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The counting problem for the number of linearly independent homogeneous polynomials
in six variables with definite permutational symmetry under S, is solved. The solution of the
analogous problem for homogeneous and harmonic polynomials is alse given. The results
are applied to the calculation of the degeneracies of the baryonic levels in quark models,
specially in the harmonic symmetric quark model.

Resolve-se 0 problema da contagem do nimero de polindmios homogéneos em seis variaveis,
linearmente independentes, com simetrias permutacionais sob S, definidas. Da-se também
a solugdo do problema anédlogo para polinémios homogéneos e harménicos. Os resultados
sao aplicados ao célculo das degenerescéncias dos niveis baridnicos nos modelos de quarks,
especialmente no modelo harménico e simétrico.

1. Introduction

In a previous issue of this journal®, a class of quantum-mechanical, non-
relativistic, three-body problems have been treated, namely, those in which
the interaction potential is a function only o the hyperdistance r, V(r) =
= V(/x?* +Y?), where x and y are the relative Jacobi coordinateg of
the problem. As shown in Ref. 1 (hereafter referred to as 1), those cases
exhibit R, symmetry, a fact which allows a complete group theoretical
treatment of the problem. In particular, the states of the system corres-
ponding to a given orbital angular momentum L, projection M and given
permutational syrnmetry were explicitly constructed.

Of specid interest for physical applicationsin the context of quark models
isthe particular casein which the particles interact pairwise through elastic
forces. As is wel known, such a case presents the so called accidental
degeneracy reflected by the existence of a larger symmetry group of the
internal motion, namely, U,.

Postal address: Caixa Postal, 5956, 01000 - Sdo Paulo SP

327



As an extension and application of the work done in I, we studied in this
note 'the degeneracy of the baryonic states in the harmonic symmetric
quark model?> (HSQM), which is phenomenologically the most successful
for a description of the baryons as composite states of three quarks. In
that model, the spin-unitary spin properties of the baryons are described
by the SU, group and the overall baryonic states are assumed to be comple- .
tely symmetric under permutation of the constituents.

The involved counting problem was solved in an exact way, based on
the results of 1. It consists in counting the number of linearly independent
homogeneous polynomials of degree 4, P*(x,y), in the six variables x; and
vi(i = 1,2,3), possessing given permutational symmetry ¢ with respect
to §,, the permutation group of three objects. Here ¢ = §, A or M, accor-
ding to the three different types of irreducible representations of S; (Sym-
metric S, Antisymmetric 4 and Mixed M, the first two being one-dimen-
sional and the last one two-dimensional). The numbers of those P#(x,y)
are denoted by o, § and y for ¢ = S, A and M, respectively. Known «, f
and v, the counting of the overall states of the system, with permutational
symmetry (in particular the symmetric ones required by the HSQM) is
a simple matter. It is sufficient to use simple properties of the spin-unitary
spin part of the state, together with the Clebsch-Gordan series of the
S, group. Nevertheless, to get «, f and y is a long, though completely
straightforward calculation.

This paper is organized as follows. In Section 2, the main aspects of the
HSQM are recalled, together with some relevant permutational sym-
metry considerations. In Section 3, we briefly sketch the details of the coun-
ting problem and the riumbers «, § and y are given in Tables 1 and 2. In
Section 4, we considered the counting problem for models which are
non-harmonic but central (i.e., described by an interaction potential of
the V(r) form). In this case, the corresponding numbers o', f” and ' count
the number of homogeneous and harmonic polynomials in six variables,
with S; symmetry of type S, 4 and M, respectively. Finally, in Section 5,
we briefly ‘state the conclusions and comparisons with other models.

