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We first recal the classical techniques and properties of renormalization for the example
of the photon propagator. After comparing the different methods used for formulating the
renormalization group, we stress that the essential property from which that group results
is that the Green's functions are inversiblefunctions with respect to the charge, which implies
criteria which are also reviewed. The renormalization group representations d the propa-
gators being a means to express the fundamental property d inversibility, we review its suc-
cessful applicationsin perturbation theory and discusscritically what properties thesesuccesses
really proved. We review also the various implications o the renormalization group on the
conjectured equations which might determine the observed or the bare charge. After recalling
briefly how the construction o the group representations from inversibility properties allows
us to formulate more general groups involving any type d mass or charge renormalization,
we show that an inversibility property with respect to the electron mass, implied by unitarity,
alows us to give another representation of the photon propagator. The comparison of the
two representations of the photon propagator and o their known properties leads us to
conjecture that the divergences o Quantum Electrodynamics one encounters in perturbation
theory might only be due to a drawback d that method o attack.

Recordamos inicialmente as propriedades e técnicas cléssicas de renormalizacdo, tomando
como exemplo o propagador do foton. Apds compararmos os diferentes métodos empre-
gados na formulagdo do grupo de renormalizacdo, frisamos que o fato, de serem as funcdes
de Green inversiveis com relagdo a carga, é a propriedade essencial da qual resulta o grupo
de renormalizagcdo. Essa propriedade implica certos critérios que também revisamos. Sendo,
as representagdes do grupo de renormalizacdo para os propagadores, uma maneira de expri-
mir a propriedade fundamental de inversibilidade, revisamos suas aplicagtes bem sucedidas
na teoria de perturbacdes e discutimos criticamente quais propriedades foram reamente
provadas por esses sucessos. Revisamos também as vérias implicagdes do grupo de renor-
malizagdo sobre as equagdes que supostamente poderiam determinar a carga observada ou
a carga nua. Apds recordarmos brevemente como a construcgéo das representaces do grupo,
a partir das propriedades de inversibilidade, nos permite formular grupos mais gerais envol-
vendo qualquer tipo de renormalizagdo de massa ou carga, mostramos que uma propriedade
de inversibilidade com relagdo a massa do electron, decorrente da unitariedade, nos permite
dar outra representacdo do propagador do foton. A comparagdo, entre as duas represen-
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tagdes do propagador do foton e entre as suas propriedades conhecidas, leva-nos a conjec-
turar que as divergéncias encontradas no tratamento perturbativo da Eletrodinadmica Quén-
tica possam ser devidas apenas a uma deficiéncia do método de ataque perturbativo.

Introduction

Like renorrnalization theory itself, the so-called renormalization group
came into the world of theoretical physics through its connection with
the divergence problems one faced in the early days of relativistic quantum
field theory'.

It took a few years to discover? its practical, and perhaps fundamental,
importance in the understanding o high energy behaviours which, so
it seems, touch the still hidden and ambiguous looking core of quantum
field theory.

Even more time was needed both for realizing that the renormalization
group results from an invariance o Lagrangian fied theories which is
independent of any cut-off or divergence considerations (asis well exem-
plified in the Lee Model with a cutt-off) and also for obtaining, by the
use of a clear-cut mathematical argument, the first exact representations
of that group®.

Basing itself on renormalized Green's functions instead of Lagrangians
and fidd operators, ¢ new formulation of the renormalization group
emerged* more recently, cutting the umbilical cord connecting it to its
doubtful origins. In this way, it could be clearly established which ingre-
dients are needed to construct the renormalization group representations,
thereby allowing us to extend substantially their domain o applicability.

In particular, it was reaized that a fundamental postulate o inversibility
o Green's functions with respect to the coupling constant, which has
in itself important consequences independent of perturbation theory®-®,
is also the only thing responsible for the existence of the standard renor-
malization group whose success in perturbation theory is wdl known.

Furthermore, the existence o another type o inversibility property which
results from unitarity permits us to construct new representations of
the propagators* which shed new light on the structure of the Z, («) function
as wdl as on the possible origin of the infinities ocurring in its perturbative
evaluation.
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The following chapters are an attempt to present, starting from the most
elementary and conventional points o view upon renormalization, the
set o results we have just mentioned. Many o these have only appeared
without the necessary accent put on their possible importance and mixed
up with more technica developments in different papers*> and unpu-
blished reports’.

In the first chapter, we recal, by taking the example o the photon pro-
pagator, the different points o view on the ambiguities and divergences
encountered in perturbation theory which historically motivated renor-
malization theory. We present a brief review d Dyson's method and of
Matthews and Salam’s method o renormalization, making precise the
various concepts and properties d renormalizability which come up in
that typical example o renormalizable theory.

In Chapter 2, we introduce the property o normalization invariance which
that theory possesses and show that the equations which derive from that
invariance can aso be obtained from a single manipulation made only
upon the renormalized Green's function, thus controlling explicitly the
mathematical property involved. These equations being the basis of the
renormalization group, one thus makes very clear what are the postulates
that the renormalizable Green's functions should obey for the existence
o that group.

In Chapter 3, we discuss in detail the fundamental postulate which is tbe
inversibilitv with respect to the charge o« of the renormalized propagator.
We also indicate various criteria equivalent to that postulate and establish
their connection with thenotions o renormalizabilityexhibited in Chapter 1.
After concluding that chapter by discussing the difficulty o proving the
exactness of the postulate, we review in Chapter 4 the usua applications
in perturbation theory o the renormalization groups, showing that we
cannot redly deduce from their sucess that the aforementioned postulate
is checked with certitude. We aso review the implications o the renor-
malization group equations upon the equations which were conjectured
to determine the bare and the physical charges.

Chapter 5 is devoted to a brief recall o the extensions made to the renor-
malization group for the varioustypes o chargeand mass renormalizations.

In Chapter 6, we show that another representation o the photon propa-
gator results from its inversibility with respect to k2, implied by unitarity.
The confrontation and the apparent contradictions o the results of
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Chapter 3 and of those which follow from the representation introduced
in Chapter 6, leads us in Chapter 7 to propose a mechanism of reconci-
liation which, if it is true in actual quantum electrodynamics, would imply
that the divergences one encounters are only a drawback of perturbative
methods.

1. Different Notions and Properties of Renormalizability

a. Dyson's Renormalization Procedure in Perturbation Theory:
Regularization Independence and Invariance; Cancellation of Infinities

Let us consider the Lagrangian o quantum electrodynamics (QED),
30 = gDirac (I//O) + "?Maxwell(AO) + ieO A;?Jﬁ, (1-1)

[which involves the bare (or unrenormalized) photon (A7) and electron
(p°) fields, as well as the bare charge ¢,], from which the formal Feynman
— Dyson S-matrix series can be deduced.

Intheproblem o the photon field renormalization, weshall restrict ourselves
to the consideration of the simplest term d the vacuum polarization
tensor 1), of first order in a, = €3, defined through the graph

v o

o;m OV = 0o HLIV)(X) ~ gy Tt [Vu Se()y, Sp(=x)].° (1-2)

Thisexpression in x-spaceis a product of distributions Sg(x), which therefore
has no clear mathematical meaning. In momentum space, it is given by

F [oo TR (X)] = o I (k) = (k?5,, — k, k,) TV (k?), (1-3)

(plus eventually a constant term which we shall not consider here), where
IM(k?) is a divergent Feynman integral. One encounters here a difficulty
which one can characterize as coming from the ambiguity of a product
o distributions or else as the failure of an integral to converge. Disre-
garding the origin of such kind of difficulty (which may be mathematical,
say, the failure of the perturbation expansion, or physical, e.g., the necessity
of a fundamental cut-off provided by some mechanism foreign to QED)
and accepting the usual S-matrix expansion, two different philosophies
where developed to handle such ambiguous, or divergent, expressions.
Both of them were of importance in the development o the formulation
of the renormalization group.

a. A first point of view, which we call the regularizntion philosophy, was
taken by Stueckelberg and Petermann'. They showed that x* I1{!)(x)

348



is a regular function Q) (x); therefore, taking into account Lorentz inva-
riance, the vacuum polarization tensor can be written as

IR = 2 0000 + GuA® + 6,C00 + DV3,3)5 ), (14

# denoting the principal value, while A", CV and D) are arbitrarv
"division constants" which are, in genera, finite. Assuming or imposing
gauge invariance, the constant A drops out; D is not observable, so
that we shall be concerned only with C*". A similar result was obtained
by Caianiello’, using Hadamard's finite part of an integral.

In the regularization philosophy we can also include Bogoliubov's formu-
lation of S-matrix theory: there, an arbitrariness is already present in
the expression for II()(k), since it is defined up to an arbitrary polyno-
mial. The more recent developments of Zimmermann® are also in the
same line of thought.

B) Another point of view is taken in the divergence philosophv, where one
accepts to deal with the divergent Feynman integral 11 (k?) and, at
the same time, one introduces some limiting regularization scheme in
order to give a controlable meaning to the "infinity". This can be done
via many different methods which essentially consist either in simply
cutting the domain of integration, or modifying the free propagators (a
cut-off form factor or analytic regularization, 1/x — 1/x*|,_;) or modi-
fying the space volume of integration (the continuous dimension method).
In all cases, one recovers the divergence at a certain limit. For simplicity
of expression, we shall speak of a cut-off mass A2, whose infinite values
make the integrals diverge.

