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The counting problem for the number of linearly independent homogeneous polynomials 
in six variables with definite permutational symmetry under S, is solved. The solution of th~: 
analogous problem for homogeneous and harmonic polynomials js also given. The results 
are applied to the calculation of the degeneracies of the baryonic levels in quark models, 
specially in the harmonic symmetric quark model. 

Resolve-se o problema da contagem do número de polinômios homogêneos em seis variáveis, 
linearmente independentes, com simetrias permutacionais sob S, definidas. Dá-se também 
a solução do problema análogo para polinõmios homogêneos e harmônicos. Os resultados 
são aplicados a o  cálculo das degenerescências dos níveis bariõnicos nos modelos de quarks, 
especialmente no modelo harmônico e simétrico. 

1. Introduction 

In a previous issue of this journal', a class of quantum-mechanical, non- 
relativistic, three-body problems have been treated, namely, those in which 
the in te rac t i~potent ia l  is a function only of the hyperdistance r, V ( r )  = 

= V (F+ y2), where x and y are the relative Jacobi coordinateç of 
the problem. As shown in Ref. 1 (hereafter referred to as I), those cases 
exhibit R, symmetry, a fact which allows a complete group theoretical 
treatment of the problem. In particular, the states of the system corres- 
ponding to a given orbital angular momentum L, projection M and given 
permutational syrnmetry were explicitly constructed. 

Of special interest for physical applications in the context of quark models 
is the particular case in which the particles interact pairwise through elastic 
forces. As is well known, such a case presents the so called accidental 
degeneracy reflected by the existence of a larger symmetry group of the 
interna1 motion, namely, U 6 .  
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Here h = m = 1 (the masses of the bodies are equal) and r is the hyper- 
distance defined in terms of the Jacobi coordinates 

Further, V2 is the six-dimensional Laplacian 

v2 = v; + v;. 
In the harrnonic quark rnodel, the forces are pairwise elastic and we have 

an identity which follows directly from (2-2) and (2-3). Therefore, for the 
harmonic case, 

where R = o/,,/% Clearly (2-5) is the Hamiltonian of a six-dimensional 
harmonic oscillator of frequency B Introducing creation and annihilation 
operators in the usual way, it can be shown that the energy spectrum of 
H is given by 

an\d,"besides, that the degeneracy of the leve1 A is equal to the nurnber 
of linearly independent homogeneous polynomials in six variables. When 
the particles of the system described by H have only spatial degrees of 
freedom, this number is easily obtained by combinatorial analysis and 
is given by (7'). For the case of an r-dimensional harmonic oscillator, 
this number is given by 

dim [A], = (":L; I). (2-7) 

The HSQM, in a first approximation, assumes that the interaction poten- 
tia1 is independent of spin and unitary spin. The quarks are described by 
the representations of dimension 6 of SU,. It follows that three-quark 
states exist in the representations of dimensions 56,20 and 70 of that group. 
Such representations are symmetric S,  antisymmetric A and mixed M under 
permutation of the spin-unitary spin degrees of freedom. That is, they carry 
irreducible representations of the S, group which are symmetric, antisym- 
metric and mixed, the first two being one-dimensional, the last one, two- 
dimensional, as is well known. 



The symmetry requirement of the HSQM, based on phenomenological 
grounds, is that the baryon states be symmetric under permutation of 
the space, spin and unitary spin degrees of freedom of the constituents. 

In order to construct the states of the HSQM one proceeds as follows. 
First functions and homogeneous polynomials of definite permutational 
symmetry are constructed, in the spin-unitary spin variables and in the 
space variables, respectively. Then, one multiplies the two sets of functions 
and reduce the direct product into S, irreducible representations, selecting 
the symmetric ones (as required by the HSQM). 

Let a, p and y be the number of linearly independent homogeneous poly- 
nomials of degree Â in six variables xi and .vi of symmetric, antisymmetric 
and mixed S3 symmetry, respectively. Making use of the Clebsch-Gordan 
series of S,, namely, 

and the permutational properties of the 56-, 20- and 70-dimensional repre- 
sentatioris of SU,, one can easily conclude that the number of symmetric 
baryon states of degree Â (as required by the HSQM) is given by 56a + 
+ 20P + 35y. Therefore, the degeneracy of the leve1 Â in the HSQM is3 

For completeness, we also give here the corresponding numbers for the 
antisymmetric (Ferrni quark model) and mixed cases: 

It remains to calculate the numbers a, p and y. This is a long, though 
straightforward, counting problem which will be sketched in the next 
section. 