2. The Harmonic Symmetric Quark Model

As in 1, we shall confine our considerations to Hamiltonians with a purely
r-dependent (i.e., central) potential V(r):

H= ——%VZ + V), (2-1)
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Here i = m = 1 (the masses o the bodies are equal) and r is the hyper-
distance defined in terms of the Jacobi coordinates

1 1
X =—=(, +1,-2ry), y=—=(—r
\/6(1 2 3 ¥ ﬁ(l 2)

F=Jx +y2. 2-3)

Further, V2 is the six-dimensional Laplacian
V2 =v2+V,
In the harrnonic quark model, the forces are pairwise elastic and we have

(2-2)
by

3 1 602
V=Y —o’[r-r] =—1, (2-4)
i<j=1 2 6
an identity which follows directly from (2-2) and (2-3). Therefore, for the
harmonic case,
_ 1 2 QZ 2
H__TV +5% (2-5)
where R = w/ﬁ. Clearly (2-5) is the Hamiltonian o a six-dimensional
harmonic oscillator of frequency Q. Introducing creation and annihilation
operators in the usua way, it can be shown that the energy spectrum of
H is given by

E,=Q(A+3),1=012..., _ (2-6)

and; besides, that the degeneracy o the level A is equal to the nurnber
of linearly independent homogeneous polynomials in six variables. When
the particles of the system described by H have only spatial degrees of
freedom, this number is easily obtained by combinatorial analysis and
is given by (*1%). For the case o an r-dimensional harmonic oscillator,
this number is given by

dimp, = (+r7Y). (2-7)
The HSQM, in a first approximation, assumes that the interaction poten-
tial is independent of spin and unitary spin. The quarks are described by
the representations of dimension 6 o SU,. It follows that three-quark
states exist in the representations of dimensions 56, 20 and 70 of that group.
Such representations are symmetric S, antisymmetric A and mixed M under
permutation of the spin-unitary spin degrees of freedom. That is, they carry
irreducible representations of the S; group which are symmetric, antisym-
metric and mixed, the first two being one-dimensional, the last one, two-
dimensional, as is well known.
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The symmetry requirement of the HSQM, based on phenomenological
grounds, is that the baryon states be symmetric under permutation of
the space, spin and unitary spin degrees of freedom of the constituents.

In order to construct the states of the HSQM one proceeds as follows.
First functions and homogeneous polynomials of definite permutational
symmetry are constructed, in the spin-unitary spin variables and in the
space variables, respectively. Then, one multiplies the two sets of functions
and reduce the direct product into S, irreducible representations, selecting
the symmetric ones (as required by the HSQM).

Let a, § and y be the number of linearly independent homogeneous poly-
nomials of degree 4 in 9x variables x; and y;, of symmetric, antisymmetric
and mixed S, symmetry, respectively. Making use of the Clebsch-Gordan
series of S5, namely,

S®S=S, A®S=A4, M®S=M,

S®A=A, AQRA=8, MRA=M, (2-8)

SOM=M, AQGM =M, MIM=SORA®M B
and the permutational properties of the 56-, 20- and 70-dimensional repre-
sentations of SU,, one can easily conclude that the number o symmetric
baryon states of degree A (as required by the HSQM) is given by 56« +
+ 208 + 35y. Therefore, the degeneracy of the level 4 in the HSQM is®

D} = 560 + 208 +35y. (2-9)

For completeness, we also give here the corresponding numbers for the
antisymmetric (Fermi quark model) and mixed cases:

D% = 20a + 568 + 35y, (2-10)
D}y = 1400 + 1408 + 146y. (2-11)

It remains to calculate the numbers a, § and y. This is a long, though
straightforward, counting problem which will be sketched in the next
section.

