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We first recal the classical techniques and properties of renormalization for the example 
of the photon propagator. After comparing the different methods used for formulating the 
renormalization group, we stress that the essential property from which that group results 
is that the Green's functions are inversible functions with respect to the charge, which implies 
criteria which are also reviewed. The renormalization group representations of the propa- 
gators being a means to express the fundamental property of inversibility, we review its suc- 
cessful applications in perturbation theory and discuss critically what properties these successes 
really proved. We review also the various implications of the renormalization group on the 
conjectured equations which might determine the observed or the bare charge. After recalling 
briefly how the construction of the group representations from inversibility properties allows 
us to formulate more general groups involving any type of mass or charge renormalization, 

we show that an inversibility property with respect to the èlectron mass, implied by unitarity, 
allows us to give another representation of the photon propagator. The comparison of the 
two representations of the photon propagator and of their known properties leads us to 
conjecture that the divergences of Quantum Electrodynamics one encounters in perturbation 
theory might only be due to a drawback of that method of attack. 

Recordamos inicialmente as propriedades e técnicas clássicas de renormalização, tomando 
como exemplo o propagador do foton. Após compararmos os diferentes métodos empre- 
gados na formulação do grupo de renormalização, frisamos que o fato, de serem as funções 
de Green inversiveis com relação a carga, é a propriedade essencial da qual resulta o grupo 
de renormalização. Essa propriedade implica certos critérios que também revisamos. Sendo, 
as rcpresentações do grupo de renormalização para os propagadores, uma maneira de expri- 
mir a propriedade fundamental de inversibilidade, revisamos suas aplicações bem sucedidas 
na teoria de perturbações e discutimos criticamente quais propriedades foram realmente 
provadas por esses sucessos. Revisamos também as várias implicações do grupo de renor- 
malização sobre as equações que supostamente poderiam determinar a carga observada ou 
a carga nua. Após recordarmos brevemente como a construção das representações do grupo, 
a partir das propriedades de inversibilidade, nos permite formular grupos mais gerais envol- 
vendo qualquer tipo de renormalização de massa ou carga, mostramos que uma propriedade 
de inversibilidade com relação a massa do electron, decorrente da unitariedade, nos permite 
dar outra representação do propagador do foton. A comparação, entre as duas represen- 
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tações do propagador do foton e entre as suas propriedades conhecidas, leva-nos a conjec- 
turar que as divergências encontradas no tratamento perturbativo da Eletrodinâmica Quân- 
tica possam ser devidas apenas a uma deficiência do método de ataque perturbativo. 

Introduction 

Like renorrnalization theory itself, the so-called renormalization group 
came into the world of theoretical physics through its connection with 
the divergence problems one faced in the early days of relativistic quantum 
field theoryl . 

It took a few years to discover2 its practical, and perhaps fundamental, 
importance in the understanding of high energy behaviours which, so 
it seems, touch the still hidden and ambiguous looking core of quantum 
field theory. 

Even more time was needed both for realizing that the renormalization 
group results from an invariance of Lagrangian field theories which is 
independent of any cut-off or divergence considerations (as is well exem- 
plified in the Lee Model with a cutt-off) and also for obtaining, by the 
use of a clear-cut mathematical argument, the first exact representations 
of that group3. 

Basing itself on renormalized Green's functions instead of Lagrangians 
and field operators, ã new formulation of the renormalization group 
emerged4 more recently, cutting the umbilical cord connecting it to its 
doubtful origins. In this way, it could be clearly established which ingre- 
dients are needed to construct the renormalization group representations, 
thereby allowing us to extend substantially their domain of applicability. 

In particular, it was realized that a fundamental postulate of inversibility 
of Green's functions with respect to the coupling constant, which has 
in itself important consequences independent of perturbation theory5,', 
is also the only thing responsible for the existence of the standard renor- 
malization group whose success in perturbation theory is well known. 

Furthermore, the existence of another type of inversibility property which 
results from unitarity permits us to construct new representations of 
the propagators4 which shed new light on the structure of the Z, (a) function 
as well as on the possible origin of the infinities ocurring in its perturbative 
evaluation. 



The following chapters are an attempt to present, starting from the most 
elementary and conventional points of view upon renormalization, the 
set of results we have just mentioned. Many of these have only appeared 
without the necessary accent put on their possible importance and mixed 
up with more technical developments in different p a p e r ~ ~ , ~  and unpu- 
blished reportsó . 

In the first chapter, we recall, by taking the example of the photon pro- 
pagator, the different points of view on the ambiguities and divergences 
encountered in perturbation theory which historically motivated renor- 
malization theory. We present a brief review of Dyson's method and of 
Matthews and Salam's method of renormalization, making precise the 
various concepts and properties of renormalizability which come up in 
that typical example of renormalizable theory. 

In Chapter 2, we introduce the property of normalization invariance which 
that theory possesses and show that the equations which derive from that 
invariance can also be obtained from a single manipulation made only 
upon the renormalized Green's function, thus controlling explicitly the 
mathematical property invohed. These equations being the basis of the 
renormalization group, one thus makes very clear what are the postulates 
that the renormalizable Green's functions should obey for the existence 
of that group. 

In Chapter 3, we discuss in detail the fundamental postulate which is tbe 
inversibilitv with respect to the charge or of the renormalized propagator. 
We also indicate various criteria equivalent to that postulate and establish 
their connection with the notions of renormalizability exhibited in Chapter 1. 
After concluding that chapter by discussing the difficulty of proving the 
exactness of the postulate, we review in Chapter 4 the usual applications 
in perturbation theory of the renormalization groups, showing that we 
cannot really deduce from their sucess that the aforementioned postulate 
is checked with certitude. We also review the implications of the renor- 
malization group equations upon the equations which were conjectured 
to determine the bare and the physical charges. 

Chapter 5 is devoted to a brief recall of the extensions made to the renor- 
malization group for the various types of charge and mass renormalizations. 

In Chapter 6, we show that another representation of the photon propa- 
gator results from its inversibility with respect to k2,  implied by unitarity. 
The confrontation and the apparent contradictions of the resulis of 



Chapter 3 and of those which follow from the representation introduced 
in Chapter 6, leads us in Chapter 7 to propose a mechanism of reconci- 
liation which, if it is true in actual quantum electrodynamics, would imply 
that the divergences one encounters are only a drawback of perturbative 
methods. 

1. Different Notions and Properties of Renormalizability 

a. Dyson's Renormalization Procedure in Perturbation Theory : 
Regularization Independence and Invariance; Cancellation of Infinities 

Let us consider the Lagrangian of quantum electrodynamics (QED), 

[which involves the bare (or unrenormalized) photon (A:) and electron 
(\h0) fields, as well as the bare charge e,,], from which the formal Feynman 
- Dyson S-matrix series can be deduced. 

In the problem of the photon field renormalization, we shall restrict ourselves 
to the consideration of the simplest term of the vacuum polarization 
tensor H;, of first order in ao = e:, defined through the graph 

This expression in x-space 1s a product of distributions SF(x), which therefore 
has no clear mathematical meaning. In momentum space, it is given by 

(plus eventually a constant term which we shall not consider here), where 
Il(')(k2) is a divergent Feynman integral. One encounters here a difficulty 
which one can characterize as coming from the ambiguity of a product 
of distributions or else as the failure of an integral to converge. Disre- 
garding the origin of such kind of difficulty (which may be mathematical, 
say, the failure of the perturbation expansion, or physical, e.g., the necessity 
of a fundamental cut-off provided by some mechanism foreign to QED) 
and accepting the usual S-matrix expansion, two different philosophies 
where developed to handle such ambiguous, or divergent, expressions. 
Both of them were of importance in the development of the formulation 
of the renormalization group. 

a. A first point of view, which we cal1 the regularizntion philosophy, was 
taken by Stueckelberg and Petermann'. They showed that x2 n:(x) 



is a regular function QFJ(x); therefore, taking into account Lorentz inva- 
riance, the vacuum palarization tensor can be written as 

9 denoting the principal value, while A('), C(') and D(') are arbitrarv 
"division constants" which are, in general, finite. Assuming or imposirig 
gauge invariance, the constant A'" drops out; D") is not observable, :;o 
that we shall be concerned only with C(') .  A similar result was obtained 
by Caianiello7, using Hadamard's finite part of an integral. 

In the regularization philosophy we can also include Bogoliubov's formu- 
lation of S-matrix theory: there, an arbitrariness is already present in 
the expression for II:','(k), since it is defined up to an arbitrary polyno- 
mial. The more recent developments of Zimmermann8 are also in the 
same line of thought. 

f l )  Another point of view is taken in the divergence philosophv, where one 
accepts to deal with the divergent Feynman integral n(') (k2) and, at 
the same time, one introduces some limiting regularization scheme in 
order to give a controlable meaning to the "infinity". This can be done 
via many different methods which essentially consist either in simply 
cutting the domain of integration, or modifying the free propagators (a 
cut-off form factor or analytic regularization, l/x + I/X"~,,)  or modi- 
fying the space volume of integration (the continuous dimension method). 
In a11 cases, one recovers the divergence at a certain limit. For simplicity 
of expression, we shall speak of a cut-off mass A2, whose infinite values 
make the integrals diverge. 