The function T1(k*) being given by a Feynman integral, it is always
possible to make a separation o the type

M (k) = BY(k?) + CY, (1-5)

where B(k?) is such that BV(k?, A?)|52_, ,, —finite value, while C*Y(A?)|4:_. ,,
— infinity. In this way, one splits TI" into a finite part B” and an infinite
one C, both determined up to an arbitrary and finite additive constant.

Let us now resume briefly Dyson's renormalization procedure, first res-
tricting ourselves to the consideration of the vacuum polarization tensor
%o [,,(k?, o) in lowest order in %,. This example is sufficient to illustrate
the mechanisms dof the various renormalization properties. It should be
noticed too that the Lee Model furnishes an exact field theory where the
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propagator has exactly the same structure as that o the approximate
photon propagator we will consider now.

Let us definethe unrenormalized interaction kernel between two electrons as

oo

_ %o .
kK*[1 -0 (BU(K?) + C)] — k*do (K, 00)

Ay (k?,a) is the unrenormalized photon propagator and d,(k? &) the
unrenormalized clothing function.

g Ag (k*, o) =

(1-6)

Defining the observable charge a (actually, a is the square of the obser-
vable charge) as the residue of «,A, at the pole k? =0, namely,

o

_ 0
~1-a [BP(0) T cOT

one may Introduce the charge renormalization constant Z5 by the relation

a (1-7)

oy = 55— (1-8)

from which results
Z,=[1-a,BYO T C") ' =1+ «BYO T C"). (1.9

Expressing then a, in terms of a, from (1-7), i.e, a, = f (a,B*(0) + c"),
one obtains that (1-6) can be written as

o o

TP -aBYK})-BO0)] K[ -aBY (k)]

oy Ag (K2, o)

a
= o = A} 2 a). -
kzdk(kz,a) & R(k :a) (1 10)

In this equation, the function BY’(k?) is the renormalized closed loop.
The renormalized propagator Ai(k?,a) and the renormalized clothing
function

de (K, ) = [k* Ag(k*, 0)] !

are thus related to the unrenormalized ones by proportionality factors,
respectively, Z;! and Z;; dg(k*, a), which by construction is such that
dg(0,) =1, is finally obtained by

da(k?, 2) = [do (K2, 20) - Z (2)] ao= sie, B0y (1) (1-11)
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Here one can make the following remarks:

() In the regularization philosophy, the indeterminacy or the variation
of the constant CV, for a given a,, implies only a corresponding variation
of the physica charge a and o Z; as wdl, the form d the renormalized
propagator remaining the same as function o a. Conversely, if a is given,
the bare chargea, and Z; as well become indeterminate and vary with C.

The effect of the variation o the physical constant a, and o the renorma-
lization constant Z,, with an arbitrary regularization constant such as
CM is — when extended to all classes df graphs — the basisd the Stue-
ckelberg — Petermann formulation o the renormalization group.

(1) If, as in the divergence philosophv, C'! is infinite, one can then absorb
the divergence in the definition of a,, making aAy finite. Of course, if
a is the finite physical charge, the unrenormalized charge

a =oft ToBVO) t V]!

will vanish.

When higher orders o a, I1,,(k?, &) are computed, one obtains the unre-
normalized clothing function, with the following structure:

do(k?, 00) = 10 Ty (K%, etg (C)),
a T (k% 00,{C)) = % [BV(k?) + CV]
+ 3 [B® (k) + c?]
+ ag [B‘3)(k2, chy + C(3)] +
+ot [BO(K2{C")..CT2 )+ CO] + ...
(1-12)
The set {C) of constants C® is arbitrary in the regularization philosophy
and infinitein the divergence philosophy. The dependence o B (k*, C'"))
on C¥ comes from the graphs

and

which depend on the function BV (k?) + CV representing the loop an
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the internal photon line. The n-th order loop has also an expression of
the form

B (K2, {CV. .. C"") + €,

since it contains at most one internal loop of order (n-2) and, eventualy,
many other internal loops of lower orders.

Defining the observable charge a by

o= <X0 [dO (0’ OCO, {C})]_l 5 (1'13)
one can express a, = f(«, (C)) as a function o the set (C) and of the

given a. One can then demonstrate, to all orders of perturbation theory,
the essential relation,

oo [K2do (K2, oo, {CH]it faicy = o[k dp (K*, )] 71, (1-14)
which is the basis of renormalization theory.

By construction [from (1-13) and (1-14)], dz(k?,a) issuch that dg (0, ) = 1.
But aso the function di(k?,a) has-the fundamental propertv of depending
onlv on k?, a being independent of the set {C}; all dependence on the set
(C) appears in the equation relating a and a,, only.

This results in the following regularization independence: the structure of
the observable functions (of variables k? and a, e.g., o/[k*dg (k2 2)]) is
independent of the regularization procedure.

In the regularization philosophy, one can furthermore establish the exis-
tente of classes of sets {C},"i.e., classes of regularization schemes, such that,
a, being fixed, the physica charge a = ofa,, {C}) is the same (that is,
two sets {C), ¢} and {CV, €@} for which oy CV + ¢ C? = o, CV +
+ 43 C®). We may call this property regularization invariance.

In the divergence philosophy, it follows from the regularization indepen-
dente that all the infinities can be absorbed in the relation between « and «,
namely, in the charge renormalization constant Z,. We call this property
infinities cancellation in the observables. It is usually (and historically)
considered as the renormalization criterion.

b) The Matthews-Salam Counter-Term Renormalization Method

We shal now take the standpoint of the divergence philosophy. Then,
instead of starting from a given Lagrangian which, when a isfinite, contains
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infinities in the unknown unrenormalized charge a, (this quantity being
determined at the end o the calculation by a manipulation o infinities),
we shall proceed differently.

First, we fix the physical charge a, known and small; then we construct
simultaneously the renormalized propagator and the Lagrangian by adding
to it, at each order of perturbation theory, the counter-terms needed to
preserve the normalization o the dy function. This has aso the effect
of cancelling theinfinitiesinvolved. In practice, one startsfrom a Lagrangian
o first order in e which has the same form as given by Eq. (1-1), namely,

Z“) = g#,,or),m(lp) + fip(ﬁ;xwell (A) + ieAuJI“ (1-15)

where e denotes the observable charge. Then, to first order in a, the inte-
raction kernel A’ = a/k*> has the correct residue. In the next order in
a, one gets the term

wand man = 5BV + C), (1-16)

which however modifies the observed physical charge as
“a—a{l ta[BPOT C").

This can be remedied by adding to the Lagrangian % a counter-terrn
0.% which turns out to have the form

0% =(Z5- 1)L maxwen(A), (1-17)
which, to this order, is simply
54 =a[BV(0) + C"] L{huwen (A).
In this way, a new cancelling graph,

2
ARRAMANGAVNNINN = —% [BY) + ], (1-18)
is introduced which, added to the preceding one, gives a contribution
Z 2
2 [BY () - BV O] = & BY (). (1-19)

More generally, one can determine to all orders in a the function involved
in Eq. (1-17),

Zy() =1+ i oA (1-20)

n=1
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the 5, being such that the clothing function di remains normalized at
k? = 0. In this way, one can construct directly the renormalized function
dr(k?,a). Of course, such a construction can be made independentlv of the
divergence problem (ie., the v, could be finite) and it is most fortunate
that in QED (atypical renormalizable theory) all infinities coming from
graphs with closed loops are cancelled in the observable matrix elements
by the effect of thev), counter-terms. This property is again a renormaliza-
bility criterion based on the infinities cancellation in the observables,
likein a).

c) Relation between the Methods of Dyson and Matthews-Salam

The particular form of 6.9 exhibited in Eq. (1-17) allows us to establish
the connection between the counter-term method and that of Dyson as
well as between the two aspects of infinities cancellation we have exem-
plified. From Egs. (1-15) and (1-17), we can write

ag‘_“gDirac = yMaxwell (A) + ieApr. + (Z3_ 1)“gMaxwell (A) :

= Z3% Maxwen(A) + ied,J,, ; (1-21)
where & yacwen (A) is quadratic in A,. Defining the unrenormalized field
Ay = (25" 4,, (1-22)

Eqg. (1-17) can be written just like Eqg.' (1), ie.,
&~ Piivse = L waxwen (A°) + i€ A3, (1-23)

where the unrenormalized charge

eo = ef(Z5)'?, (1-24)
or
oy = a/Z;, (1-24)

is present.

