specific choice
of two analytic functions. From the whole set of E-coordinates for the Kerr-Nut metric we
exhibit the Eddington null system which is simpler than the usual temporal E-coordinates.
We also clarify the dynamical reasons for the existence of coupled systems of E-frames.

As coordenadas de Schwarzshild (S) sdo as mais smples para qualquer tipo de problemas
locais envolvendo universos do tipo Kerr por serem "mais" diagonais. Por outro lado, pelo
fato de conterem pseudo singularidades, algumas propriedades de sua estrutura global tém
que ser tratadas em outros sistemas de coordenadas. Esses podem ser classificadosem sis-
temasde Kruskal ou de Eddington, sendo os primeiros muito menos préticos. Nio h4, todavia,
nenhuma maneira natural de se achar sistemas de Eddington (E). Em cada caso, a lei de trans-
formag&o ligando coordenadas S com coordenadas E (e consequentemente, a hova forma do
tensor métrico) é dada explicitamente. Apresentamos, neste artigo, um método sistematico
e natural para determinar sistemas. E cada um desses sistemas corresponde a uma escolha
especificade duas fungdes analiticas. No conjunto de todos os sistemas e para a métrica de
Kerr -Nut, exibimos o sistema nulo de Eddington, que é mais ssimples que as coordenadas
temporais de Eddington usuais. Também esclarecemos as razbes dindmicas para a exis-
téncia de sistemas de Eddington acoplados.

1. Introductioi
Since the paper of Finkelstein', where Eddington (E-) coordinates atta-
ched to a Schwarzschild universe were rediscovered, each time problems

concerning maximal analytic extensions are dealt with, either E- frames
or Kruskal? ones have been found and exhibited.

'Postal address: Apartado Postal 5354, Caracas, Venezuela.

405



However, there is no physica argument about the existence of pairs o
E-coordinates nor suggestions about what to do in order to find analo-
gous systems in forthcoming and more complicated solutions or, in other
similar metrics, solutions to other-than-Einsteinian gravitational theories,
like the Brans-Dicke theory where massive point particles still move along
geodesics.

In the next section, we are going to analyze locaily the behaviour o the
geodesics of the Kerr-Taub-Nut metric, carefully studied recently from a
global point o view by Miller3, pointing out the following crucial resuit:
there exist wdl defined limits of certain quantities defined on each geodesic
(where the particle tends to the horizons) which do not depend on the ini-
tidly given values determining them.

In Sec. 3, the properties of the family of E-coordinates are discussed and
it is shown how could be found the simplest system d the whole family.
It so happens that such an E-system contains a null coordinate.

In the fina section, an application to a recently given exact solution (the
static quadrupole) is given and the conclusions are emphasi zed.

2. Geodesics in the Schwarzschild Coordinates

We shall start from the Kerr-Taub-Nut®~* metric given in Scharzschild
(S) coordinates:

dr? sin® 6
—-21.2 — 2] % 2 e a2 2
a ?dsi(m,a,e,ly = p [A(r) + df ] + —? [dt—a? de]
A(r)
-7 [dt - Ade]?, (1-a)

where(r,t, 8, ¢) aredimensionl essquantities, ai sthe Kerr rotational parame-
ter, m the mass of the source, e the chargeand / the so called Nut parameter.

Besides these physical parameters, it is convenient to introduce the pure
numbers

A odla”l, prma’, r=eat, (1-b)
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and to recall the definition o the functions A, A, p, 0, we write

A@®) = sin?0-2Acos 8, (I-¢)
Ary=r2-2prt1+2_ 12 (1-d)
p? = r2+ @ + cos) (1-¢)
?=p2+A =r2+ 2+ (1-f)

The metric (1-a) has only one non-vanishing off-diagonal element g,,.
In spite of this apparent simplicity, the Schwarzschild form o the metric
presents too many singularities. In fact, the components o the metric
tensor g,, become infinite at the points

p?=r2+ @ +coshy =0 (2-a)
and
A =0, (@b)

while g = det {g,,} =-p*sin®8 vanishes a either p> =0 or 0 =(0,n).
For A # 0O, the singularitiesat 0 = (O =) have to be treated in a specific
way because they are not the usual degeneracies of spherical coordinates
on the 2- sphere, as has been done in Miller’s paper®. For |A| > 1, p> > 0
throughout the variety and just in the case || < 1 thereis aring of essen-
tial singularities given by r =0, sinf = ,/1-42, contained in the equa-
torial plane.