The function II(')(k2) being given by a Feynman integral, it is always 
possible to make a separation of the type 

where B(')(k2) is such that B("(k2, A2)(A,+m+finite value, while C")(A2)1,~,, 
-t infinity. In this way, one splits II(') into a finite part B") and an infinjte 
one C"), both determined up to an arbitrary and finite additive constant. 

Let us now resume briefly Dyson's renormalization procedure, first res- 
tricting ourselves to the consideration of the vacuum polarization tensor 
xo n,,(k2, C I ~ )  in lowest order in sr, . This example is sufficient to illustrate 
the mechanisms of the various renormalization properties. It should be 
noticed too that the Lee Model furnishes an exact field theory where the 



propagator has exactly the same structure as that of the approximate 
photon propagator we will consider now. 

Let us define the unrenormalized interaction kernel between two electrons as 

A; ( k 2 ,  a,) is the unrenormalized photon propagator and do ( k 2 ,  a,) the 
unrenormalized clothing function. 

Defining the observable charge a (actually, a is the square of the obser- 
vable charge) as the residue of a,K0 at the pole k 2 = 0,  namely, 

a = CIO 

1 - a, [B"' (O) + C'"] ' 

one may Introduce the charge renormalization constant Z ,  by the relation 

from which results 

2, = [ I -  a, ( ~ ( ' ' ( 0 )  + C"')] -' = 1 + a(B("(0) + C")). (1-9) 

Expressing then a, in terms of a, from (1-7), i.e., a,  = f (a, B("(0) + C'"), 
one obtains that (1-6) can be written as 

- - a 
- - aAk ( k 2 ,  a). 

k2 dR (k2 , a)  

In this equation, the function B',"(k2) is the renormalized closed loop. 
The renormalized propagator A',(k2, a) and the renormalized clothing 
function 

are thus related to the unrenormalized ones by proportionality factors, 
respectively, 2;' and Z ,  ; d,(k2, a), which by construction is such that 
dR(O,a) = 1, is finally obtained by 



Here one can make the following remarks: 

(i) In the regularization philosophy, the indeterminacy or the variation 
of the constant C'", for a given a,, implies only a corresponding variation 
of the physical charge a and of 2, as well, the form of the renormalized 
propagator remaining the same as function of a. Conversely, if a is given, 
the bare charge a, and Z ,  as well become indeterminate and vary with C('). 

The effect of the variation of the physical constant a, and of the renorma- 
lization constant Z , ,  with an arbitrary regularization constant such as 
C"), is - when extended to a11 classes of graphs - the basis of the Stue- 
ckelberg - Petermann formulation of the renormalization group. 

(ii) If, as in the rlivergence philosophi., C(') is infinite, one can then absorb 
the divergence in the definition of a,, making aAR finite. Of course, if 
a is the finite physical charge, the unrenormalized charge 

a, = a[l + a(B(') (O) + C"))] - ' 
will vanish. 

When higher orders of a, n,,(k2, a) are computed, one obtains the unre- 
normalized clothing functian, with the following structure: 

do (k2, ao) = 1 - a, no (k2, ao, (C)), 
a, no (k2, ao, {C)) = ao [B(')(k2) + C(1)] 

+ a$ [B(2) (k2)  + C(2)] 
+ a; [B(3) (k2, C(')) + C(3)] + 
+ a", [B@)(k2, {C"). . . C'"-2))) + C(")] +. . . . 

(1-12) 
The set {C) of constants C'") is arbitrary in the regularization philosophy 
and infinite in the divergence philosophy. The dependence of B'3)(k2, C'')) 
on C(') comes from the graphs 

and 

which depend on the function B(')(k2) + C(') representing the loop o:n 



the internal photon line. The n-th order loop has also an expression of 
the form 

since it contains at most one internal loop of order (n - 2) and, eventually, 
many other internal loops of lower orders. 

Defining the observable charge a by 

= ao[do(O,ao, (C))]-', (1-13) 

one can express a, = f(a, (C)) as a function of the set (C) and of the 
given a. One can then demonstrate, to a11 orders of perturbation theory, 
the essential relation, 

a0 [k2 do (k2 > ao > {C))]&! f ( a ,  (C)) = a[k2 dR (k2, a)] - i  > (1-14) 

which is the basis of renormalization theory. 

By construction [from (1-13) and (1-14)], d R( k 2,  a) is such that dR (O, cr) = 1. 
But also the function d R( k 2,  a) has-the fundamental propertv of depending 
onlv on k2, a being independent of the set (C) ;  a11 dependence on the set 
(C) appears in the equation relating a avul a,, only. 

This results in the following regularization independence: the structure of 
the observable functions (of variables k2 and a, e.g., a/[Tk2 d, (k 2,  cr)]) is 
independent of the regularization procedure. 

In the regularization philosophy, one can furthermore establish the exis- 
tente of classes of sets (C),'i.e., classes of regularization schemes, such that, 
a, being fixed, the physical charge a = a(a,, {C]) is the same (that is, 
two sets (C'", C(2)) and {C('), c(2))  for which ao C(') + a i  = ao C(') + 
+ a: c(2)). We may call this property regularization invariance. 

In the divergence philosophy, it follows from the regularization indepen- 
dente that a11 the infinities can be absorbed in the relation between cr and cr,, 
namely, in the charge renormalization constant Z,. We call this property 
infinities cancellation in the observables. It is usually (and historically) 
considered as the renormalization criterion. 

b) The Matthews-Salam Counter-Term Renormalization Vlethod 

We shall now take the standpoint of the divergence philosophy. Then, 
instead of starting from a given Lagrangian which, when a is finite, contains 



infinities in the unknown unrenormalized charge a, (this quantity being 
determined at the end of the calculation by a manipulation of infinities), 
we shall proceed differently. 

First, we fix the physical charge a, known and small; then we construct 
simultaneously the renormalized propagator and the Lagrangian by adding 
to it, at each order of perturbation theory, the counter-terms needed to 
preserve the normalization of the d, function. This has also the effect 
of cancelling the infinities involved. In practice, one starts from a Lagrangian 
of first order in e which has the same form as given by Eq. (1-I), namely, 

9"' = $Pgic ($) + 9 ( O '  Maxwell (A) + ieAp Jp (1-15) 

where e denotes the observable charge. Then, to first order in a, the inte- 
raction kernel aA' = a/k2 has the correct residue. In the next order in 
a, one gets the term 

which however modifies the observed physical charge as 

' a + a (1 + a [B"' (O) + C"']). 

This can be remedied by adding to the Lagrangian .2(" a counter-terrn 
6 9  which turns out to have the form 

6 2  = ( 2 3  - ~ ) ~ M ~ , , ~ , I I ( A ) ,  (1-17) 

which, to this order, is simply 

6 ~ ' ~ '  = a [B"' (O) + C'"] ~ M ~ x , v e , l  (A). 

In this way, a new cancelling graph, 

v = -$ [B")(O) + C(1)], (1-18) 
-. 

is introduced which, àdded to the preceding one, gives a contribution 

a2 
B"' (O)] = - k2 BR' (k2). 

More generally, one can determine to a11 orders in a the function involved 
in Eq. (1-17), 



the qn being such that the clothing function dR remains normalized at 
k2 = O. In this way, one can construct directly the renormalized function 
d R(k 2,  a). Of course, such a construction can be mude independentlv of the 
divergente problem (i.e., the v], could be finite) and it is most fortunate 
that in QED (a typical renormalizable theory) all infinities coming from 
graphs with closed loops are cancelled in the observable matrix elements 
by the effect of the v ] ,  counter-terms. This property is again a renormaliza- 
bilitv criterion based on the infinities cancellation in the observables, 
like in a). 

c) Relation between the Methods of Dyson and Matthews-Salam 

The particular form of 6.9 exhibited in Eq. (1-17) allows us to establish 
the connection between the counter-term method and that of Dyson as 
well as between the two aspects of infinities cancellation we have exem- 
plified. From Eqs. (1-15) and (1-17), we can write 

where 9Max,vel, (A)  is quadratic in A,. Defining the unrenormalized field 

Eq. (1-17) can be written just like Eq.' (I), i.e., 

where the unrenormalized charge 

is present. 

Let us stress the fact that only because 6.9 (which is needed not only for 
normalizing dR (k2, a) but also for cancelling the divergences) has a close 
resemblance to 2 (or parts of 9 )  one is allowed to pass from the renor- 
malized to the unrenormalized version of the Lagrangian by a simultaneous 
rescaling (Eqs. (1-21)-(1-24)) of the field and of the coupling constant: that 
property of 6 2  is therefore connected with the renormalizabilitv criterion 
we defined in the preceding paragraphs. 