Let us stress the fact that only because 6.9 (which is needed not only for
normalizing dg (k% @) but also for cancelling the divergences) has a close
resemblance to . (or parts of 9 ) one is alowed to pass from the renor-
malized to the unrenormalized version o the Lagrangian by a simultaneous
rescaling (Egs. (1-21)-(1-24))d the field and d the coupling constant: that
property of 6 2 is therefore connected with the renormalizabilitv criterion
we defined in the preceding paragraphs.
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2. Normalization Invariance and the Formulation of the G(Z;)-Renorma-
lization Group

a) Introduction

In the preceding chapter we have by means o an example recalled very
briefly the renormalization procedures and indicated the essential pro-
perties which the renormalizable theories possess. We mean that the
ambiguities (arbitrariness or infinite values), which one encounters when
one makes use d perturbation theory in calculating Green's functions,
can be eliminated from the observablequantities by a'*rescaling” procedure
d thefieds and coupling constants. In this way, dl the part d the theory
whichisobscure(arbitrary or infinite) is concentrated in the renormalization
constants (Z; in the particular case studied here) which appear only in
the Lagrangian. Contrariwise, the observable Green's functions (at least
in perturbation theory) are wdl defined and do not exhibit the ambiguities
d the equations from which they result. However, one is then deding
with properties which are wdl known and o the type one could call "expe-
rimental” in field theory. The question we shall try to answer in the next
two chapters is the following one: which peculiar property must both
the unrenormalized and renormalized Green's functions possess in order
to exhibit the "miraculous" properties d renormalizability? In order to
do that we shall start by noticing the existence of a kind o invariance
which is apparently different from those discussed in Ch. 1 The fact that
such an invariance could also be expressed directly on the renormalized
Green's functions, without any appeal to Lagrangians, will give us the clue
to find the answer to the question raised above.

b) Normalization Invariance

The method o constructing the renormalized solutions o a fied theory
dlows one to introduce a new kind d arbitrariness which may be called
normalization invariance. Instead of fixing the given observable charge a
(defined as the residue at the pole d the interaction kerndl), it is also pos-
sible to choose a value 6* of k? at which the interaction kernel has a fixed
value, ie., one gets a O-charge defined by

ao = [k2 aAIR]k2=02 ; (2_1)
note that one has to choose #? > O in order to have o, red.

Such a situation occurs most naturally in conserved-current vector meson
theories, whereit may be very convenient (becaused the Ward cancellation
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of vertex corrections) to define the observable charge at k* =0 rather
than at the pole of the vector meson.

Repeating the same argument as for the renormalized case of b), Ch. 1,
one would construct both the 8-renormalized propagator

[ 1 2 2 -
Rg — k2 dko(kz’ m2, a) ’ ng(e , m 9“9) = 17 (2 2)

and the Lagrangian .# which, like Eq. (1-17), takes the form
g ngrac = Zo (a,) cg(/lﬁ) + Ier A[t B (2-.3)
with

Ze (ag = Z rln({)

allowing one to otitain, by rescaling, the unrenormalized field and charge:
Ay = (Z)V? AL, &, = a)/Z5(a), (2-4)
and therefore the expression of Eq. (2).

Having thus, at least formally, the same QED as before, one should also
have the same interaction kernel between the electrons, namely,

0o _ a _ o
do (K, m?, a0) — dg (K, m?,8) ~ dy(k%,m?, @)
Of course, one should also have the same result by choosing a different
normalization point #% > 0 and the corresponding o, -charge. In other

words: Eqg. (2-5) should ke true for any #* > O. This is the normalization
invariance.

(2-5)

Such an invariance can also be regarded as resulting from the invariance
of the Lagrangian under the multiplicative transformation

A=A 7, 9 =e/07 (2-6)
which leads to the invariance

o4

%
Y 27
de (K7 m% a) ~ dygolk?,m? 7
where 02 ({) (or 67) is the value.of k? for WhICh
dg (02, m*, o) = 7 (2-8)
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Relations (2-5), which express the normalization invariance, are the mathe-
matical basis of the Bogoliubov-Shirkov formulation o the renormali-.
zation group, Since we have dealt only with the Z;-type o charge renor-,
malization, we shall call it G(Z,)-renormalization group.

Let us stress some O its properties. First d dl, in deducing Eqg. (2-5), we
did not make any use o the regularization invariance and, indeed, a relation
like (2-5)can be obtained in any finitefied theory such as the smpleconver-
gent Galilean Lee Model. The above formulation is, therefore, not neces-
sarily equivalent to other "renormalization group” properties related to
the regularization invariance. On the other hand, athough for the sake
o illustration, we made an appea to perturbation theory in obtaining
the relations (2-5), one may aso, when other methods o constructing field
theoretical solutions are known (like in the. Lee model case), consider
those relations in a global way, thus insuring their validity within the
restricted schemed perturbation theory, including eventually the accidents
(divergences) peculiar to that method.

Since we have obtained relations (2-5) within the framework of Lagrangian
fidd theory, making use of bare fields and coupling constants, which may
imply a lack o mathematical rigor (and which involves the big machinery
o canonica field theory whose axioms are not yet wel clarified), let us
give in what follows another deduction o these relations which, because
it only uses renormalized Green's functions, allows us to clearly exhibit
the mathematical and physical postulates we make use of.

c) The Axioms o the G(Z,)-Renommalization Group

We assume?, for a physical charge a arbitrarily given, that the zero-mass
photon renormalized Green's function in pure QED (electron of physical
mass m) can be generally written in the form

Ay = 1/(K* dy),

where — for dimensional reasons (a being dimensionless) — the renor-
malized clothing function di has the dependence dy (k?/m?, o) and is taken
with the normalization dg (0,a) = 1 In other words, we start by assuming
the existence d afunction d; d two variables k¥m? and a which, for conve-
nience, is normalized at k> = Q This choice of normalization can aways
be done by dividing an arbitrary function f (x,a) by f (O a). We moreover
suppose that d,(k?/m?, a) is redfor k? > O for a varying in some domain
Onax > o> Conin -
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Let us then lefine a f-charge, oy, by the relation

tp = 6? > 0. (2-9)

_*
dg (0*/m*, 0)°
We assume besides that such a defining relation is invertible with respect
to a for all allowed O values. We can therefore solve it in the form

a = a,$(0*/m*, a). (2-10)

Let us also define a 6-normalized clothing function d,, which is also afunction
of oy, by

2 /402
4o (K2 i ) = [%—gﬂ , C-11)

with dy(6*, m? @) = 1. One then has

o _ o [ dg (0*/m*, %)
de(P/m?,0) | dg (0*/m*,0) | | dp (kK*/m?, )
asin thelast equality of EqQ. (1-25). For dimensional reasons(d, being dimen-

sionless and #?, k2, m? having the dimension o a mass squared), d, can
be written generally as

do(K®,m*,8) = z3(k*/6% ,m? (6%, atg), (>-13)

a=aep(B2/m?,a )

>

a=agple?/m? ae)  (2.12)

with z;(1,m?/0%,a) =1

We note that the renormalized clothing function d is a special case of
the function z;, namely,

dR = Z3 (k2/02, m2/02 s a0)9=0 N
We then have

o oy

2
= X -14
8 = 5 (T, w0 20 @-14)

As we shall seein §d), thislast relation will suffice to obtain the properties
of the renormalization group. One might, however, be interested in also
recovering the equivalent to the first o the relations (2-5), which involves
the bare constants. This can be achieved as follows.

In canonical field theory, one can formally prove, if Z; is finite and # 0,
that one has

k2 AR (K)o, = ie, dg(K¥m?,0)|amy = Zy, (2-15)

1
Zy’
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the canonical bare charge being o, = o/Z,. This property is explicitly
verified in finite field theoretical modeis. When Z, is divergent in pertur-
bation theory, it aso usually happens that

dR (kz/m2 » 0‘) |k2—~oo 3

computed perturbationwise, shows the same type d divergence as the
one exhibited by Z,. Needlessto say, the equality o the divergences cannot
be established rigorously. Thus, in the present Green's function approach,
we take as a definition of the renormalization constant “Z;” the expressiori

“Z3 = klzim dg (K2/m?, a), (2-16)
the "bare" charge (or "asymptotic™ charge) “«,” being, as usual, defined
aSIla1ll — a/“Zs,,_

Let usnow consider thefunction z, in thelimit0 — . Sincez, is normalizecl
for 62 —» o, one has from (2-14)

l _ o
Uglog—a0 = dR(BZ/mZ,oc)

whereas, from Egs. (2-12) and (2-13),

= “0y”, (2-17)

68— 00

“

ao”

23(k2/92’ m2/02’ 9(0) ’ =
80— 0 o
dp(k?/m?, a)
- “23”

de(k?*/m?, o)
(2-18)

is the "unrenormalized clothing function, which can be written as
25 (k?/00, m?/c0, “ay”) = do (k2 /m? , m? /o0, “ay”). (2-19)
In this way, we obtain the firs o the relations (2-5).

With such interpretations, one may then regard the 8-charge as an inter-
polating charge which varies from the physical (# = 0) to the bare charge
(8 = o0), and consider the function

Z3 (k2/021 m2/02 ’ (XO)

as an interpolating clothing function which givesa continuous link between
the renormalized and unrenormalized clothing functions as 6 goes from
zero to infinity.

Let us now discuss and comment on some d the postulates we used for
deducing the invariant (2-14).
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(i) One postulate which will appear to be of paramount importance and
that will be discussed in detail in Ch. 3 is that o inversibility with respect
to a. It meansthat the expression (2-9) for g, is to be regarded as a function
of a variable g, i.e., ais not a fixed numerical constant. We note that this
distinguishes the present formulation from that of Gell-Mann and Low,
who looked for renormalized clothing functions dgx(k?/m2,a) such that

dg ! (kP fm? ) _

dg* (0% /m® )

for k%, 6> > m?. Here, a may be regarded as a numerical constant: only

the inversibility o d; with respect to the variable k3/m? is required. It

is however worth mentioning that the right hand side of (2-20)is the function
z3(k*/6%,m?/6% , a, = a/dyx (0*/m*, d)),

whose existence results from the inversibility condition in a exhibited in
Eg. (2-10). The postulate (2-20), therefore, coincides with the formulation
given above when the limit m®> - 0 does exist.