3. The Counting Problem 

The more convenient basis of homogeneous polynomials in six variables, 
from the viewpoint of permutational symmetry, is given by the polynomials 



with 

1 1 t = - (X - iy) and q = - (x + iy). Jz a (3-2) 

These polynomials are homogeneous of degree 

and, as it was proved in I, their permutational symmetry depends on 
the label 

u = 2(p - v) + (i - j') (3-4) 

in the fdlowing way: 

i) for (H v, j, j') # (v, ji, j1 , j) and u $ O (mod 31, from the pair (Q;,,., QtuYjj 
one can get a symmetric and an antisymmetric polynomial; 

ii) for (p, V, j, j') # (V, p, j', j) and u s O (mod 3), from the pair (Q:,,,., 
e;,,.,) one can get two polynomials which transform as the compomts  
nf the mixed representation of S, ; 

iii) for @, v, j, j') = (v, p, j', j) [i.e., p = v and j = j'], the polynomial QiPjj 
is symmetric when L is even and antisymmetric when L is odd. 

From i) to  iii) it follows immediately that for odd Â. one has the same number 
of symrnetric and antisymmetric polynomials since iii), which treats dif- 
ferently symmetric and antisymmetric polynomials, occurs only for even A. 

Let us count firstly the cases (p, v, j, jl) # (v, p, j', j). Since p, v, j and j' are 
nonnegative integers satisfying Eq (3-3), it turns out to be convenient to 
introduce two new labels 1 = / r  + i1 and p = 201 - v) .  For these labels 
one has 

and the sum 

gives the contribution to a and 0 when restricted to u E O (mod 3) and 
the contribution to y when restricted to u $ 0  (mod 3). 



From (3-3) and (3-4) it follows that 

The restriction u = O (mod 3) can be more easily be taken into account 
by breaking the sum (3-7) into 9 parts: 

1 = O (mod 3) and p r O, 1,2 (mod 3) 
1 = 1 (mod 3) and p 0,1,2 (mod 3) 
1 r 2 (mod 3) and p 0,1,2 (mod 3). 

Summing up all these 9 partia1 contributions one gets the total contribution 
to cr and 11' iòr ali cases (p, v, j, j') # ( v ,  p, j', j). The same process is applied 
to get the contribution to y. In this counting process it is convenient to 
treat separately the cases odd Â and even 1, since in the first case one auto- 
matically has (/*, v, j, j') # (v, /*, j', j), while in the second case one has to 
be careful t o  take off the cases p = v and j = j ' .  

Table 1 - Number of linearly independent homogeneous polynomials of even degree i, in 
six vá5ables of symmetric C(, antisymmetric f i  and mixed y.S, symmetry. Here n is nonnegatiw 
integer: n = 0, 1,2 , .  . . . 

Table 2 - Same as Table 1, for odd i,. Note that in this case a = /l 



For odd A, the counting is finíshed and the results are given in Table 2. 
For even 1, the counting of the polynomials of mixed symmetry is alsa 
finished, but one still has to count the contribution of the cases p = v 
and j = j' to a and /i'. 

When p = v and j = j', the sum 

gives the contribution to a and j3 when restricted to even or odd values 
of L, respectively. These contributions, when added to the contribution 
of the cases (p, v,  j, j') # (v, p, j', j) gives a and /I. The final results for i even 
are given in Table 1. 

To be sure that the values of a, j3 and y given in Tables 1 and 2 are correct, 
they were checked, by a computer program, against the corresponding 
values obtained by direct counting. 

From Tables 1 and 2, one obtains 

LI; = 56a + 200 + 357 = 

1 
=- (182% 270lb4-+ 1530A3 +4185Â2 + Si'82Â + 336O), for 2 E O  (rnod 6), 

60 
1 

=- (9Â" 135Â4 + 765Â3 + 2015Â2 + 2396Â+ 98O), for Â 1 (mod 6), 30 
1 

=- (182% 270Â4 + 1530Â3 + 4205IL2 + 58421 + 3320), for Â r 2 (mod 6), 
60 
1 

=- (92" 135Â4 + 765Â3 + 20252' + 2486Â + 1140), for Â - 3 (mod 6), 30 
1 

=- (l8/2%270)~~ + 1530Â3 +4165Â2 + 5602Â.f 3O4O), for Â -4 (mod 6), 
60 
1 

=- (92% 135Â4 + 765Â3 + 2035Â2 + Zl6Â + 1120), for Â = 5 (mod 6), 30 

(3- 1 O) 