The other problem o the S-metric is the vanishing d the second order
polynomial A(r), which has two different rea roots, a double red root
or no real root, according to whether

ptrzetiemtrzate (3)

If A does not vanish, S coordinates do not contain pseudosingularities
and they congtitute a reasonably good system of coordinates to deal with.

In the case where A has two or one red roots, S- coordinates have to be
circumvented because the presence o those pseudosingularities, denoted
as ry, with

eyt (WPt 2-g2-112 4
The am o this section is to analyze the loca behaviour o the physica
geodesicsin the vicinity of the 2 horizonsr, and thereforeto achieve some

insight in order to get rid d such kind o apparent troublesin a systema-
tic way.
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A completeset of differential equations governingthe evolution of a massive

or masslesstest particlealong a geodesicis (we use the notation g r g, x2,
D( )YDs=( )

a2t =p~2sin"20-A"{(sin2 8- 0% - AAD e+ (AA-a2 S )]}, (5-a)

a*p =p~2sinT20-A"{(sin® - a2 - Ad)e T (A-sin? Q)), (5-b)

a*p*0 =p,,  a’F =p 2 A®)p,, (5-c-d)

p, =— €= const., p =j = const, (6-a-b)

a 2p, =-sin0- @A * cos O)0> + A-' 1?)
+ sin 8- p~*{a*p? + a*SiN? B + cos B) - AA(L + cos B)(A T 2%} 2
+258n8.02 p~*(A + cos O){e? _ 2ur - 244 cos )} £ ¢
+snd.p *{p*> + A + cos8)(SN28- A)}(r)?, (6-¢)

a”?p, = A2 {rA-p(r-p}#* +10?

T o H{A[rA - p(r- )] T rsin®0-2(2p7 - o)} ¢

T 2Ap Hrsin® 0+ pXr-p)-rAjt'¢

—p HpHr—p T rsin?0_rA} (¢, (6-d)
with the first integral

P EAPE + p7ipE 4+ p 3 (sin 20 -A"Yj? + 2p%(0*A7 - Asin2 0) je
+ p Y A%sin" 2 0-0*A" Y e = —¢,a’. (7

Each geodesicis determined by the values initidly assigned to g j, 6,, 1,,
and p,,; ps, Can be calculated through Eq. (7), and (¢, , to), the initial
values o the hidden variables associated with the Killing vectors, are
immaterial. In Eq. (7), e takes the values (+ 1, 0, - 1) according we are
concerned with a temporal, lightlike or spatial geodesic. So, as a matter
of principle, each trgjectory can be imagined to be a function of the affine
parameter s and o the five initial numbers (g j, 0o, 1,, Py,

Let us study the behaviour of a definite geodesic which started at some
point with r, > r, , when the particle approaches the first horizon from
the outside, that is, when r(s) - r, with r > r, . As the particle comes
close to the hypersurfacer = r., , 8 approaches some definite value which
we denote as 6, . Then, going back to Egs. (5a-b), we have:

a?p* At =77 ol(o%e-j), (8-2)
a2 p* A = o%e-j, (8-b)

where 62 (r,) =12 T 12+ 1
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Computing the same limit in the first integral (7) by taking into account
that 6 — 6, (|6,] < ) when r —r,, and introducing Egs. (5-C) and
(5-d) into Eg. (7), it turns out that

a* p*#* = (02 e ), (8-c)
or, in an equivalent way, with = (+ 1, -1) chosen according to the
motion of the particle,

a® p? F =2 ex(che—)). (8-d)

rorg

Now it is possible to imagine the geodesic parametrized by means of the
radial coordinate instead of the affine parameter s and then to obtain a
detailed description of the behaviour near the pseudosingularities. of tht:
troubles concerning «(r) and ¢(r). In fact, after Egs. (8-ab) and (8-d),

W ael =t + 2 F ) — o, F2°-0), (0g)
dr
d
A-j(f— R (9-b)

These equations show where the pseudosingularitiesd the Kerr-Nut fidd
in S-coordinates stem from. They constitute the Laurent part o the com-
plex functions (¢(r), #(r)), with a complete independence o the specific
geodesic one is dealing with. This last property comes from the fact that
neither e, nor £, 62 depend upon the particular constants (e,J; fo > To » Pro)
o the chosen geodesic; on the contrary, the limits (9-a-b) are quantities
depending only on the physical parameters (m, € a, 1).