S 6%, o) dg (0°/m? , ), (2-20)

(ii) The definitions of , and d, can be made more general in the following
sense: one could equally well, once a is defined, have chosen a different
value 8 # 8 for the point at which the d,. function is normalized. In this
way, the interpolating clothing function can be expressed in terms of an
unrelated interpolating charge, this allowing us to treat, e.g., the renorma-
lized propagator in terms o the bare charge or the other way round®.

(iii) Finally, one rnight also question why we have chosen the definition
(2-9) for a, rather than, say, a/d?. The reason is that «/(k? dg), the interac-
tion kernel between electrons, is truly the fundamental building block
in terms of which all the other Green's functions are constructed: the
Green's functions are functionals of «Ag.

7he invariance under the renormalization group, relations (2-14), is another
way of expressing the invariance of the Green's functions under a change
of the normalization parameter 8. That property is df course associated
with the structure o theformal Eagrangian, being one o the basic attributes
of renormalizability.

However, the advantage of formulating that property in a clear mathe-
matical way is that it alows us to determine the precise mathematical
structure the Green's functions should possess and also to know which
of the postulates is basic in fixing that structure.
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A result which is both strange and physically important will be shown,
illustrated and discussed, in the next Chapters: the Green's functions are
not any functionals of aAg, but instead possess a much more stringent
Structure.

d) Representations of the Propagators Invariant under the G(Z;)-Renor-
malization Group

From the invariance under the renormalization group, expressed by

L) _ a 2 _
z3(k%/0*, m?/0%, a) ~ dg (K372, @)’ ve'r G, (2-21)
and the normalization condition
z3(L, m*/6%,a) =1, (2-22)

one has, successively,

Ot _ oty _
23 (K07, m2/6% @) ~ 2, (6202, m*[07 o)’ (2-23)

and, for k? = 62,

oy (2-24)

_ d,
T z3(0%/62,m?0%, a)

Eliminating ¢ in Eq. (2-23), one gets the fundamental functional equation
for G(Z;) [Ref. 3]:

23 (K02, M?02,8) = z,(62/6%, m202, a)-
- 23 (KIW2, m2/6"% , 05/z5 (67167, MPI0?, &)). (2-25)

Differentiating with respect to k2/6*> and taking then k? = 6, one gets
the associated Lie differential equation:

a
) log z; (k?/6* , m*/6*, a)

B {[% 23 (x, MK, g/ 2 (k2 67 , 267, a,,»] } (6%/12)

= by, gz, 067 62, ). 2-26)
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With the initial condition (2-221 one abtains the three equivalent repre-
sentations

z3 (k207 ,m?/0? , Q)

(e dt
=1 _%J — F,(m?/0%*t,a,z5* (t,m?/0% ,a)) (2-27a)
1
e gt
—1- ae[ APy (Ut 0y 23 (em?/67, m2/67, ), (2-27d)
gz/mz

with F;(x,y) = (1/y)¢;(x, y), and
Z3 (k2/02 H ynz/g2 » aa)

k2/02
= &Xp [’“}r g B3 (m?/0% t, 25t (t,m?/0%, oce)ﬂ (2-27b)

Z3 (k2/02 H m2/02 ’ aa)

k2/92 2
_ dt o } 2742 -1 2102 -
s [; * [23 (t, m*/6° , o) Fa(midta, s @miona) - @210

k2/m?2

o (2-27¢)

In particular, for 8 — O, one gets the renormalized d function, a function
of the physical charge a:

T [Zwmzwza ], o)] F3 (11,0525 " (im? /6%, m2/0° , ay).

kzlng
dp(k*/m?,0) = 1~ocJ~ iltEF3 (1/t, adg L (¢, o)) (2-28a)
0
— x| ( kZ/m% & R (1t ady ')ﬂ,, (2-28b)
it N R A ) |
R [ N PR
R + A R (t, ), (2-28¢)

while, for & — oo, the unrenormalized d,, function, a function o the "bare"
charge "ap", is
k2/m?

do (K*/m?,co/m?,a) = 1- ot + F3(1/t,20d5 " (t,00/m?, 20))  (2-294)

o fm?
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_t— dO (t> CD/Wl2 > aO)

k2/m2
=exp[— j % R (i ads oo/mz,ao»], (2-295)

o0 /m2

% K g % 2
d() (kZ/mZ s OO/mZ ) (10) — % * J\oo T l:do (t7 w/m27 (Xo):| '

: F3 (1/ts do d(; ! (t? OO/m2 s aO))> (2-29C)
the function F; being the same in every case. Obvioudly, the integrals

2/m2 k2/m2
KA 4 It
o —F3a xo _t—F37

0 t o0 /m?2

appearing in Egs. (2-28a) and (2-29%a), are respectively representations of
the renormalized and unrenormalized vacuum polarization functions,
expressed in terms of the renormalized or unrenormalized charges. The
integral

in Eqg. (2-27a"), is the vacuum polarization function renormalized at the
energy k? = 6% and expressed in terms o a,.

The expressions (2-27), (2-28) and (2-29¢) can instead be interpreted as
representing the propagators written in the Lehmann spectral represen-
tation.

It should be noticed that for the integras in (2-27)-(2-29)to exist, the
function ¢, should be analyticin t for t > 0, z; being therefore = Q. It
may o course happen, and this is the case in QED, that the property
z, = 0 is spoiled by the use d perturbation expansions o z,. Also, if F;
is independent o its second variable, the representation (2-274') can be
used even when z; becomes negative, which is actually the case in the dives-
gent Lee Model.

We next note, as first shown by Sekine®!°, that a consequence o the
functional equation (2-25) is that the operator U(t = 6'?/6%), defined by

k?/6* k0%t
U(t)s m2/0% » - < m?/0%t (2-30)
X ;= 023 L, m2 /07, ap),
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satisfies the group properties, namely,

Ult,) U(ts) = Ul 1), (2-30a)
and the existence of

U@y and U1y, (2-30b)
which justify the denomination of renormalization group.
Extending the techniques just described, one can establish the G(Z;)-repre-
sentation of the vertex function and of the two Lorentz-invariant scalars

appearing in the electron propagator (Ref. 4). Defining the renormalized
electron propagator

Se =[7-p dy(p?/m*,0) T mb(p*/m*,0)] 7",
with
d2(~ 15“) = b(_ 17 a) = la

one has, in particular, the representation of the electron-mass clothing
function:

, 2 2 2 _ p2/m2
M?(p?/m?,a) _ [b(P /m ,“)_‘ = eXpU thps(1/z, adg ' (1, oc))_l

m dy (p*/m*, )

—1

(2-31)
(for the def. of F5 see Eq. (4-12)).

€) The Connection of the G(Z,) Representations with the Renormalization
Properties of Perturbation Theory

The calculation in perturbation theory of the function dg(x, a),x = k3/m?,
resulting from the QED Lagrangian, allows us to determine, as we have
seen in Ch. 1, a series

de(x,0) = L—a T(x,0) = 1~ [ TR (x) + «2 @ (x) +...],
with TI9(0) = 0.

Let us see that this expression can be matched with the representation
(2-28a):

X

dp(x,a)=1-a [ %1«3 (1/t, edz * (¢, @), 2-33)

N
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alowing thus to determine the kernel F;(1/x,v). Performing a Taylor
expansion of Fj(1/x,v),

Fy(1/x,9) = @ (1/x) + vo,(1/x) + V@, (1/x) + Vo3 (1/x) + ..., (2-34)

one gets

t

de(x,a) = 1~a{j %(pl(l/t) + aJ ?(pz(l/t)[l + och %(pl(l/v)-’r ]
0 0 0

+ aZJ f’t—t%(l/r)[l + 24 W i)+ ]}

0 0

e[ Hon e [ Losum e [ Hosum+

0 0 0
+ (170 f Loy }}+ (-3
0

where, in each order «", there occurs a new function ¢, and a combination
of functions ¢;, i < n, of lower orders, alowing us thus to compute the
¢,(1/x). The matching therefore determines the series (2-34) which, if
converges for all x > 0 and for v in some domain around the origin, sums
up to F5(1/x,v). Aswe will seein Ch. 4, only the first three functions ¢;(1/x)
were so far explicitly computed (at least in the limit X — o), giving that
¢:(0), ©,(0), 5(0) are finite numerical constants different.from zero.
For i > 3, one also demonstrated that the limit ¢;(1/x)|,-, iS regular,
ie., that the ¢;(0) are finite numbers.

Since the same kernel F; occurs in the representation (2-29a) of the unre-
normalized clothing function

do (kz/m2 ,0g) = Z3 (k2/92 > mz/ez s 0‘9)192—»00

am
=1-0, J‘ v F3(1/t,00dg (¢, o)) (2-36)

02+ 00

one easily sees that, in perturbation expansion, the function

do(x, a0) += I"I:“oj %(Pl (a/n + “gj

92— 82—

X

Lot +] e

presents divergences at each order, which are produced by the fact that
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there exists some ¢;(0) = const. # 0, these divergences being controlled
by the limiting process 6% — oo.

In that way can be established the link between the normalization inva-
riance (and the resulting G(Z,) structure) with the divergences aspect of
renormalization theory.

3. The Postulate of a-Inverdbility
a) Explicitness of the Inversbility Property in the Representations

It is well known that the renormalization group furnishes a powerful tool
for solving many problems in field theory and that, as we shall review in
the next Chapter, it very simply predicts many asymptotic properties of
perturbation theory which can usually be obtained only at the price of
performing (when even that can be done) very tedious graph calculations.