2. Nonnalization Invariance and the Fonnulation of the G(Z,)-Renonna- 
lization Group 

a) Introduction 

In the preceding chapter we have by means of an example recalled very 
briefly the renormalization procedures and indicated the essential pro- 
perties which the rensormalizable theories possess. We mean that the 
ambiguities (arbitrariness or infinite values), which one encounters when 
one makes use of perturbation theory in calculating Green's functions, 
can be eliminated from the observable quantities by a "rescaling" procedure 
of the fields and coupling constants. In this way, all the part of the theory 
which is obscure (arbitrary or infinite) is concentrated in the renormalization 
constants (Z, in the particular case studied here) which appear only in 
the Lagrangian. Contrariwise, the observable Green's functions (at leasii 
in perturbation theory) are well defined and do not exhibit the ambiguitie; 
of the equations from which they result. However, one is then dealing 
with properties which are well known and of the type one could cal1 "expe- 
rimental" in field theory. The question we shall try to answer in the next 
two chapters is the following one: which peculiar property must both 
the unrenormalized and renormalized Green's functions possess in order 
to exhibit the "miraculous" properties of renormalizability? In order to 
do that we shall start by noticing the existence of a kind of invariance 
which is apparently different from those discussed in Ch. 1. The fact that 
such an invariance could also be expressed directly on -the renormalized 
Green's functions, without any appeal to Lagrangians, will give us the clue 
to find the answer to the question raised above. 

b) Nonnalization Invariance 

The method of constructing the renormalized solutions of a field theory 
allows one to introduce a new kind of arbitrariness which may be called 
normalization invariance. Instead of fixing the given observable charge a 
(defined as the residue at the pole of the interaction kernel), it is also pos- 
sible to choose a value Q2 of k2 at which the interaction kernel has a fixed 
value, i.e., one gets a O-charge defined by 

OIg = [k2aArRlk2=p P1) 
note that one has to choose 9' 2 O in order to have a, real. 

Such a situation occurs most naturally in conserved-current vector meson 
theories, where it may be very convenient (because of the Ward cancellation 
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of vertex corrections) to define the observable charge at k2 = O  rather 
than at the pole of the vector meson. 

Repeating the same argument as for the renormalized case of b), Ch. 1, 
one would construct both the 0-renormalized propagator 

A;, = 
1 

k2 dR,(k2, m2, a,) ' dRe(02, m2, a,) = 1, 

and the Lagrangian 9 which, like Eq. (1-17), takes the form 

9 - = Z; (a,) 9 ( A , )  + ie, Ai J ,  , (2-3) 

with 

allowing one 

m 

Z$ (ae) = 1 + C o(B vlk@, 
n =  1 

itain, by rescaling, the unrenormalized field 

A: = (Z3)'I2 A;, a, = a,/z3 (a,), 

and therefore the expression of Eq. (1). 

and charge: 

(2-4) 

Having thus, at least formally, the same QED as before, one should also 
have the same interaction kernel between the electrons, namely, 

ao - a - - ao 
do (k2, m2, a,) - dR (k2, m2, a) de (k2, m2, a,) ' 

(2-5) 

Of course, one should also have the same result by choosing a different 
normalization point 2 0  and the corresponding ao,-charge. In other 
words: Eq. (2-5) should be true for any O2 2 O. This is the normalization 
invariance. 

Such an invariance can also be regarded as resulting from the invariance 
of the Lagrangian under the multiplicative transformation 

A = A C""2, , = e p : 2 ,  i - 5 - (2-6) 
which leads to the invariance 

where f12 (i) (or H:) is the value.of k2 for which 
1 

( I R  (O?, lu2, ?L) = 
i 

(2-8) 



Relations (2-5), which express the normalization invariance, are the mathe- 
matical basis of the Bogoliubov-Shirkov formulation of the renormali-. 
zation group, Since we have dealt only with the Z3-type of charge renor-, 
malization, we shall cal1 it G(Z,)-renormalization group. 

Let us stress some of its properties. First of all, in deducing Eq. (2-5), we 
did not make any use of the regularization invariance and, indeed, a relation 
like (2-5) can be obtained in any finite field theory such as the simple conver- 
gent Galilean Lee Model. The above formulation is, therefore, not neces- 
sarily equivalent to other "renormalization group" properties related to 
the regularization invariance. On the other hand, although for the sake 
of illustration, we made an appeal to perturbation theory in obtaining 
the relations (2-5), one may also, when other methods of constructing fielcl 
theoretical solutions are known (like in the- Lee model case), consider 
those relations in a global way, thus insuring their validity within the 
restricted scheme of perturbation theory, including eventually the accidents 
(divergences) peculiar to that method. 

Since we have obtained relations (2-5) within the framework of Lagrangian 
field theory, making use of bare fields and coupling constants, which may 
imply a lack of mathematical rigor (and which involves the big machinery 
of canonical field theory whose axioms are not yet well clarified), let us 
give in what follows another deduction of these relations which, because 
it only uses renormalized Green's functions, allows us to clearly exhibit 
the mathematical and physical postulates we make use of. 

c) The Axioms of the G(Z3)-Renormalization Group 

We assume4, for a physical charge a arbitrarily given, that the zero-mass 
photon renormalized Green's function in pure QED (electron of physical 
mass m) can be generally written in the form 

where - for dimensional reasons (a being dimensionless) - the renor- 
malized clothing function d, has the dependence d, (k2/m2, a) and is taken 
with the normalization d,(O,a) = 1. 1n other words, we start by assuming 
the existence of a function d ,  of two variables k2/m2 aiul a which, for conve- 
nience, is normalized at k2 = O. This choice of normalization can always 
be done by dividing an arbitrary function f (x, a) by f (O, a). We moreover 
suppose that d,(k2/m2, a) is real for k2 2 O for a varying in some domain 
%ax ' a > % i r  



Let us then lefine a O-charge,'a,, by the relation 

We assume besides that such a defining relation is invertible with respect 
to a for a11 allowed O valiies. We can therefore solve it in the form 

a = cr, @(02/m2, a,). (2- 10) 

Let us also de$ne a 0-normalized clothing function de,  which is also a function 
of a,, by 

with &(O2, m2, a,) = 1. One then has 

as in the last equality of Eq. (1-25). For dimensional reasons (de being dimen- 
sionless and 02, k2, m2 having the dimension of a mass squared), d, can 
be written generally as 

de (k2 , m2 , a,) - 2, (k2/02 , rn2/e2 , a,), (2- 13) 

with z ,  (1, m2/02, a,) = 1 

We note that the renormalized clothing function d, is a special case of 
the function z , ,  namely, 

d, = z3 (k2/02, m2/02, a,),= O. 

We then have 

As we shall see in 5 d), this last relatíon will suffice to obtain the properties 
of the renormalization group. One might, however, be interested in also 
recovering the equivalent to the first of the relations (2-5), which involves 
the bare constants. This can be achieved as follows. 

In canonical field theory, one can formally prove, if Z ,  is finite and f O, 
that one has 



the canonical bare charge being ao = a/Z3.  This property is explicitly 
verified in finite field theoretical modeis. When Z3 is divergent in pertur- 
bation theory, it also usually happens that 

computed perturbationwise, shows the same type of divergente as the 
one exhibited by Z,. Needless to say, the equality of the divergences cannot 
be established rigorously. Thus, in the present Green's function approach, 
we take as a dejinition of the renormalization constant "2," the expressiori 

"Z3" = lim d, (k2/m2 , a), 
k2-+oo 

(2- 16) 

the "bare" charge (or "asymptotic" charge) "a0" being, as usual, definetl 
as "a," = a/"Z," . 

Let us now consider the function z ,  in the limit 0 4 m. Since z ,  is normalizecl 
for O2 -+ a, one has from (2-14) 

whereas, from Eqs. (2-12) and (2-131, 

- 
(lR(k2/m2, a) 

(2- 18) 
"Z," 

is the "unrenormalized clothing function, which ca; be written as 

Z ,  ( k2 /m ,  m2/co, "aO") = do (k2/rn2, m2/co, "aO"). (2- 19) 

In this way, we obtain the first of the relations (2-5). 

With such interpretations, one may then regard the 8-charge as an inter- 
polating charge which varies from the physical (O = O) to the bare charge 
(8 = a), and consider the function 

z3 (k2/02 , m2/02 , as) 

as an interpolating clothing function which gives a continuous link between 
the renormalized and unrenormalized clothing functions as d2 goes from 
zero to infinity. 

Let us now discuss and comment on some of the postulates we used for 
deducing the invariant (2-14). 