This is the clue to direct the search for less singular varieties, as we are
going to see in the next secion.

3. A Family of Eddington Patches

The non-geodesic dependence d the limits (9) along each geodesic in the
Kerr-Nut fidd givesa hint on how to get rid of these pseudosingularities.
Let us consider the family of functions# += {f (r): f (r+) = 1). Obviously,
any function g{r) of the same kind of smoothness as {f) such that it takes
the value 62 on r, has the structure g(r) = o2 f(r).

Let us pick up a pair (f; , f;) o functions belonging to #.and define the
new system o coordinates (?,6,6,2 by
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F=r, 6= , (10-a)

dp = do —e¢, ZAl((rL)) dr, (10-b)
2
dt = dt—e, “JZ%@ dr (10-c)

We assert ehat the Kerr-Nut field does not present a pseudosingularity
atr =r, inthe(i,0,@,2 representation, as we are going to see immedia-
tely. By means of Egs. (10), the Kerr-Nut metric can be written as
a2dst = p? A~1 dp* + p?ah?

+ p~2sin? 8- o* - APANAQ T &, f, A™1 dP)?

+ 20" HAA-0*SiI?OXdp T &, f; A-" di)dt T e,02 f, AT1dR)

+ p2(sin2 0 - A)dt T &, 6% f, A"t ap). (11)
In this representation, we are paying a costly price for losing pseudosin-
gularities. we have three off-diagona non-vanishing components d the

metric tensor {g.;, g, g:4 instead d the unique non-null off-diagonal
component g,, that we have in tke Schwarzshild coordinates.

Computing (11), we get:
a”*dsk = pTHA [p* - (Af, - 6% £2)?] + sin? 0- A" Ho? f - 0% fr)*} dF?
+ p2db* + p~2sin? @ Ay dr?
+ 2d di &, p~2[A(0% f— Afy) + 0 sin” 0- A7V (0? f; - 0% f))]
+ 2d¢ dt p~*(AA - o2 sin? b)
+ 2di dt ey p~ *[(Af, “,Ui f)—sin? 8- A" e* f; - 6% f;)], (12-2)
which tends to
a 2 dsh = e —p) 20y + Af - 03 o +3sin? 6 pT%
“@ry + 6 f1e -0k £y )] dF
+ p2 d6? + p32sin? B0t dp? + p;2sin? - di?
+ 2d df e;,[A + 3 0% sin? 6 - p2r, + oL fi-oifon) re -]
—2p72 6% sin? 8- d¢ dt '
—2dp di e, {1 + sin? 8- p72[r. + o2 (f1. - £5)
-t (12-b)

Since (r+-p) # 0, the disappearance d the pseudosingularity located at
r, in the Eddington-like representation given in Eq. (12-a) is evident.
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The r_ pseudosingularitymay be treated in the same-form as we did with
r. with the replacement of %, by #_ = {f(r):f(r-) =1} whenever
necessary in the arguments.

Special interest lies in the subset (62/62)% . NnF_ = #,_. Had we
chosen f;, L, EZ . _, we would have obtained a new metric where both
pseudosingularities had been smoothed out.

Each time we are considering an Eddington system originated from a
par (f;, f,)e #,_, we are alowed to speak of double E-coordinates.

The standard form o the Kerr-Nut fidd in E-coordinates is obtained
when it is chosen fi(") = 1 and 62 f,(r) = 2pr + 20?-c?. In such cases,
the metric (12-a) becomes:
a~2dst.=p~o? + 2ut t 41 cos B —sin? § t 222 —¢2) ai?

+ p2df? + p~2sin2 § - 6%~ A2A)dp? t p~2(sin? f - A) dt?