From all the formulations proposed to explain the origin o that group
and, particularly, from the one given in Ch. 2, Section ¢), in which no use
is made of the cloudy concept of Lagrangian quantum field theory, but
one clearly knows what one has to use in order. to get the fundamental
functional equation, the remarkable results we just mentioned seem exce-
edingly astonishing. Indeed, they result from the properties of the arbitrary
clothing function, dg, one started from and on which we only made appa-
rently innocent manipulations!

The fact that one obtains, from the renormalization group equations,
useful predictions on the asymptotic behaviours o the perturbative expres-
sions (ie., the Feynman graphs) and that therefore certain important
assumptions on the limits k — oo or m = 0 have to be made, and the analy-
ticity in a admitted as well, is not enough to explain its success. the renor-
malization group has a non trivial content which is independent of the
approximations and supplementary postulates one usualy adds when
applying it. This is what we will discuss and illustrate now.

Let us first consider the G(Z;) representation (2-28a) for dg(k?/m?, a).
One might be tempted to consider it trivial, since it can be obtained by
the following dimensional argument (Ref. 4).

As dg (k*/m*,a) is arbitrary, dimensionless and normalized, let us define

91 (x,0) = ﬁﬁ (3-1)
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From dimensiona considerations, one can aways write that

0 1 ,
gz du (k2/m? o) = 75 0, (K*/m? o) di (K2/m? , ), (3-2)
where ¢, is dimensionless. From (3-1), one writes a in terms o «/dg (x,a)
and X, namely,

o= (pi_(alc) (o/dg (x, ). (3-3)
Substituting this last expression on the RHS o (3-2) and performing an

integration in k2, with the initial condition dg (0,a) = 1, one obtains the
G(Z5) representation (2-28a) with

1 _
Fy(x,y) = - 7 @, (X, 0 l(ch) ()

Let us see however that the postulate of inversibility with respect to a o
Eq. (3-1) is the essential assumption which leads to Eg. (2-284). Should
it not be true for the entire range o k2 values and some k-independent
domain of a values, one would then get that
0

Fe) dg (K2 /m? , )
is given by a set of different functions o x = k%m? and v = a/dg(x, a),
defined for different domains of a and k2/m?:

0 1 .
pres dg(x,0) = —a 2 [FS(x,y) + X 00— ¢; () 0(y;(x) - ) F{(x, )],  (3-4)
if
where 6(x) = 1 for x > 0 and zero for x < 0O, the a = ¥, (x) being the roots
of the equation
a .

dg(x,0)—a % dg(x,a) = 0, (3-5)

ie., (0/0k?)dr would be a function of k?/m?, a/dg and a.

In order to avoid a possible confusion with another property o inver-
sihility (with respect to m) to be introduced later on in Ch. 6, we shall call
a-inversihility the one presently discussed, and denote it G,,(Z5), m being
a fixed constant.

b) The Equivalent Properties of Reciprocity and Uniqueness

Let us now consider the representations (2-27a) and (2-27b) of z, and
note that the functions z; o three variables are expressed in terms o a
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two variable function, namely,
F(m?/0 t,06/25 (k210 m*/6*, &)),
and that

d -
e [og ! 25 (K30%, m? /6%, 8)]

is a function o k¥m? and of the invariant o,z and is, therefore, inde-
pendent of §2. This means that the class of functions z; has been severely
restricted by the construction of the group equations. Obvioudly, here
too, the postulate of a-inversibility is responsible for that restriction. Let
us €lucidate in more detail the significance o that restriction and show
that the functional equation (2-25), which results from the inversibility
postulate, entails a property of reciprocity between different ways of cons-
tructing a renormalized propagator, as wdl as the uniqueness o the pro-
pagators constructed by attributing one value g associated with a norma-
lization point § (Ref. 6).

Let a clothing function
Z3 (kZ/O 2/91,%‘)

be given which, in a specific field theoretical model, might be constructed
employing the Matthews-Salam method. Let us also suppose. for the
moment, that 62 # 0 and # co. From that function, one would then
construct by themethod of Ch. 2, Sec. ¢),a new clothingfunctionz; (normal-
ized at a finite value #2 # 0) defined by

25 (%65, m 03, 03/03,9 = 2o (kS0 m 0f H oy G
A T TS O
and a function of the charge a defined by
3 %o (3-7)

2 = 2, (0262, m7/6%, )

As is obvious by looking at the variables involved, the function z; gene-
raly depends on the point 8, one started from.

Suppose now that instead of starting from 6, to pass then to 6, (aswe
have just done), we started from 0, directly, constructing the function

23 (K2/65, m* /05, ),



where, physically, we would fix a, to be the charge at that point, namely,
069 = &g . (3'8)

The reciprocity of the two constructions consists in their equivalence,
i.e., the validity of the following condition:

23 (K205, m* /9% a)) =7, (k*/0%, m*/63, 6363 ,E,), (3-9)
with
7] = &92 = “91 {23(05/0 2/01,&91)}—1_

Replacing (in the LHS) a, by the expression for &,, as a function o a,,,

Eq. (3-7), and taking, for the second member, the definition (3-6)-withaiit
performing the change o variablesa, — &@,, — the condition (3-9) is the
functional eguation (2-25) for G(Z;).

Og

Let us note too that the ainversibility implies the inversibility with respect
to a, o the reation (2-24),

Oy, i
N A (3-10)

O

whose reciprocal is

%o,

%o = 00T, YL o) G3-11)

We note that condition (3-9) expresses also that z,, as defined by Eq. (3-6),
does not depend on the point 8, we started from, i.e., once one a,, is fixed
in some domain, for a given 7 > 0O, the propagator is uniquelv determined.
In particular, if the a-inversibility is true for any k? > 0 up to k? - o
(6 being thus alowed to vary in the domain [0, «o]), The reciprocity says
that it is equivalent to constructing directly the renormalized propagator
by the Matthews-Salam method or to deduce it, by a change of variables
and normalization, from Dyson's unrenormalized one, ie., that

[dllzl § (kZ/mZ s (Z) = 23 (kZ/B 2/02 s ae;)loz—»o]ae =agiven

_} z3 (K*/0F, m*/67 , 0g,)
= {dR(kz/mz’ ) = Z(() 2102, 2/91’0‘:1

where a,, is such that

}, (3-12)
8y —>00)

92—'0

%y

1 |
23(0 /0 2/91’“0:”61—»@

8,—-0

= a(given);
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the superscripts M.S. and D stand for Matthews-Salam and Dyson,
respectively.

The inversibility also tells us that the propagator normalized at infinity,
i.e., the unrenormalized propagator, a function o the bare charge a,
can also equivalently be computed directly (it is Dyson's unrenormalized

d, function) or constructed from the renormalized Matthews-Salam
dg function like in Egs. (2-18)-(2-19),i.e., that

[d](:)) (kz/Wl2 s mZ/OO, O(0) =2Z3 (kZ/H% , mZ/B% ] OC(%) l02—>oo]<19;=ao(given)

. dllzls' (kZ/mZ,(x) — 23(k2/9f,m2/9f,0101) (3 13)
RS (co/m? ) T 25(03/603, mP /67 00 ) |, o S )
02—’00
where a,, |y, .o is such that
* = o, (given).

24(20/0, m?/0, o)

Finally, one aso should have, from Egs. (3-10)-(3-Il), that the inversion
o the relation

o o
0 dR (X, O‘)lx—*oo
gives the relation
%o
o= 3-14
40,5 G19

c) The Zero Mass Case

We have just seen and discussed how the renormalization group implies
that the three variable function z; can be expressed in terms of a two
variable function F;. That important constraint on the class o functions
z, iseven more drastically sharpened if one supposes that, in the expressions
(2-27), the limit m— 0 exists, ie., F;(Oa/z3) # 0 or c. One then has

k2/02 .
dt
23 (k*/0% ) = 1 - O‘oj ~ F3 (0, 09/25 (£, o). (3-15)

1

Of course, the function dy we started from does not necessarily still exist
in that limit.
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d) alnversibility and Normalization Invariance

We have seen from the Lagrangian point of view, in Ch. 2, Sec. b), that
the existence of a normalization invariance leads to the equations o the
G(Z5) group. In Ch. 2, Sec ¢), we have seen that a-inversibility makes pos-
sible the formulation o normalization invariance and, reciprocally, the
representation o the group, Eq. (2-28a) results from the ainversibility.

As we shall see in the next Section, the correctness d the G(Z;) group
cannot be taken as exactly proven; one can, however, assert that normaliz-
ation invariance is based on the physical postulate (or on the realization)
that the definition of the phvsical coupling constants is alwavs an arbitrarv
convention. However, the equations which govern (as well as alows us
to calculate) the observables are such that if two observers had chosen
different conventions separately and, as a consequence, had obtained
different values d some observable constants which uniquely fix the solu-
tions of the equations (and, therefore, the physical system), they would
have at the end obtained the same result, since the relation between the
two parametrizations is biunique.

Such an invariance is in every way analogous to the one resulting from
groups o kinematical invariance (Galilean, relativistic).