(i) One postulate which will appear to be of paramount importante and 
that will be discussed in detail in Ch. 3 is that of inversibility with respect 
to a. It means that the expression (2-9) for a, is to'be regarded as a function 
of a variable a, i.e., a is not a fixed numerical constant. We note that this 
distinguishes the present formulation from that of Gell-Mann and Low, 
who looked for renormalized clothing functions dR(k2/m2,a) such that 

for kZ, 8' 9 m2. Here, a may be regarded as a numerical constant: only 
the inversibility of d ,  with respect to the variable k2/m2 is required. It 
is however worth mentioning that the right hand side of (2-20) is the function 

z3 (k2/02, m2/02, a, = a/dR (02/m2, a)), 

whose existence results from the inversibility condition in a exhibited in 
Eq. (2-10). The postulate (2-20), therefore, coincides with the formulation 
given above when the limit m2 + O does exist. 

(ii) The definitions of a, and 11, can be made more general in the following 
sense: one could equally well, once a, is defined, have chosen a different 
value 0' # 8 for the point at which the do. function is normalized. In this 
way, the interpolating clothing function can be expressed in terms of an 
unrelated interpolating charge, this allowing us to treat, e.g., the renorma- 
lized propagator in terms of the bare charge or the other way round4. 

(iii) Finally, one rnight also question why we have chosen the definition 
(2-9) for a, rather than, say, a/d2. The reason is that a/(k2 d,), the interac- 
tion kernel between electrons, is truly the fundamental building block 
in terms of which a11 the other Green's functions are constructed: the 
Green's functions are functionals of aAR. 

7he invariance under the renormalization group, relations (2-14), is another 
way of expressing the invariance of the Green's functions under a change 
of the normalization parameter 8. That property is of course associated 
with the structure of the formal Eagrangian, being one of the basic attributes 
of renormalizability. 

However, the advantage of formulating that property in a clear mathe- 
matical way is that it allows us to determine the precise mathematical 
structure the Green's functions should possess and also to know which 
of the postulates is basic in fixing that structure. 



A result which is both strange and physically important will be showri, 
illustrated and discussed, in the next Chapters: the Green's functions are 
not any functionals of &A;, but instead posses a much more stringent 
structure. 

d) Representations of the Propagators Invariant under the G(Z,)-Renor- 
malization Group 

From the invariance under the renormalization group, expressed by 

ao a VOZ r O, (2-21) 
Z, (k2/02, m2/02, a,) - d, (k2/m2, a) ' 

and the normalization condition 

z3 (1, m2/02 , a,) = 1, 

one has, successively, 

ao - ao, 
z, (k2/02, m2/02, a,) - z3 (k2/iY2, m2/iY2, a,.) ' 

and, for k2 = iY2, 

a,. = a', 
z, (W2/02, m2/02, a,) 

Eliminating sro, in Eq. (2-23), one gets the fundamental functional equation 
for G(Z3) [Ref. 33: 

z, (k2/02, m2/02, a,) = z, (W2/02, m2/02, a,). 

z3 (k2/W2, m2/W2, a,/z3 (W2/02, m2/02 , a,)). (2-25) 

Differentiating with respect to k2/B2 and taking then k2 = 6", one gets 
the associated Lie differential equation : 

a 
a(k2/e2) 

log z, (k2/02, m2/02, a,) 



With the initial condition (2-221 one obtains the three equivalent repre- 
sentations 

z, ( k2 /@,  m2/02, a,) 

dt 
- F3 (m2/02 t ,  a, z; ' (t ,  m2/d2 , a,)) 

k z / m 2  dt 
= 1 -a,  - F3 ( l l t ,  a, z3 ' (tm2/02, m2/02, a,)), (2-27a') 

,2/rn2 S 
z ,  (k2/02, m2/02, a,) 

= exp - 4, (m2/02 t ,  a,z; ' (t ,  m2/02, a, (2-27b) 
t 

z, (k2/02, m2/02, a,) 
k 2 / @  

ao 
= ao + SI $ EZ3 (t ,  m2/02 , a,) I' F3 (m2/d2 t ,  a, z; ' (t ,  m2/02,  a,)) (2-27c) 

k 2/m 2 

e[ F ,  ( í / t ,  ao Z; (tm2/e2, m2/02, a,)). 
e2,mz t z3 (tm2/02, m2/Q2, a,) 

(2-27~') 

In particular, for 8 -+ 0, one gets the renormalized dR function, a function 
of the physical charge a :  

dt a 
= exp 

a 
F3 (W,  I ( t ,  4, (2-28~)  

dR (k2/m2 ,a) 

while, for 8 -t co, the unrenormalized do function, a function of the "bare" 
charge "ao

7', is 
k2/m2 

do (k2/m2,  co/m2, ao) = 1 - ao 
dt 
- F3 (l/t, ao dò (t ,  co/m2, ao)) (2-29a) 



the function F ,  being the same in every case. Obviously, the integra.1~ 

appearing in Eqs. (2-28a) and (2-29a), are respectively representations of 
the renormalized and unrenormalized vacuum polarization functions, 
expressed in terms of the renormalized or unrenormalized charges. The 
integral 

in Eq. (2-27ar), is the vacuum polarization function renormalized at the 
energy k2 = O2 and expressed in terms of a,. 

The expressions (2-27), (2-28) and (2-29c) can instead be interpreted as 
representing the propagators written in the Lehmann spectral represen- 
tation. 

It siiould be noticed that for the integrals in (2-27)-(2-29) to exist, the 
function 4, should be analytic in t for t 2 0, 2, being therefore 2 0. It 
may of course happen, and this is the case in QED, that the propenty 
2, 2 O is spoiled by the use of perturbatíon expansions of 2,. Also, if F, 
is independent of its second variable, the representation (2-27af) can be 
used even when z,  becomes negative, which is actually the case in the diver- 
gent Lee Model. 

We next note, as first shown by Sekine9*", that a consequence of the 
functional equation (2-25) is that the operator U(t = fY2/02), defined by 

(2-30) 

t = a e ~ ;  (t, m2/02 a,), 



satisfies the group properties, namely, 

Wl) W 2 )  = W l  t2), 

and the existence of 

U(1) and U(l/t) ,  

which justify the denomination of renormalization group. 

Extending the techniques just described, one can establish the G(Z,)-repre- 
sentation of the vertex function and of the two Lorentz-invariant scalars 
appearing in the electron propagator (Ref. 4). Defining the renormalized 
electron propagator 

S;, = [ y . p  d2(p2/m2,a) + mb(p2/m2,a)]- ' ,  

with 

one has, in particular, the representation of the electron-mas clothing 
function : 

M' ("/m2, a) - - - [b(p2/m2,  a) 1' = exp [j:r2 dt 
m2 4 (p2/m2 9 a) - F 5  ( W ,  a& (4 a))] t 

(2-3 1 )  
(for the def. of F ,  see Eq. (4-12)). 

e) The Connection of the G(Z,) Representatiom with the Renormalization 
Properties of Perturbation Theory 

The calculation in perturbation theory of the function cl,(x, a), x  k2/m2, 
resuiting from the QED Lagrangian, allows us to determine, as we have 
seen in Ch. 1, a series 

d R ( x , a ) = l - a n , ( ~ , a ) = l - [ a n ~ ) ( x )  + ~ ~ n g ) ( x ) + . . . ] ,  

with @)(o) = O. 

Let us see that this expression can be matched with the representation 
(2-28a) : 

dR (x ,  a )  = 1 - a jO F3 ( l / t ,  ad; (t ,  a)), 



allowing thus to determine the kernel F3(l/x,v). Performing a Taylor 
expansion of F3 (llx, v), 

one gets 

where, in each order a", there occurs a new function cp, and a combination 
of functions v,, i < n, of lower orders, allowing us thus to compute the 
cp,(l/x). The matching therefore determines the series (2-34) which, if 
converges for all x 2 O and for v in some domain around the origin, sums 
up to F3 (llx, v). As we will see in Ch. 4, only the first three functions cpi(l/x) 
were so far explicitly computed (at least in the limit x -+ a), giving that 
cpl (O), cp2(0), cp3(0) are finite numerical constants different .from zero. 
For i > 3, one also demonstrated that the limit q ~ ~ ( l / x ) l ~ , ~  is regular, 
i.e., that the rp,(O) are finite numbers. 

Since the same kernel F3 occurs in the representation (2-29a) of the unre- 
normalized clothing function 

one easily sees that, in perturbation expansion, the function 

presents divergences at each order, which are produced by the fact that 



there exists some rpi(0) = const. # 0, these divergences being controlled 
by the limiting process O2 + oo. 

In that way can be established the link between the normalization inva- 
riance (and the resulting G(Z3) structure) with the divergences aspect of 
renormalization theory. 

3. The Postulate of a-Inversibility 

a) Explicitness of the Inversibility Property in the Representations 

It is well known that the renormalization group furnishes a powerful to01 
for solving many problems in field theory and that, as we shall review in 
the next Chapter, it very simply predicts many asymptotic properties of 
perturbation theory which can usually be obtained only at the price of 
performing (when even that can be done) very tedious graph calculations. 