+ 2d¢ di e, p~*[0? SN0 + AQuF T 202 _ 2 _ A)]

+ 2d¢ di(AA - o* Si2B) p~2

~2dp dt e, p2Qui T 2K2—c2- 24 cos ). (13)

But the most interesting system of E-coordinates, it is our feding, is the
system constituted by the choice f, =1, o2 f, = 03N =r*+t 22+ 1
When we sdlect this pair of key functions to determine the new double
E-system, we get for the Kerr-Nut gravitational fied the representation

a~2dsty = p? db* + p=2(sin? 8- a%- A2A) dp?

_p A A-sin?B)di? T 2dp di e, A
_2e,dfdt t 2p"2(AA-6? Sin2 B) dg d?, (14)
and each choice of &, = (+ 1, -1) leads to a system o coordinates with
the same properties, i.e., |g;z| =1 and g;; = O This means that the lines

of variable r become lightrays instead o space trajectories of the field
as happens in the Schwarzschild representation.

The lines of variable t keep the same character they had in the S-repre-
sentation (1-a). In fact, as

a 2dsi=_p AA-sin2§)dt* = a2 dsg, (15)
the lines of variable 2 can be temporal trajectories, lightlike or spatial
paths whether the fixed quantities (H, i, , 4,) make positive, null or ne,

gative the term [A(r) -sin?§,].
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From the differential form (10) of the transformations, it is immediate to
write down the finite corresponding transformation law. It turns out to be

Onp =@ —gy(re—r )7} log{!r—r+ !/!r—r_ !} + @q, (16-a)

Ine = t—€3r—gy(ry —r_) " log {]r-r+ Ia3r ) ]r—r_ !-,_z} + 1o, (16-b)
which are one to one in each interval of r where A and ¢2A~! increase
or decrease monotonically. It is also worthwhile to work out the starting
metric (1-a)in terms of the null Eddington systems (16). With dt — 62d¢ r
dtyg — 02d@yr , ONe easily gets

a~?dsdg = p? db? + sin? 6 - p~2(dt — 62 d¢p)?
—2(dt — AdP)[e, dF + L p72 Adt - Ad@)], 17

where the null anholonomous structure d the metric is emphasized. This
kind of coordinates, when introduced into thestandard Reissner-Nordstrom
solution in Schwarzschild coordinates, lead to the wellknown null-E-re-
presentation®:

ds¥g = #dB? + P sin? - dgp? —(1-2mr™ ! + &2 r~2) dt? - 2¢, dt dF, (18-a)
or what is the same

ds2 = P2 dQ-2dt[e, df + 3(1-2mr™ " + €2 r %) dt], (18-a)
while the starting diagonal metric is given by
ds2 =r?dQ + (1-2mr~ ' + 2 r 2" dri —(1=2mr~' + €? r=2)dt%. (18-b)
The differential transformation law linking (18-a) with (18-b) looks like
F=r, B=0, ¢=¢, di=di—e,(1-2m " +er Hdr, (180
where #'1e two possibilitiesfor null E-systems stem again from the signa-

ture ot ¢;.

4. Application

It is worthwhile to apply the previous method to a less treated field, pre-
senting singularities in the components d the gravitational field, which
it seems could be annihilated through a coordinate transformation.

Let us consider the static monopole-quadrupole fied found by Winicour,
Janis and Newman® and independently by Young and Alton Coulter’
on the equatorial plane (8= =/2} in spherical coordinates:
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2

ds? — Iﬁ_—l a(A) b1 () dr? = b() dt? =
=g, dr> t|g,|dt?, (19-a)
where r = m(A * 1); a(2) and b(%) are given by
a(2) = eXpl:'§92 PO2-1PIn?(A-1/2 1 1)-69 + 2—42(322 —4)1 :
L)+, (,1 + 1)1+q(2+3l)+q2[1+§-(5}.—3}.3)].