In the case we are studying here(the G(Z ;) group), the resulting arbitrariness
gives rise t0 a single arbitrary positive parameter (62 = 0) to which the
coupling constant ¢, is associated. In fact, such an arbitrariness is redly
much larger and can be taken as the physica justification o the groups
we are going to consider in Ch. 5.

e) What is Unknown about the alnversibility Postulate

Though the consequences o ainversibility we have just discussed result
equivalently from the formal field-theoretical construction o the renor-
malization group o Ch. 2, Sec. b), the question obvioudly arises of deter-
mining whether they really are satisfied by the explicit solutions of fidd
theories. Because all practical calculations can actually only be done in
perturbation theory, it seems exceedingly difficult to prove or disprove
the property o a-inversibility. The anomalous dependence, in «, in the
representation (3-4), for instance, can very well elude the perturbative
expansion, since the B(c—o; (X))functionswould give a series o distributions
8" (¢;(x)) which would only contribute if the ¢+(x) have zeros at finite x.
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Also, an eventual violation of the reciprocity between the relations (3-14)
does not manifest itself when the inversions d these formulae are done
in perturbative expansions, since one chooses thereby, among the various
possible determinations of the inverse functions, that onefor which {x,/a)— |
when a— 0.

Finally, the fact that one knows how to construct one propagator, once
6 and a, aregiven, is by no meansa proof df its uniqueness. On the contrary,
there exist specific examples of finite fidd theoretical models for which
many different propagators result from the same bare-field equations
(Ref. 11), this indicating that the postulates of reciprocity and uniqueness
may be violated for 0 = co.

In opposition to andliticity and unitarity, which also impose stringent
restrictions on the representations of the propagators but are related to
well defined physical axioms, a physical axiom — more objective than
the existence of a fidd theory — on which ainversibility might be based,
is still unknown.

Let us close this series of open questions by mentioning a yet unexplored
problem which seemsonly to require standard mathematics for its solution.
We mean the problem of obtaining the structure of the propagators which
fulfills simultaneously the postulates of unitarity, analyticity and a-inver-
sibility, bearing in mind that the representations (2-27a-c') — which are
valid only in the domain of redlity of the functions-might possibly induce
a correspondingly peculiar form on the analytical cut.

4. Some Applications of G,(Z,) in Quantum Electrodynamics
A. Perturbative Treatment

Gell-Mann and Low were the first to show some interesting consequences
of the renormalization group. Though their construction was different
from that given in Ch. 2, Sec. ¢), we have seen why they arrived at an appro-
ximate G,,(Z5) structure in which the ratio m?/Q? ivas neglected.

In practice, a connection between the asymptotic behaviour of Feynman
graphs representing the vacuum polarization tensor, and the G(Z;) repre-
sentations, can indeed be established by imposing the condition m? < 62,
k? in the representation (2-27a)d z;. Expanding F; in Taylor series,

Fy(m?/02t V)=, (M4 Q1)+ v, m* /2 t)F V2, (m2/02 t) T . .. 4-1)

372



and taking, in each term, the limit (m?/Q?— O, which one supposes to exist,
one obtains

Hm  z; (K202, M0 o) = z5 (KX02, o)

(m2/82)—0
k2/62 t
=1-0, j + F3(0, 0g/25 (¢, ctg))s (4-2)
. .
with
F30,) = @1 +yp, + Y03 + ..., (4-3)
where the
P = qoi(mz/ez t)l(m2/02)—>0 4-4)

should be finite numbers. Inserting (4-3) into Eg. (4-2), one obtains the:
form of the most divergent termswhich appear in the asymptotic expression
of the Feynman graphs for vacuum polarization:

Z3 (kZ/Qz,ao) = 1-0p I, (k2/021 Og) =
=1-0,(I; T oI, T o2 11, + )

= 1—a9[¢1L + oy Lt 3 TP2L2 4 2 Lt ] (4-4)
where L r log(k?/0?) and (k?/6%) > 1.

These results agree amazingly wel with the results one would obtain by
tedious calculations of graphs, namely,

-are no more divergent then a simple log and, besides, graph calculations
fix ¢, = 1/37 and ¢, = 1/4n°.

At the o3-order, the term in L2, which depends on the structure of II,
and IT,, isnaturally interpreted as belonging to the function I1, in which
the photon is clothed with the TI, loop:

3 3
P Prr0 _ % 12 .
o>+ 2 @ ~T Pegels @)

this result agreeing with the explicit computation®?.




The remaining log term o TI; may result from the less divergent part
o the above term and, from the graphs with two internal photon lines,

- > - ED

The sum o these graphs should therefore behave, asymptotically, at most
as a simple log.

That property was verified by Rosner!®, who obtained the very simple
coefficient (- 1/32=*) for the log.

The high energy behaviour of the renormalized Feynman graphs can also
be obtained from the representation (2-28a) of dg, which also involves the
series defining F, which, for t » m tends to (4-3). To take into account
the low energy contributions, which introduce supplementary asympto-
tically constant terms in the integration, it is conventional to write dy
in the following form, which is vdid only for k?/m* > 1:

k2/m?

dp (K?Im?,8) = dg (1, 8) - af % P(or/dg (¢, 0)), 4-7)

1

where di (1, a) and ¢(B) can be computed'* from Feynman graphs; giving
_ 1, B B t00) R

where {(3) is the value o the Riemann zeta function for the value s = 3
of the argument.

Eq. (4-7) can also be written in the form originally given by Gell-Mann

and Low, namely,
a/dR(u, a) dﬂ
logu = J — (4-9)
i P00

&,

W) = B2 ¢(8) being caled the Gell-Mann and Low function.

When m is exactly zero, ¢(8) reduces to F; (0, f), for which the first terms
of its Taylor expansion are

2 1 3
F3(0,p) = 3 + (5%5”4(’5”)3 + 4-10)
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Aswasseen in thecalculation of IT1,, when the first few terms were known,
the G,,(Z) equations alows us to improve perturbation theory by taking
into account, in a simple way, the effect of clothing the photon lines. That
result also applies in a particularly powerful manner to the electron self-
-mass function, when one uses the representation (2-31), performing again
a Taylor expansion on F(1/t, ). Starting from the expression valid for
k? » m?, namely,

k?) ~ 1—i 1 ﬁ—f- 4-11)
mg (k%) ~ m e 0g > )

computed from the lowest salf-energy graph, which is

£

one determines that the first term J4 (1/1) o the series defining F(1/t, B),
Fs(Ut,B) = J,(1/9B + L, (/g + -, 4-12)
is such that
3
Jl (l/t)lt—mo g *%

One then eadily obtains that, asymptotically, one has

o? k?
& > g log o @-13)
and
‘ 2 1 3V 02 K
f:%+ iﬁ} 2% g\a) e

(4-14)
in complete agreement with the delicate, lengthy, graph calculations!®.

We note that the last result does not follow from clothing the photon line
but rather from the repeated clothing by photons of the electron propagator.

These very beautiful and simple results, which come by the use o the
representations (2-284) and (2-31), are usualy considered as a success or
even a proof of the renormalization group equations. In fact, -though
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these results are consistent with G(Z3), they do not proveits exact reliability
but only its validity in perturbation theory. Furthermore, the essential
hypothesis made for obtaining the indicated results is that

¢i(m2/k2)|k2—>oo = @; < 0,

a property which is specific to QED, as we will see in the next Chapter,
and which has nothing to do with the renormalization group. That pro-
perty, which wasadmitted sincetheearly days of the renormalization group?,
was only recently demonstrated in general. It is indeed a byproduct of
the Callan — Symanzik equations®, whose basic justification lies in an
analysis of the convergence properties in perturbation theory of certain
S-matrix elements related to the photon and electron Green's functions,
that not only

@;(m*/k*)|2—,, — finite value (4-15)
but also

J (M2 /k?)2- ., — finite value. (4-16)
Without entering into a detailed comparison of the Callan-Symanzik
equations and the renormalization group equations, which would not
be in place here, let us only recall that the property (3-15) is the essential
link between the representations (2-28) and the expression (3-9) where

Y(p) is given by its Taylor expansion, and that precisely the relation (3-9)
also follows directly from the Callan-Symanzik equations.?°

B. Global Properties
a) A Possble Finiteness of QED

If we take the exact representation (2-28) and assume that

o

dy (@, @) "o,

u—>o0

(which may be taken as a definition o a,, cf Ch. 2, Sec. ¢) and also that

F3 (1/t9 a/dk(t’ a))lt—mo = F3 (Oa aO){i 20 s (4'17)

it then follows that
dg(c0,8) = Z5(a) ~ 1-aF,(a) log (o) T finite terms, (4-18)
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and therefore either Z, = o, ie.,, 2o =Qor Fy(a) =0 and «, is a fixed
number independent d «. This last result, first mentioned by Gell-Mann
and Low?, also followsfrom Eq. (4-9), a being also the root of ¥(x,) =0
(that root might of course lie at infinity). If a is independent d a, a pos-
sibility which cannot be excluded (cf. discussion of Ch. 3, Sec. d), it would
invalidate the construction of the renormalization group from a Lagran-
gian field theory since then two different physical propagators, unrelated
by the group operations, would follow from the same Lagrangian.

In the same line of thinking, if one admits that F4{m/t, §) is well approxi-

~ 7'31, one would

then get that the bare mass d the electron is identically zero:

mated, when t — oo, by its lowest order term Fs

mo = mo (k2 /m)-.,, = mexp [— 34"7‘: log (oo)] =0. (4-19)

Taking these two resuits (namely that «, is a fixed constant and m, = Q
for granted, one may conclude'® the finiteness o QED.

b) Conjectures Concerningthe Determination of the Fine Structure Constant
b1, Z,(@) = 0 —» o = Max (e?)