From a11 the formulations proposed to explain the origin of that group 
and, particularly, from the one given in Ch. 2, Section c), in which no use 
is made of the cloudy concept of Lagrangian quantum field theory, but 
one clearly kno'ws what one has to use in order. to get the fundamental 
functional equation, the remarkable results we just mentioned seem exce- 
edingly astonishing. Indeed, they result from the properties of the arbitrary 
clothing function, d,, one started from and on which we only made appa- 
rently innocent manipulations! 

The fact that one obtains, from the renormalization group equations, 
u~eful predictions on the asymptotic behaviours of the perturbative expres- 
sions (i.e., the Feynman graphs) and that therefore certain important 
assumptions on the limits k -+ uo or m = O have to be made, and the analy- 
ticity in a admitted as well, is not enough to explain its success: the renor- 
malization group has a non trivial content which is independent of the 
approximations and supplementary postulates one usually adds when 
applying it. This is what we will discuss and illustrate now. 

Let us first consider the G(Z3) representation (2-28a) for dR(k2/m2, a). 
One might be tempted to consider it trivial, since it can be obtained by 
the following dimensional argument (Ref. 4). 

As dR(k2/m2, a) is arbitrary, dimensionless and normalized, let us define 



From dimensional considerations, one can always write that 

where cp, is dimensionless. From (3-l) ,  one writes a in terms of a/dR (x ,  a)  
and x, n'amely, 

Substituting this last expression on the RHS of (3-2) and performing an 
integration in k2,  with the initial condition &(O, a )  = 1, one obtains the 
G(Z,)  representation (2-28a) with 

Let us see however that the postulate of inversibility with respect to a of 
Eq. (3-1) is the essential assumption which leads to Eq. (2-28a). Should 
it not be true for the entire range of k2 values and some k-independent 
domain of a values, one would then get that 

is given by a set of different functions of x k2/m2 and v r a/dR(x,  a), 
defined for different domains of a and k2/m2 : 

where O(x) = 1 for x > O and zero for x < 0, the a = i,úi(x) being the roots 
of the equation 

i.e., (a/ak2)dR would be a function of k 2/m 2,  a/dR and a.  

In order to avoid a possible confusion with another property of inver- 
sibility (with respect to m) to be introduced later on in Ch. 6, we shall call 
a-inversibility the one presently discussed, and denote it G,(Z3), m being 
a fixed constant. 

b) The Equivalent Properties of Reciprocity and Uniqueness 

Let us now consider the representations (2-27a) and (2-27b) of z, and 
note that the functions z, of three variables are expressed in terms of a 



two variabie function, namely, 

F(m2/02 t, a,/z3 (k2/02, m2/02, a,)), 

and that 

a 
- [a; ' z3 (k2/02 , m2/02 , a,)] 
òk2 

is a function of k2/m2 and of the invariant a,z;' and is, therefore, inde- 
pendent of 0'. This means that the class of functions z, has been severely 
restricted by the construction of the group equations. Obviously, here 
too, the postulate of a-inversibility is responsible for that restriction. Let 
us elucidate in more detail the significance of that restriction and show 
that the functional equation (2-25), which results from the inversibility 
postulate, entails a property of reciprocity between different ways of cons- 
tructing a renormalized propagator, as well as the uniqueness of the pro- 
pagators constructed by attributing one value a, associated with a norma- 
lization point 8 (Ref. 6). 

Let a clothing function 

be given which, in a specific field theoretical model, might be constructed 
employing the Matthews-Salam method. Let us also suppose. for the 
moment, that 6; # O and # co. From that function, one would then 
construct by the method of Ch. 2, Sec. c), a new clothing function Z3 (normal- 
ized at a finite value 8; # 0) defined by 

and a function of the charge à,, defined by 

S3 (k2/8$, m2/82, 8S/82, à,,) = Z3 (k2/@ , m2/@:, ao,) 

As is obvious by looking at the variables involved, the function Z3 gene- 
rally depends on the point 8, one started from. 

,,: ,,,:, (3-6) 

Suppose now that instead of starting from 8, to pass then to 8, (as we 
have just done), we started from 82 directly, constructing the function 

~3 (k2/8;, m2/G, 
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Z3 (0:lo: 2 m2/8: , o , )  7 0 ,  = 15 (z,,. . ,,; . ,,; ) 



where, physically, we would fur a,, to be the charge at that point, namely, 

The reciprocity of the two constructions consists in their eqiiivalence, 
i.e., the validity of the following condition: 

z3 (k2/02, m2/9:, a,,) = 2, (k2/02, m2/02, 0:/%2, E,,), (3-9) 

with 

ao2 = Ee, ao, ( ~ 3  (92/0:, m2/0S7 ao,))-' . 
Replacing (in the LHS) a,, by the expression for ã,, as a function of a,,, 
Eq. (3-7), and taking, for the second member, the definition (3-6)-withoiit 
performing the change of variables a,, -+ ãe2 - the condition (3-9) is the 
functional equation (2-25) for G(Z3). 

Let us note too that the a-inversibility implies the inversibility with respect 
to a,, of the relation (2-24), 

whose reciproca1 is 

a02 a,, = 
z3 (o:/%, m2/02, a,,) 

We note that condition (3-9) expresses also that z3, as defined by Eq. (3-6), 
does not depend on the point 0, we started from, i.e., once one a,, isfixed 
in some domain, for a giuen 0; 2 0, the propagator is uniqueli1 deterwined. 
In particular, if the a-inversibiríty is true for any k2 2 O up to k2 

+ tx, 

(0' being thus allowed to vary in the domain [O, co]),flíe reciprocity says 
that it is equivalent to constructing directly the renormalized propagator 
by the Matthews-Salam method or to deduce it, by a change of variables 
and normalization, from Dyson's unrenormalized one, i.e., that 

where a,, is such that 

ao, 
z3(0:/eS ,m2/G,agl) 

= a (given); 



the superscripts M.S. and D stand for Matthews-Salam and Dyson, 
respectively. 

The inversibility also tells us that the propagator normalized at infinity, 
i.e., the unrenormalized propagator, a function of the bare charge a,, 
can also equivalently be computed directly (it is Dyson's unrenormalized 

do function) or constructed from the renormalized Matthews-Salam 
dR function like in Eqs. (2-18)-(2-19), i.e., that 

[& (k2/m2 m2/a ,  ao) - z3 (k2/% , m2/% 9 a,,) [O2  -+ cmlao,'=ao (given) 

82-m 

where a,, I,, ,, is such that 

Finally, one also should have, from Eqs. (3-10)-(3-ll), that the inversion 
of the relation 

gives the relation 

c) The Zero Mass Case 

We have just seen and discussed how the renormalization group implies 
that the three variable function z, can be expressed in terms of a two 
variable function F3. That important constraint on the class of functions 
z, is even more drastically sharpened ifone supposes that, in the expressions 
(2-27), the limit m -+ O exists, i.e., F, (O, alz,) # O or c ~ .  One then has 

Of course, the function d, we started from does not necessarily still exist 
in that limit. 



d) a-Inversibility and Nonnalization Invariance 

We have seen from the Lagrangian point of view, in Ch. 2, Sec. b), that 
the existence of a normalization invariance leads to the equations of the 
G(Z,) group. In Ch. 2, Sec c), we have seen that a-inversibility makes pos- 
sible the formulation of normalization invariance and, reciprocally, the 
representation of the group, Eq. (2-28a) results from the a-inversibility. 

As we shall see in the next Section, the correctness of the G(Z,) group 
cannot be taken as exactly proven; one can, however, assert that normaliz- 
ation invariance is based on the physical postulate (or on the realization) 
that the definition of the phvsical coupling constants is alway an arbitrarv 
convention. However, the equations which govern (as well as allows us 
to calculate) the observables are such that if two observers had chosen 
different conventions separately and, as a consequence, had obtained 
different values of some observable constants which uniquely fim the solu- 
tions of the equations (and, therefore, the physical system), they would 
have at the end obtained the same result, since the relation between the 
two parametrizations is biunique. 

Such an invariance is in every way analogous to the one resulting fronl 
groups of kinematical invariance (Galilean, relativistic). 

In the case we are studying here (the G(Z,) group), the resulting arbitrariness 
gives rise to a single arbitrary positive parameter (O2 2 0) to which the 
coupling constant a, is associated. In fact, such an arbitrariness is really 
much larger and can be taken as the physical justification of the groups 
we are going to consider in Ch. 5. 

e) What is Unknown about the a-Inversibility Postulate 

Though the consequences of a-inversibility we have just discussed result 
equivalently from tlíe formal field-theoretical construction of t h ~  rèhor- 
malization group of Ch. 2, Sec. b), the question obviously arises of deter- 
mining whether they really are satisfied by the explicit sojutions of field 
theories. Because a11 practical calculations can actually only be done in 
perturbation theory, it seems exceedingly difficult to prove or disprove 
the property of a-inversibility. The anomalous dependence, in a, in the 
representation (3-4), for instance, can very well elude the perturbative 
expansion, since the B(a-cp, (x)) functions would give a series of distributions 
6"((p,(x)) which would only contribute if the (pi(x) have zeros at finite x. 