. (l —1)trae- 30+ @2E+3(3A3-54)] = () (A - 1)P=D), (19-b)

bA) = exp (3 qA)- (A + 1)71+HEF D (1 1) ~ta0s -0 =
BA) (4 — 1P ®. (19-0)

I

From the structure of the functions a(4) and b(1), we see that g,, has a
singularity at the Schwarzschild radius r = 2m (A = 1) for vaues d g, the
quadrupole moment, smaller than g, = 1 /5. As |g,| has a nonsin-
gular behavior for valuesdf q < 2, we are going to assume in this section
that we are considering the case O < q < 2, more similar to the classical
Schwarzschild pseudosingularity in the sense that g,, becomes infinite
while g,, remains finite at the sphere r = 2m.

Let us consider a radial geodesic contained in the equatorial plane. Its
dynamical evolution is determined by the differential system:

bt =e, (20-a)
2

m? -/12—}'_—1 a(A) b~ () 1'2 ~b(A)t? =—-¢,. (20-b)

Introducing the energy into the quadratic integral of motion (20-b), we
have for A(s) the equation
2 .
mz'/'ﬂlj )b I =—¢, + 2 b7 Y(Y), (20-¢)
which near the point 4 = 1 has the structure

mAL + 1) 12 I2(A)(A — 1230+ 4338 -5 ) = g8, for A — L
(21)

From Egs. (20-a) and (21), we reach the geodesic-independent behavior
near the troublesome sphere A = 1, which induces the choice of a new
coordinate 2 (f (1) = 1):
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dt = dt —me,c(d— 13 L (1) dA
= dt — me,c(A — 1)EreV =P =% £y g7 (22-a)
with
¢ =2t+3arie exp3qlg-2)] =o' ?(1). 2712 7). (22-b)

Now it isinstructive to write down the Eddington form of the quadrupole
field. From Egs. (22-8) and (19-a), we get

(A= 1ypa=re=1 A2 _ p(R) di2
—2me,e B FAYA = 1P+ 4pel=po=4 1) gt (23-)
where f(2) could be chosen in such a way that the bracket in g** be of

second order in (L-1), alowing consequently a regular behavior of the
transformed g** near the singularity A = 1, because

piD) =pD) + 1 =< --‘21—)% o0

So we have for the metric, in Eddington coordinates, near A =1, the
structure

dst =y mEAQ — 1A~ 432 _ B(1) (A~ 1)1 =92 g2
—2me, cf(1) (A~ 1)¥4 gt d), (23-b)
which shows that, for g < 2, the singularity at A =1 in ¢, disappears

but has been shifted to a nonregular behavior o g;;, independent o the
choice o the function T (A).

Such a situation corresponds to the fact that, when the 4- Riemann tensor
had been calculated for the Schwarzschild metric (19-a), it should have
turned out that A = 1 was a truly singular point for it, so that there is no
hope for the search for a better coordinate system where troubles at this
point could be avoided. Even so, the Eddington system (22) is better suited
than Schwarzschild's because, in the whole interval 0 < q < 2,

$9@-g9) <L +pD)-p() =1+ 39-%47" (24)

which shows that the E-metric is "'less singular” than the S-metric given
at the beginning o this section.
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5. Conclusions

We have shown how one could obtain Eddington systerns o coordinates
in a natural way, starting from S-frames o reference, by analysis d the
local behavior of the geodesicsin the vicinity of the horizons. This analysis
exhibitsin a very clear way that pseudosingularities contribute with a pole
structure to each geodesic.

The polestructure for Kerr-like fields happens to be o thetypea, (r - 1)~ .
where the residues s do not depend on the specific constraints of each
geodesic but on the physical parameters (m, a, e, ) describing the field.

This gives the close connection linking Eddington systems, free of pseudo
singularities, and Schwarzschild coordinates, allowing one to go, even in
more complex fieds, from singular quasi-diagona systems to better sys-
temswhich constitute the unit patch in order to get maximal analytic exten-
sions of the initial loca field.

It has been shown that the existence of two patches, related through the
inversion of the signature of ¢,, stems from the quadratic first integral
determining the parameter s. In other words, S-systems provide all the
information needed in order to find better systems, in spite of seeming
not so well suited because of their pseudo-singularities.

Even in fields where the singularity at the point considered corresponds
to a singular structure o the Riemann tensor, E-systems provide a less
singular representation of the fiedd than S-coordinates.
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