It has been shown that the characteristic property o a composite particle
is that the renormalization constant o its field is null*®. When the cor-
responding Z can be calculated as a function o g2, likein some models'?,
then the condition Z(g®) =0 fixes the value of the coupling constant.
Thus, in the photon case, the condition Z,(e?) =0 could fix the value
o the charge'®, and we would possibly obtain the fine structure constant.
For that, it would be necessary that Z, (€) be a finite function o € (which
is not the case in perturbation theory) and one could then test the correc-
tness of the conjecture by computing that function. Leaving the discussion
d the finiteness o Z; (€), in non-perturbative theories, for Ch. 7, we show
now that ainversibility implies that the critical vaue a,, solution o
Z,(a) =0, is aso the greatest possible for the e (Ref. 5). Jndeed, a-inver-
sibility implies that

o
% = T, )

377



is a monotonic function o a for all k? > O and, therefore,

.
%%k = %[W%WJ is éither >0 or <O, for all K* >0,  (4-20)
R b

(it can eventually be zero for some isolated values of a). Since, for k? =0,
dg(0,2) =1, then from Eqg. (3-18) follows that

Il
0% Yo
and thus one has
o, 5
&> 0 for all k%= 0. @-21)
Therefore, when k* —» 0, 8, r a/dz(0,a) is such that
doy  d o
T = %‘.[WdR . a)] >0, (4-22)

and this implies that if a goes to infinity at a finite value «. o a (which
is its greatest value), then «, is a solution o Z,(x,) = Q The converse,
however, is not true: one might have a maximum value of a which would
not be a zero'of Z,(a).

The property o ainversibility being a fundamental criterion for renor-
malizability, such properties should be checked in all known field theore-
tical models in which Z(g?) can be computed. This is precisdly the case
for the Lee Model, where the composite V particle has the strongest pos-
sible interaction. Let us aso note that since 'one cannot exclude the case
where a-inversibility would not hold at k? — oo, one would havein that case

Ooty,
T -on (4-23)

indie o}

b.2. F3 (O, a) :0

We have seen that, under certain conditions, the Gell-Mann and Low
condition, ¥(a,) = 0, yields an-equation for the bare charge «,, a, being
determined independently o the physical charge. This same constant a,
can also be obtained from the zero-mas OED condition F;(0,a) =0.
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It has however been argued!®, on the basis of a particular method of
summing Feynman graphs, that thefunction F, (O f) vanishes on the entire
physical domain, havinga zero o infinite order at the value of the physical
charge, ie, F;(0a) =Q (0/00)"F,(Oa) =0, this implying that dy = 1.
It was also conjectured that the property F, (0, ) =0 would fix ¢?, which
might yield the fine structure constant.

5. The Extended Groups

Though, in pseudo-scalar meson theory, charge renormalization involves
not only Z, but aso Z, and Z, (which are different), the Z, normalization
invariance still exists and, therefore, the G,,(Z5) renormalization group
should still apply. It however fails if applied asin QED because Z5, e.g.,
to the order (G?)? diverges as (log)?, whereas the prediction o Eq. (4-4)
gives a log divergence! To study rigorously such a failure, it is necessary
to extend the formulation of the renormalization group in such a way
as to include the Z, and Z, types o clothing effects and to deal exactly
with the mass parameters as well.

It is in principle easy to generalize the method of constructing renormaliz-
ation groups, starting from Green’s functions as in Ch. 2, Sec. ¢). The only
physical problem consists in choosing the most convenient combination
o Green's functions in terms of which the interpolating variables are
defined. The only mathematical assumption consists in admitting the
possibility of performing a change o variables, i.e., a postulate o inver-
sibility*. The physica justification of that postulate was explained in
Ch. 3, Sec. d), but its exact vaidity in fidd theory can only be ascertained
(or invalidated) a posteriori.

The number of groups that can be constructed is enormous. Indeed, instead
o a single two-variable function involved in the two Z, groups, in zero-
-mass photon QED, one needs — for a complete description of the renos-
malization properties of a meson theory — four functions of three variables
(9, m/p, 12/p?) related to Z5, Z,, dm and éu?, as well as one function of
five variables related to Z, (the vertex is indeed defined by three external
masses, two internal masses (¢, m) and g, the masses occurring as ratios),
plus terms related to an eventual meson-meson coupling.

A general formulation of charge groups G(Z? Z;2Z3 ') was established,
but particularly interesting are its subgroups: G(Z,),..., G(Z3Z3i"),
G(Z5*Z3") which, under the same condition o regularity (when m - 0),
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alow one to compute the asymptotic behaviour of aimost all graphs, the
results being in agreement with the expressions obtained from direct calcul-
ation of known Feynman graphs?!-22.

If 62, 63 and 63 denote respectively the normalization parameters of (i)
the vertex function with zero external photon momentum, (ii) the y-p
coefficient of the inverse electron propagator and (iii) the photon clothing
function, the technique we mentioned above allows us to construct the
group G(Z;Z3Z;?). When 6 = 03 = -m?, this group reduces to G(Z).

In this context, it has been shown?? that one obtains the result & Fevnman
graph computations d the z; function in QED, bv requiring that the limit
02 = 03 - - m? =0 be regular for the perturbation expansion. This requi-
rement of regularity is also shown to be equivalent to Ward’s identitv and
is related to the mass singularity theorems?®. If, instead, 6? and 6% are
fixed and the limit m— O performed (and assumed regular), one obtains
that z; behaves like

RTINS SR K2 .
zy~1-g cllog6—§~g c, log 6—§+d210g§§- + .., (5-1

in‘agreement with the expressions of the p.s. meson theory, thus resolving
the failure of the G(Z;) group mentioned at the beginning o the chapter,
the vertex function and the z; function being there normalized on their
mass shell, i.e., the limit performed is #? = 63 = _n? - 0.

When one links together the normalization parameters of the different
Green's functions, one obtains simpler groups, namely, the bountl groups*.
If that link is such that the parameters reach simultaneously the values
corresponding to the renormalized expressions and, besides, they tend
simultaneously to infinity, a one-parameter bound group, namely,
G(Z27Z5;*Z35 "), dlows one to pass continuously from the renormalized
to the unrenormalized theory, and an integral equation for the invariant
of the group can be constructed, leading (when the mass is zero or can
be neglected) to a Gell-Mann and Low type of equation for the group
invariant. These types of groups are o practical importance in the theories
of critical phenomena'® and are even unavoidable for treating consistently
the infrared divergence problems o super-renormalizable theories**.

Groups for mass renormalization, i.e., groups relating mass renormalization
to the coupling constant renormalizations, can also be constructed* (e.g.,
the G(Z,, m,) and its bound restriction G(Z;, m,) for QED). With these
groups, it is possible to show that if m the electron physical mass, is different
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from zero, but the bare mass m does vanish, then a is fixed unless a-inver-
sibility fails at infinity. Then the kernel of the representation for dg, namely,

F§o =% (o/dy (t, @),

is a function of a single variable. It follows then, without any approxim-
ation, that the asymptotic behaviour o dg, to all orders in a,, is no more
divergent than a simple log., as has been shown by Feynman graph calcul-
tions!®. The bare charge a, is then unambiguously fixed by the condition

F§~0ag) = 0

which, since a is also fixed by the condition m, = Q is consistent with
the existence of a relation between a, and a. The comparison between
the representation of the kernel F=% and the one resulting from the
group G,(Z,) (which we introduce in the next Chapter), will confirm this
last conclusion, also showing that the perturbative expansion in «, would
be meaningless if that situation (i.e., m # Qm, = 0) werethe actual physical
situation.

6. Unitarity, k-Inversibility and the Hybrid Renommalization Group

a) It is known that when unitarity and causality are satisfied, the function
dp can be written as

0

11, (a)da

-1
e O R N ()

de (K2 /m? ) = 1 —ak? J

0

and that furthermore dg(k?/m?a) > 0, except eventuadly for k? = w0
for which one may have dgr(c0,a) = Q a case realized when Z;(a) = 0.
Therefore, for k% > 0,

0 0 o

aP— dg <0, 6?2—dm > 0. (6-2)
Thus o/dg (k*/m?, @) is inversible with respect to the variable k?: this is
k-inversibilitv. Actually, since the photon has zero mass and k aways
appears in the ratio k%m?, one also has an m-inversibilitv. Defining

o

@) ©-3)
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one then can express k¥m? in the form

kZ
o=y, @, k>0, (6-4)
m
Repeating Ch. 2, Sec. d, we obtain a new renormalization group which
we call hybrid?, since it mixes the physical and the interpolating charges.
We denote the group by G,(Z5) and remark that a is kept fixed in defining
the group. The functional equation is similar to Eq. (2-25), the variable
m?/6? being replaced by a. In this way, new G,(Z,) representations are
obtained of aform similar to Eq. (2-27) where, ¢.g., the kemel F5(1/t,¢/z,)
is replaced by H, (a,a/z;):
) k2(62
2, (k2/0%, m2/6%,a) = 1 —« f -}Hs (0 afz; (1, m2/0%,0)),  (6-5)
1
k2/m2

di (kP /m?,0) = 1 —Otj Tt Hj (o, o/dg (8, o), (6-6)

o
and similarly for the groups G(Z%Z;*Z3 ') introduced in Ch. 5.

b) Though G,(Z;) is physically better founded than the G, (Z3) group,
since it results from the inversibility properties implied by unitarity, it
is however the more recent and therefore the less explored o the two.