Also, an eventual violation of the reciprocity between the relations (3-14) 
does not manifest itself when the inversions of these formulae are done 
in perturbative expansions, since one chooses thereby, among the various 
possible determinations of the inverse functions, that one for which (a&)+ 1 
when a -t O. 

Finally, the fact that one knows how to construct one propagator, once 
8 and a, are given, is by no means a proof of its uniqueness. On the contrary, 
there exist specific examples of finite field theoretical models for which 
many different propagators result from the same bare-field equations 
(Ref. 1 I ) ,  this indicating that the postulates of reciprocity and uniqueness 
may be violated for 0 = co. 

In opposition to analiticity and unitarity, which also impose stringent 
restrictions on the representations of the propagators but are related to 
well defined physical axioms, a physical axiom - more objective than 
the existence of a field theory - on which a-inversibility might be based, 
is still unknown. 

Let us close this series of open questions by mentioning a yet unexplored 
problem which seems only to require standard mathematics for its solution. 
We mean the problem of obtaining the structure of the propagators which 
fulfills simultaneously the postulates of unitarity, analyticity and z-inver- 
sibility, bearing in mind that the representations (2-27a-c') - which are 
valid only in the domain of reality of the functions-might possibly induce 
a correspondingly peculiar form on the analytical cut. 

4. Some Applications of G,(Z3) in Quantum Electrodynamics 

A. Perturbative Treatment 

Gell-Mann and Low were the first to show some interesting consequences 
of the renormalization group. Though their construction was different 
from that given in Ch. 2, Sec. c), we have seen why they arrived at an appro- 
ximate G,(Z,) structure in which the ratio m2/Q2 ivas neglected. 

In practice, a connection between the asymptotic behaviour of Feynman 
graphs representing the vacuum polarization tensor, and the G(Z3)  repre- 
sentations, can indeed be established by imposing the condition m2 < 0 2 ,  
k2 in the representation (2-27a) of 2,. Expanding F3 in Taylor series, 

F3(m2/02 t ,  v )  = cp, (m2/Q2 t )  + vcp, (m2/Q2 t )  + v2 cp3 (m2/02 t )  + . . . (4- 1) 



and taking, in each term, the limit (m2/Q2) -+ O, which one supposes to exist, 
one obtains 

lim z3 (k2/02, m2/02, ao) = z3 (k2/02, a@) 
(m2/02)-+0 

with 

where the 

should be finite numbers. Inserting (4-3) into Eq. (4-2), one obtains the: 
form of the most divergent terms which appear in the asymptotic expression 
of the Feynman graphs for vacuum polarization: 

z3 (k2/Q2, ao) = 1 - ao IIRB (k2/02, ao) - 
= i - a O ( n l  + a, n2 + C(; n2 + -) 

c p , ~  + a,cp,~ + a : Y L 2  + a i c p 3 ~  + ... , (4-4) 

where L r log(k2/02) and (k2/02) 9 1. 

I 
These results agree amazingly well with the results one would obtain by 
tedious calculations of graphs, namely, 

-are no more divergent ther a simple log and, besides, graph calculations 
fix cp, = 1/3n and cp2 = 1/4n2. 

At the ai-order, the term in L2, which depends on the structure of ri, 
and n 2 ,  is naturally interpreted as belonging to the function 112 in which 
the photon is clothed with the n, loop: 

this result agreeing with the explicit computationi2. 



The remaining log term of II, may result from the less divergent part 
of the above term and, from the graphs with two interna1 photon lines, 

The sum of these graphs should therefore behave, asymptotically, at most 
as a simple log. 

That property was verified by Rosner13, who obtained the very simple 
coefficient (- 1/32n3) for the log. 

The high energy behaviour of the renormalized Feynman graphs can also 
be obtained from the representation (2-28a) of d,, which also involves the 
series defining F ,  which, for t B m, ten& to (4-3). To take into account 
the low energy contributions, which introduce supplementary asympto- 
tically constant terms in the integration, it is conventional to write d ,  
in the following form, which is valid only for k2/rn2 % 1: 

d, (k2/m2, a) = d, (1, a) - a (4-7) 

where d,(l, a) and 4(P) can be computed14 from Feynman graphs; giving 

where [(3) is the value of the Riemann zeta function for the value s = 3 
of the argument. 

Eq. (4-7) can also be written in the form originally given by Gell-Mann 
and Low, namely, 

$(P) P2q5(P) being called the Gell-Mann and Low function. 

When m is exactly zero, 4(P) reduces to F ,  (O, p), for which the first terms 
of its Taylor expansion are 



As was seen in the calculation of ll,, when the first few terms were known, 
the G,(Z,) equations allows us to improve perturbation theory by taking 
into account, in a simple way, the effect of clothing the photon lines. That 
result also applies in a particularly powerful manner to the electron self- 
-mass function, when one uses the representation (2-31), performing again 
a Taylor expansion on F,(l/t, fl). Starting from the expression valid for 
k2 9 m2, namely, 

computed from the lowest self-energy graph, which is 

one determines that the first t e m  Jl (llt) of the series defining F ,  (llt, P), 

F5 ( V ,  8) = Jl ( W 8  + Jz (llt)f12 + . , (4- 12) 

is such that 

One then easily obtains that, asymptotically, one has 

and 

in complete agreement with the delicate, lengthy, graph calc~lations'~. 
We note that the last result does not follow from clothing the photon line 
but rather from the repeated clothing by photons of the electron propagator. 

These very beautiful and simple results, which come by the use of the 
representations (2-28a) and (2-31), are usually considered as a success or 
even a proof of the renormalization group equations. In fact, dhough 



these results ,ire consistent with G(Z3), they do not prove its exact reliability 
but only its validity in perturbation theory. Furthermore, the essential 
hypothesis niade for obtaining the indicated results is that 

a property which is specific to QED, as we wiil see in the next Chapter, 
and which has nothing to do with the renormalization group. That pro- 
perty, which was admitted since the early days of the renormalization group2, 
was only recently demonstrated in general. It is indeed a byproduct of 
the Callan - Symanzik equa t ion~ '~ ,  whose basic justification lies in an 
analysis of the convergence properties in perturbation theory of certain 
S-matrix elements related to the photon and electron Green's functions, 
that not only 

(m2/k2)1,,+, + finite value (4- 1 5) 

but also 

Ji (m2/k2)Ik2-, -+ finite value. (4- 16) 

Without entering into a detailed comparison of the Callan-Symanzik 
equations a'nd the renormalization group equations, which would not 
be in place here, let us only recall that the property (3-15) is the essential 
link between the representations (2-28) and the expression (3-9) where 
$(P) is given by its Taylor expansion, and that precisely the relation (3-9) 
also follows directly from the Callan-Symanzik eq~at ions .~ '  

B. Global Properties 

a) A Possible Finiteness of QED 

If we take the exact representation (2-28) and assume that 

(which may be taken as a definition of a,, cE Ch. 2, Sec. c) and also that 

it then follows that 

dR (a, a) = Z3 (a) E 1 - aF3 (a,) log (a) + finite terms, (4-18) 



and therefore either Z, = oo, i.e., a, = O, or F, (a,) = O and ao is a fixed 
number independent of a. This last result, first mentioned by Gell-Mann 
and Low2, also follows from Eq. (4-9), a, being also the root of $(a0) = O 
(that root might of course lie at infinity). If a, is independent of a, a pos- 
sibility which cannot be excluded (cf. discussion of Ch. 3, Sec. d), it would 
invalidate the construction of the renormalization group from a Lagran- 
gian field theory since then two different physical propagators, unrelated 
by the group operations, would follow from the same Lagrangian. 