4. Extension to General Central Interactions 

In this section, we consider possible quark models of non-harmonjc type, 
described by central interaction potentials V(r) and the corresponding 
counting problem. For those central potentials V(r) which do not present 



accidental degeneracy, the counting of states of a given symmetry follows 
the same lines as described in section 2, with new numbers a', and :,' 
in the place of a, P and y. The a', p, y' now count the number of linearly 
independent homogeneous and harmonic polynomials of degree 2 in six 
variables of the type S, A and M, respectively. It turns out, from I, that 
those numbers can be obtained from u, /3 and y by a simple subtraction 
procedure, namely, 

a' (A) = u(A) - u(Â - 2), etc. (4-1) 

This follows from Eq (4-13) of I. The values of u', ,Y and y', obtained in 
this way, are given in Tables 3 and 4. From them, one gets that the dege- 
neracy of the leve1 3, for a central interaction potential V ( r ) ,  without acciden- 
tal degeneracy, is given by 

L & ,,,,,,, , = ( 5 6 ~ '  + 20P' + 35y') = 
1 

=- (180Â4 + 1440Â3 +4160Ã2 + 5680)L + 3360), for ;i -0 (mod 6), 
60 
1 

=- (90Â4 + 720Â3 + 2050Â2 + 2440Â + 1000), for Â E 1 (mod 6), 
30 
1 

=- (1 80A4 + 1440Â3 + 4 160Â2 + 56402, + 3280), for Â - 2 (mod 6), (4-2) 60 
1 

=- (90Â4 + 720A3 + 2080A2 + 257OÂ + 1 l40), for A _= 3 (mod 6), 
30 
1 

=- (180Â4 + 14403w3 +4100Â2 + 54202 + 3080), for Â -4 (mod 6), 
60 
1 

=- (903: + 720IL3 + 2080L2 + 25503, + 110Q), for Â=5 (mod 6), 
30 

in the case of a symmetric quark model. 

1 1 1 
6n + 2 - (R4  +8iL3 + 27 i2  + % i +  - (14 +8A3 +27IL2 + 22;. - -- (i" + 8i.' + 21 i2  s 

72 72 18 
+ 56) 16) + 222 + 8) 

Table 3 - Number of linearly independent homogeneous und harmonic polynomials of even 
degreFÃ in six variables of bymmetric a', antisymmetric /l' and mixed y',S, symmetry. 



Table 4 - Samc as Table 3, lor odd i. Note that in this case cc' = /j' 

5. 'Conclusions 

As shown in the previous sections, the degeneracies of the baryon spectrum 
in quark models appear in the form of a polynomial in 1. In particular, 
for the HSQM case and jor large 1, one has from (3-10) 

From (2-7) it is also clear that the power of the leading term in DG depends 
on the number n of constituents as 3n-4. The form of the hadronic spec- 
trum for large excitations is physically important in successful models 
such as the Hagedorn relativistic bootstrap mode14. For large excitations, 
Hagedorn has a spectrum proportional to (a/rn5I2) exp (m/T,), where rn 
is the hadron mass, a result also reproduced by the dual-resonance mode15. 
The latter model, however, corresponds to a hadron structure with an 
infinite number of harmonic oscillators and the corresponding counting 
problem, which can be solved with the help of the celebrated theorems 
of Hardy and Ramanujan on partitions, gives an exponential (in contrast 
to polynomial) behavior, for large excitations. Therefore, oce can conclude 
that the asymptotic form of the hadron spectrum depends, essentially, 
on the assumed structure of the hadrons. 

One of us (P.L.F.) is grateful to R. Aldrovandi for interesting discussions. We are pleased 
to acknowledge the financia1 support from FINEP, Rro de Janeiro. 

References and Notes 

1. J. A. Ca8,tilho Alcarás and J. Leal Ferreira, Rev. Bras. Fis 1, 63(1971). See also G. Karl 
and E. Obrik, Nucl. Phys. B8, 609(1968). 



3. For the mesons, considered as a qq structure, the corresponding number of states is immedia- 
tely given by 36(":'), since after removing the CM motion, one gets a three-dimensional 
harmonic oscillator. The factor 36 comes from the SU" part, via the well known reduction 
6 @ 6* = 1 @ 35. 
4. R. Hagedorn, in Proceedings oj rhe Colloquium on High Multiplicity Hudronic lnreruc- 
tions, École Polytechnique, Paris, 1970, where extensive references on the model can be found. 
5. S. Fubini and G. Veneziano, Nuovo Cim. 64A, 811(1969). S. Fubini, D. Gordon and G. 
Veneziano, Phys. Lett 29B, 679(1969). K. Huang and S. Weinberg, Phys. Rev. Lett. 25, 
895(1970). 