One o the great advantages o the G,(Z,) representation o propagators,

dg(x,0) = 1-o J & H, 0, oy 0,2), (67)
0

is that it can be writt g2exactly in the form
afd gk?/m2, a)

= d
logzz = ( , (6-9)
97 (AR (@2 m?, @) B* H; (o, B) °

[

which generalizes the approximate formula o Gell-Mann and Low, Eq.
(3-9),for G,,(Z;), which isvalid only at high energiesand under the condit-
ions that the Taylor expansion (4-1) converges and that Eq. (4-15)is true.
It follows at once that the bare charge a, = «/dg (¢, ) is a solution o
the equation

H3 ((X, aO) = Oa (6'9)

and therefore that, in general®, a is a function of «.
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The difficulty with the above representation comes from the fact that H,,
depends on a in its two variables, thus preventing one from establishing
in an obvious way its connection, viaa Taylor expansion, with Feynman

graphs.

To get an idea of the shape df the two variable function H;(x, ), one can
first require the function dg (x, €?) to possess, for the actual value a = €?,
all known and desirable properties. Since the representation extends itself
down to the physical cut, ie., down to the first pole at k? = — (2m—¢)?
of the lowest positronium bound state (if we neglect the small correction
o the 3-photon cut), one can require the following properties (which
fix a certain dependence in § of the function H;(x, B)):

() Regularity at k* =Q ie,

aHS (d, R} l

H a)=0 a—=>~ =1, 6-10
3(a1 ) aﬁ e ( )

(i) Unitarity, ie.,
E%”d“<o for —@2m-e < k2 < oo 6-11a)

(wenote that k-inversibility does not fix thesign of theinequality in (6-11a)).
From (6-11a), it follows that

H3(“MB)—>—07 (XSBS(Z(),

Hi(,f) <0, 0<pB<uo; (6-115)

(iii) The known behaviour of the vacuum polarization tensor, near the
lowest positronium pole, which gives

Hy (o B)|po = ~ 4/ . (6-12)
In what concerns the dependence o H,(x, ) in the a variable, one can
say the following. From Ch. 4, Sec B.b) and the a-inversibility property,

one knows that [de, (x)/da] > O (EQ. (4-22)) and aso that there might
possibly exis a maximum value a, for which o, () = .

The above requirements, Egs. (6-10)-(6-12) and (4-22), have been used
in drawing Fig. 1. On the other hand, when m =0, one has

F3(U/t, Bln=o = F530,8) = 1/3n + pran? + ...
If thisseriesdoesconvergefor f — 0, then F5 (O,Q # 0; dso,if F5(0 ) # Q
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H(xp)
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o « o, (o) CACH p

Figure 1

one has
k2/92

23 (k2/0%, 0g) = l—aej —t—F3 (0, 0tg/z; (L, 0t))

1

and the physical charge vanishes:

_ %
Z3 (09 0(0)

Thus, H;(x =0, ) = F;(0, B) and the corresponding bare charge
oo [o(m = 0)] = a, (O) should be a solution o F,(0,a) =0. However,
since for a = 0 one has also the solution a, =« =0, one may consider
the axis § = 0 as asymptotic to the ascending branch o H, (o, f) for r - 0.

afm = 0) = = 0. (6-13)

Let us finally consider the case m # 0, my, =0, discussed in Ch. 5. The
function H,(x(my = 0), B) is then identical to F§*=%(B) and, if this case
were an actual physical situation, it is clear from the behaviours given
above that a Taylor expansion, around f = O, is meaningless.

7. Are the Divergences a Drawback of Perturbation Theory?

By comparing the two renormalization groups o QED, G, (Z;) and
G,(Z5), which result from the two different inversibility properties, we
finaly arrived at two pictures of the function dg (x, 2) which are comple-
mentar~in the better known cases but which are contradictory when
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we try to extrapolate our knowledge up to infinity. The situation is
summarized in Table 1.

G.(Z5) G.(Z3)
Postulate aInversibility k-Inversibility
Condition 0 d ) g d )'
it = (/dy (x, ), a4 @/ (5, ),
dgr (x,) red dg(x, ) red
Physical Axiom Lagrangian Field Theory(?) Unitarity
Kernels F3(1/t, ofdg (t, &) Hy(1/t, ofdg (t, 0))
""Experimental F, L =Y 0. (0)/de(t, &)"-1,,, Global low energy behaviour:
Properties” ! Hj(,0) =0,
- Perturbative asymptotic 3 H, (8, B)p=. = 1122,
behaviour of Feynman graphs:
. YN QNS Hs (4, B0 — - 4/82.
if ¢,(0) # oo,
0, =137, ¢, = 1/4n?,. ..
"Natural" Expected F(1/t, o/dg (t, )}~ Hj(o,a0) = 0

Global Constraint

at High Energy =F0,%) =0
Consequence a, independent o a, ie., a, = T (a), ie.,
d a
35 (e (0, 0)) =0 7 W/ (0, 2) # 0

Table 1

Stressing the fact that both picturesadmit thefinite nessd a,, the question
is therefore to obtain consistency between the two equations which are
expected to fix a,. This can be done in two ways.

Either one can suppose that H,(a,a) = Ois redly an identity, this mean-
ing that the dependence in a disappears when
k)] 0 = 0o

(e.g., if H,(a B) wheredf theform ~ A(@)[f - #o]?® ; note that since noth-
ing is known about the behaviour d H;(x, ) in the domain f > a, this
cannot be excluded), or one can suppose that we have in fact a non-trivial
relation H;(x,3) = O which fixes a4 («), i.e., the dependence df 3 on a
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This situation would obvioudly imply new conditions on F; which could,
eventually, be tested since F; is more easily accessibleto "' theoretical exper-
iments” via perturbation theory; also, it is certainly more interesting to
have a relation «, () than to obtain a universal value for a,, for which
we have no obvious use and whose correctness seems very difficult to
control.

Taking the second point of view, let us suppose that one'choosesa simple
function H, (a,p) such that the equation H, (x,a) =0 gives a relation
a, =T (a) (where f is not a constant). One then can easily verify* that
the corresponding F;(1/¢, 8) function, which one can obtain from H,, is
such that

Fy(1/t, efdy (8, D)~ = 0, (7-1)

i.e., the condition (4-17) discussed in Ch. 4, Sec. B.a), which was expected
to fix @, is no longer an equation but, rather, F; becomes identically null
at t — co. It remains however to show that there exist functions

F3(1/t, afdg (¢, @)
which should then possess the following apparently contradictory pro-
perties
(i) have a Taylor expansion:
[Taylor expansion of F,(1/t, a/dg (t, o)}~
= [2 @u(U/0)e/d @)™ Traeo = 2. @aONexo)" ™", (7-2)
1 1

with ¢,(0) # co for all n and # O at least for some », and (ii) being such
that

F3 (l/ta a/dk (t, a))lt—»oo = Oa (7-3)
for all ay E af/dg(c0,a) in some domain &,.

Limiting for simplicity the discussion to the domain t > 1, one can e
that a function such as

P ) = ;208 (-4

wherea and b are > 0 and F, (O,f) has a Taylor expansion for all g8 > 0,
satisfies the condition (ii) provided that 8, which is an increasing function
of t, B = a/dg(t, d), reaches (at afinite valuet, o t) the critical value B(t,) =
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= a/dg (t,,2) = B, = b/a. In perturbation theory, instead, the same function
(7-4) gives a series

[Taylor expan. F5©OB8)] x [1-Bt~2(1 + aflogt +..) + 0(t~2%)], (7-5)
which, when t - «o and B(f) —» «, tends to
[Taylor expan. F3(O.A)]

and, therefore, satisfies condition (i).

It is easy to verify that the difference between Egs. (7-2) and (7-3), and
the error comitted in (7-2), result from the fact that, § being a function
of t, the Taylor expansion is justified for t < ¢; only, and that therefore
oneis not justified in performing on that seriesthelimit t — co. Thefunction
(7-4) furnishes also an illustration o the essentia difference, which is not
manifest in perturbation theory, between an exactly zero mass theory
(represented here by the function F;(0, §)) and a theory represented by
F,(m?/k2,fl), which involves a mass which might be arbitrarily small.

It isalso clear that, with afunctionlike (7-4) and for ain a domain &, (which
is related to the domain &, o a, for which «, > ), Z, is a finite function
o a That same function, computed in perturbation theory, would give
precisaly the same type of divergences one usualy encounters in standard
quantum electrodynamics. This example, therefore, exhibits a delicate
cut-off mechanism'which does not involve any " deus ex machina”, spoiled
however by perturbation theory which is solely responsible in this case
for the presence of divergences. It is of course a conjecture that the real
photon propagator should be kind enough to belong to such a class o
functions.

Nous désirons souligner la part importante qui a apportée Mme Irac-Astaud a la formul-
ation que nous présentons ici et la remercier de ses nombreuses discussions critiques, qui
ont contribué a éclairer ce sujet. Nous tenons a remercier par son hospitaité I'Institut de
Physique Théorique de S&o Paulo e, particulierement, le Professeur Jorge Lea Ferreira
par i'aide éfficace qu’il nous a apportée dans la rédaction de cet article.
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