In the same line of thinking, if one admits that F, (m/t, P) is well approxi- 

3' one w o u ~  mated, when t -+ co, by its lowest order term F ,  = - - 
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then get that the bare mass of the electron is identically zero: 

Taking these two results (namely that ao is a fixed constant and mo r O) 
for granted, one may c o n ~ l u d e ~ ~  the finiteness of QED. 

b) Conjectures Concerning the Detennination of the Fine Structure Constant 

It has been shown that the characteristic property of a composite particle 
is that the renormalization constant of its field is nulll% When the cor- 
responding Z can be calculated as a function of g2, like in some models17, 
then the condition z ( ~ ~ )  = O  fixes the value of the coupling constant. 
Thus, in the photon case, the condition Z,(e2) = 0 could fn the value 
of the charge18, and we would possibly obtain the fine structure constant. 
For that, it would be necessary that 2, (e2) be a finite function of e2 (which 
is not the case in perturbation theory) and one could then test the correc- 
tness of the conjecture by computing that function. Leaving the discussion 
of the finiteness of Z, (e2), in non-perturbative theories, for Ch. 7, we show 
now that a-inversibility implies that the critica1 value a,, solution of 
2, (a,) = O, is also the greatest possible for the e (Ref. 5). Jndeed, a-inver- 
sibility implies that 



is a monotonic function of a for a11 k 2 2 O and, therefore, 

a 
is either > O or < 0, for a11 k2 2 0, (4-20) 

(it can eventually be zero for some isolated values of a). Since, for k2 = 0, 
dR(O,a) = 1, then from Eq. (3-18) follows that 

and thus one has 

8% - > O for a11 k2 2 0. 
da 

(4-2 1) 

Therefore, when k 2 
-+ m, a, r a/dR (m, a,) is such that 

and this implies that if a, goes to infinity at a finite value cl, of a (which 
is its greatest value), then a, is a solution of Z,(a,) = O. The converse, 
however, is not true: one might have a maximum value of a which would 
not be a zero'of Z, (a). 

The property of a-inversibility being a fundamental criterion for renor- 
malizability, such properties should be checked in aU known fíeld theore- 
tical models in which Z(gZ) can be computed. This is precisely the case 
for the Lee Model, where the composite V particle has the strongest pos- 
sible interaction. Let us also note that since 'one carpot exclude the case 
where a-inversibility would not hold at k 2 + co, oneuould have in that case 

b.2. F, (O, a) = O 

We have seen that, under certain conditions, the Gell-Mann and Low 
condition, $(a,) = 0, yields an-equation for the bare charge x O ,  a, being 
determined independently of the physical charge. This same constant a, 
can also be obtained from the zero-mas OED condition F,(O, a,) = 0. 



It has however been arguedl*, on the basis of a particular method of 
summing ~ e ~ n m a n  graphs, that the function F, (O, P) vanishes on the entire 
physical domain, having a zero of infinite order at the vaiue of the physical 
charge, i.e., F, (O, a) = O, (dlaa)" F ,  (O, a) = 0, this implying that d, = 1. 
It was also conjectured that the property F ,  (O, a) = O would fix e', which 
might yield the fine struzture constant. 

5. The Extended Groups 

Though, in pseudo-scalar meson theory, charge renormalization involves 
not only Z, but also Z, and Z, (which are different), the Z, normalization 
invariance still exists and, therefore, the G,(Z,) renormalization group . 
should still apply. It however fails if applied as in QED because Z,, e.g., 
to the order (G2)' diverges as ( l ~ g ) ~ ,  whereas the prediction of Eq. (4-4.) 
gives a log divergence! To study rigorously such a failure, it is necessary 
to extend the formulation of the renormalization group in such a way 
as to include the Z, and Z, types of clothing effects and to deal exact1:y 
with the mass parameters as well. 

It is in principle easy to generalize the method of constructing renormaliz- 
ation groups, starting from Gre'en's functions as in Ch. 2, Sec. c). The only 
physical problem consists in choosing the most convenient combination 
of Green's functions in terms of which the interpolating variables are 
defined. The only mathematical assumption consists in admitting the 
possibility of performing a change of variables, i.e., a postulate of inver- 
sibility4. The physical justification of that postulate was explained in 
Ch. 3, Sec. d), but its exact validity in field theory can only be ascertained 
(or invalidated) a posteriori. 

The number of groups that can be constructed is enormous. Indeed, instead 
of a single two-variable function involved in the two Z, groups, in zero- 
-mas  photon QED, one needs - for a complete description of the renor- 
malization properties of a meson theory - four functions of three variables 
(g, m/p, p2/p2) related to Z,, Z,, 6m and 6p2, as well as one function of 
five variables related to Z, (the vertex is indeed defined by three externa1 
masses, two interna1 masses (p ,  m) and g, the masses occurring as ratios), 
plus terms related to an eventual meson-meson coupling. 

A general formulation of charge groups G(Z:Z;2Z;') was established, 
but particularly interesting are its subgroups: G(Z,), . . . , G(z~  Z; I),  

G(z;' Z ;  ') which, under the same condition of regularity (when m -+ O), 



allow one to compute the asymptotic behaviour of almost a11 graphs, the 
results being in agreement with the expressions obtained from direct calcul- 
ation of known Feynman graphs21, ". 

If O ; ,  '3: and '3: denote respectively the normalization parameters of (i) 
the vertex function with zero externa1 photon momentum, (ii) the y . p  
coefficient of the inverse electron propagator and (iii) the photon clothing 
function, the technique we mentioned above allows us to construct the 
group G(Z3 Z; 2;'). When '3: = '3: = -m2, this group reduces to G(Z3). 

In this context, it has been shownZ2 that one obtains the result of Fevnman 
graph computations of the z3 function in QED, bv requiring that the limit 
8: = 02 -+ - m2 = 0 be regular for the perturbation expansion. This requi- 
rement of regularity is also shown to be equivalent to Ward's identitv and 
is related to the mass singularity theoremsZ3. If, instead, 8: and '3S are 
fixed and the limit m -+ O performed (and assumed regular), one obtains 
that z3 behaves like 

in'agreement with the expressions of the p.s. meson theory, thus resolving 
the failure of the G(Z3) group mentioned at the beginning of the chapter, 
the vertex function and the z3 function being there normalized on their 
mass shell, i.e., the limit performed is '3; = 82 = - m2 

-+ 0. 

When one links together the normalization parameters of the different 
Green's functions, one obtains simpler groups, namely, the bountl groups4. 
If that link is such that the parameters reach simultaneously the values 
corresponding to the renormalized expressions a n d  besides, they tend 
simultaneously to infinity, a one-parameter bound group, namely, 
G(zLz;'z;'), allows one to pass continuously from the renormalized 
to theunrenormalized theory, and an integral equation for the invariant 
of the group can be constructed, leading (when the mass is zero or can 
be neglected) to a Gell-Mann and Low type of equation for the group 
invariant. These types of groups are of practical importance in the theories 
of critica1 phenomena1° and are even unavoidable for treating consistently 
the infrared divergence problems of super-renormalizable t h e o r i e ~ ~ ~ .  

Groups for mass renormalization, i.e., groups relating mass renormalization 
to the coupling constant renormalizations, can also be constructed4 (e.g., 
the G(Z3, mo) and its bound restriction G(Z,~,) for QED). With these 
groups, it is possible to show that if m, the electron physical mass, is different 



from zero, but the bare mass m, does vanish, then a is fixed unless a-inver- 
sibility fails at infinity. Then the kernel of the representation for d,, namely, 

is a function of a single variable. It follows then, without any approxim- 
ation, that the asymptotic behaviour of d,, to a11 orders in a,, is no more 
divergent than a simple log., as has been shown by Feynman graph calcul- 
tionslÓ. The bare charge a, is then unambiguously fixed by the condition 

which, since a is also fixed by the condition mo = O, is consistent with 
the existence of a relation between a, and a. The còmparison between 
the representation of the kernel FP0=O) and the one resulting from the 
group G,(Z,) (which we introduce in the next Chapter), will confirm this 
last conclusion, also showing that the perturbative expansion in ao would 
be meaningless if that situation (i.e., m # O, mo = 0) were the actual physical 
situation. 

6. Unitarity, k-Inversibility and the Hybrid Renormalization Group 

a) It is known that when unitarity and causality are satisfied, the function 
d,  can be written as 

and that furthermore dR(k2/m2,a) > 0, except eventually for k2 = m 
for which one may have dR(co, a) = O, a case realized when Z3 (a) = 0. 
Therefore, for k2 2 0, 

Thus a/dR(k2/m2, a) is inversible with respect to the variable k2 : this is 
k-inversibilitv. Actually, since the photon has zero mass and k always 
appears in the ratio k2/m2, one also has an m-inversibilitv. Defining 



one then can express k2/m2 in the foim 

Repeating Ch. 2, Sec. d, we obtain a new renormalization group which 
we cal1 hybrid4, since it mixes the physical and the interpolating charges. 
We denote the group by Ga(Z3) and remark that a is kept fixed in defining 
the group. The functional equation is similar to Eq. (2-25), the variable 
m2/02 being replaced by a. In this way, new Ga(Z3) representations are 
obtained of a form similar to Eq. (2-27) where, eg., the kemel F ,  (llt, a/z3) 
is replaced by H ,  (a, a/z,) : 

and similarly for the groups G(ZS 2;'Z; introduced in Ch. 5. 

b) Though Ga(Z3) is physically better founded than the Gm(Z3) group, 
since it results from the inversibility properties implied by unitarity, it 
is however the more recent and therefore the less explored of the two. 

One of the great advantages of the Ga(Z,) representation of propagators, 

is that it can be written exactly in the form 
ald R(k2/m2, a) 

log = dP 
8 

k 2  1 a/dR(B2/m2, a) 

which generalizes the approximate formula of Gell-Mann and Low, Eq. 
(3-9), for /;,(Z3), which is valid only at high energies and under the condit- 
ions that the Taylor expansion (4-1) converges and that Eq. (4-15) is true. 
It follows at once that the bare charge a, cr/clR(co, a) is a solution of 
the equation 

H3 (a, ao) = 0, (6-9) 
and therefore that, in general4, a, is a function of a. 



The dificulty with the above representation comes from the fact that H,, 
depends on a in its two variables, thus preventing one from establishing 
in an obvious way its connection, via a Taylor expansion, with Feynman 
graphs. 

To get an idea of the shape of the two variable function H,@, P), one can 
first require the function d,(x, e2) to possess, for the actual value a = e2, 
a11 known and desirable properties. Since the representation extends itself 
down to the physical cut, i.e., down to the first pole at k2 = - ( 2 m - ~ ) ~  
of the lowest positronium bound state (if we neglect the small correction 
of the 3-photon cut), one can require the following properties (which 
fix a certain dependence in fl of the function H,(@, P)): 

(i) Regularity at k2 = O, i.e., 

H3 (a, a) = 0, a2 = 1; 

(ii) Unitarity, i.e., 

a 
-- c2 < O for - (2m - < k2 I m 
ak2 R 

(6-1 la) 

(we note that k-inversibility does not fix the sign of the inequality in (6-lla)). 
From (6-1 lu), it follows that 

(iii) The known behaviour of the vacuum polarization tensor, near the 
lowest positronium pole, which gives 

In what concerns the dependence of H3(a,P) in the a variable, one can 
say the following. From Ch. 4, Sec B.b) and the a-inversibility property, 
one knows that [aao(a)/da] > O (Eq. (4-22)) and also that there might 
possibly exist a maximum value a, for which a0(a3 = m. 

The above requirements, Eqs. (6-10)-(6-12) and (4-22), have been used 
in drawing Fig. 1. On the other hand, when m = 0, one has 

F3 (llt, P)[m=o = F3 (0, j?) = 1/3n + j?/4n2 + . . . . 
If this series does converge for fi -+ 0, then F3 (O, O) # 0; also, if F3 (O, j?) # O, 



Figure 1 

one has 

and the physical charge vanishes: 

Thus, H,(a = O, P )  = F,(O, P)  and the corresponding bare charge 
a,  [a(m = O)] = a,  (O) should be a solution of F ,  (O, a,) = O. However, 
since for a = O one has also the solution a ,  = a = O, one may consider 
the axis p = O as asymptotic to the ascending branch of H ,  (a,  P) for r + 0. 

Let us finally consider the case m # O, mo = 0,  discussed in Ch. 5. The 
function H,(cc(m, = O), p) is then identical to F3°=0'(B) and, if this case 
were an actual physical situation, it is clear from the behaviours given 
above that a Taylor expansion, around P = O, is meaningless. 

7. Are the Divergentes a Drawback of Perturbation Theory? 

By comparing the two renormalization groups of QED, G,(Z,) and 
G,(Z,), which result from the two different inversibility properties, we 
finally arrived at two pictures of the function d,(x, (2) which are comple- 
mentar~ in the better known cases but which are contradictory when 



we try to extrapolate our knowledge up to infinity. The situation is 
summarized in Table 1. 

Gm(Z3) G, V,) 
- - 

Postulate a-Inversibility k-Inversibility 

Condition 

d, (x, a) real dR(x, a) real 
- -- 

Physical Axiom Lagrangian Field Theory(?) Unitarity 
- 

Kernels F3 (l/t, ~ldR(t, a)) H3 (l/L a 1 4  (t, do) 
- 

m 

"Experimental F ,  I,,, =C cp.(t)(a/d,(t, a))"-'I,,, Global low energy behaviour: 
Properties" 1 H, (a, a) = 0, 

+ Perturbative asymptotic as H, (a, /3)lp=. = l /a2,  
behaviour of Feynman graphs: (a, p ) ~ ~ - ~  .+ - qp2 a3. 

if cp.(O) Z a, 
cp, = 1/3n, cp, = 1/4n2,. . . 

"Natural" Expected F ,  (llt, a/d, (C, a))I,,, H, (a, ao) = 0 
Global Constraint = F, (O, a,) = O 
at High Energy 

Consequence a, independent of a, i.e., a, = f (a), i.e., 
a a 

-(a/dR(m,~)) = O aa - (a14 (a, 4 )  # O aa 

Table 1 

Stressing the fact that both pictures admit the finite ness of a,, the question 
is therefore to obtain consistency between the two equations which are 
expected to fíx a,. This can be done in two ways. 

Either one can suppose that H, (a, a,) = O is really an identity, this mean- 
ing that the dependence in a disappears when 

(e.g., if H, (a, p) where of the form - A(a)[P - aOlB(") ; note that s ina  noth- 
ing is known about the behaviour of H,(a, P) in the domain B p a, this 
cannot be excluded), or one can suppose that we have in fact a non-trivial 
relation H,(a, a,) = O which fixes a,(a), i.e., the dependence of a, on a. 



This situation would obviously imply new conditions on F ,  which could, 
eventually, be tested since F ,  is more easily accessible to "theoretical exper- 
iments" via perturbation theory; also, it is certainly more interesting to 
have a relation ao(a) than to obtain a universal value for a,, for which 
we have no obvious use and whose correctness seems very difficult to 
control. 

Taking the second point of view, let us suppose that one 'chooses a simple 
function H ,  (a, p) such that the equation H ,  (a, a,) = O gives a relation 
a, = f (a) (where f is not a constant). One then can easily verify4 that 
the corresponding F ,  (llt, p) function, which one can obtain from H,, is 
such that 

i.e., the condition (4-17) discussed in Ch. 4, Sec. B.a), which was expected 
to fix a, is no longer an equation but, rather, F,  becomes identically nu11 
at t --+ co. It remains however to show that there exist functions 

which should then possess the following apparently contradictory pro- 
perties : 

(i) have a Taylor expansion: 

[Taylor expansion of F, (llt, ald, (t, a))lt+, 
00 00 

= [C cpn(l l t )(~ldR(t))"- ' I ,+,  = C cpn(O)(ao)"-' 7 

1 1 

with cp,(O) # oo for all n and # O at least for some n, and (ii) being such 
that 

for a11 ao E @/fiR(co, a) in some domain do.  

Limiting for simplicity the discussion to the domain t 2 1, one can see 
that a function such as 

where a and b are > O and F ,  (O, p) has a Taylor expansion for a11 B 2 0, 
satisfies the condition (ii) provided that p, which is an increasing function 
of t, p = a/fiR(t, a), reaches (at a finite value t, of t) the critica1 value P(t,) = 



= a/d,(t,, a) = flc = b/a. In perturbation theory, instead, the same function 
(7-4) gives a series 

. I  

[Taylor expan. F, (O, fl)] x [I-  fltdb(l + afl log t + . . .) + O(t-2b)], (7-5) 

which, when t + co and P(t) + ao tends to 

[Taylor expan. F3 (O, P)] 

and, therefore, satisfies condition (i). 

It is easy to verify that the difference between Eqs. (7-2) and (7-3), and 
the error comitted in (7-2), result from the fact that, P being a function 
of t, the Taylor expansion is justified for t 5 t, only, and that therefore 
one is not justified in performing on that series the limit t -, co. The function 
(7-4) furnishes also an illustration of the essential difference, which is nol 
manifest in perturbation theory, between an exactly zero mass theory 
(represented here by the function F3(0, P)) and a theory represented by 
F,(m2/k2,fl), which involves a mass which might be arbitrarily small. 

It is also clear that, with a function like (7-4) and for a in a domain 8, (which 
is related to the domain E0 of a, for which ao > P,), Z ,  is a finite function 
of a. That same function, computed in perturbation theory, would giví: 
precisely the same type of divergences one usually encounters in standard 
quantum electrodynamics. This example, therefore, exhibits a delicate 
cut-off mechanism'which does not involve any "deus ex machina", spoiled 
however by perturbation theory which is solely responsible in this case 
for the presence of divergences. It is of course a conjecture that the real 
photon propagator should be kirul enough to belong to such a class of 
functions. 

Nous désirons souligner la part importante qui a apportée Mme Irac-Astaud à la formul- 
ation que nous présentons ici et la remercier de ses nombreuses discussions critiques, qui 
ont contribué a éclairer ce sujet. Nous tenons a remercier par son hospitalité i'Institut de 
Physique Théorique de São Paulo et, particulierement, le Professeur Jorge Leal Ferreira 
par i'aide éfficace qu'il nous a apportée dans Ia rédaction de cet article. 
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