3. The Counting Problem

The more convenient basis of homogeneous polynomials in sx variables,
from the viewpoint of permutational symmetry, is given by the polynomials

Quirn & n) = &Y' 0?) 3 (mim' |[LMY¥] &%, ()  (3-1)
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with
1 ) 1 .
£ = 75()( —iy) and n= ﬁ (X + iy). (3-2)

These polynomials are homogeneous o degree
A=2u+ M+ G+ (3-3)

and, as it was proved in I, their permutational symmetry depends on
the label

u=2u-V\t G-, (3-4)
in the following way:

) for (i, v,j,]) # (v, i1,/ ,}) and u # O (mod 3), from the pair (Q%; Qi)
one can get a symmetric and an antisymmetric polynomial;

i) for (u, v, j, j) # (v, &, j) and u =0 (mod 3), from the pair (@},
t.) one can get two polynomials which transform as the components

of the mixed representation of S;;

iii) for i, v, J, /) =V, )", J) ie, p =v and j =], the polynomial Q% ;;

is symmetric when L is even and antisymmetric when L is odd.

From i) toiii)it follows immediately that for odd 4 one has the same number
of symrnetric and antisymmetric polynomials since iii), which treats dif-
ferently symmetric and antisymmetric polynomials, occurs only for even A.

Let us count firstly the cases (u, v, j,j') # (v, 4,j', j). Since u, v, j and j' are
nonnegative integers satisfying Eq (3-3), it turns out to be convenient to
introduce two new labels 1= +v and p =2(u-v). For these labels
one has

l=p+v=012...,[42) (3-5)
p=2u-v)=024,...,2 (3-6)
and the sum
w2l
IZO /Z (20, p,u) + 1102/ (L p, ) + 1] 3-7
= p/2=0

gives the contribution to « and § when restricted to u = 0 (mod 3) and
the contribution to y when restricted to u = 0 (mod 3).
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From (3-3) and (3-4) it follows that

Qi+ DR+ 1) =G@-2 +u-p+ HE-2l-u+p+ 1)
The restriction v = 0 (mod 3) can be more easily be taken into account
by breaking the sum (3-7) into 9 parts:

I=0 (mod 3) and pr 01,2 (mod 3)
1=1 (mod 3) and p=0,1,2 (mod 3)
[r2(mod3) and p=0,1,2 (mod 3).

Summing up all these 9 partial contributions one gets the total contribution
toa and f for alt cases (, v, j,jD) # (v, & j', j). The same process is applied
to get the contribution to y. In this counting process it is convenient to
treat separately the cases odd 4 and even A sincein the first case one auto-
matically has (*, v, j, j') #(v, # j',j), while in the second case one has to
be careful to take off the cases p=v and j =j'.

A o [3 v
! S 4 =3 A pa 53 52 A aa 53 52
— (A : — a 3 — 15/ 4854
6n 720() + 15A% 4+ 854° + 720(/1 +154° +854% + 180(/1 +15/° +85.% +
+2702% 46242+ 720) + 1801 +84) £2254+234)
1 . 4 .3 1. 4 3 1. Ja L3
6n+2 720() + 154% +854° + 720(A +154%* +854° + 180(/ + 154 + 8547 +
+3104% 47447, 4+ 640) +2204% 4204 - 80) +2054% 4 174). 4+ 40)
1 1 ' 1
4 —(A® 4 i3 —— (24152 .3 — (A7 415244853
6n + 720() +152*+854° + 720( +152%+854° + 180(/1 +15.%+85:° +
+ 23047 + 2642 4+ 8Q) 4+ 14022 — 2764 - 640) 24542 + 4145+ 320)

Table 1 - Number of linearly independent homogeneous polynomials of even degree 4 in

six vafiables of symmetric «, antisymmetric # and mixed .S, symmetry. Here n is nonnegative
integer: n =0,1,2,....

£ o =/3 4

-0 .. 3 52 ; Lo.s s 4 53 52

6n+1 -750—_(4 +1627 + 10127 4+ 2864 4 280) m(ﬂu +154%+854°+2454° +
' +414/.+ 320)

1 35 14 ;3 52 - 4 4 53 52 ;

— (A | 2 3 (4 . > +225/. 4234
6n+3 720(/ + 154* + 8577 +225% + 180(’ +152° 48547 +225/.+234)

+ 3544 4+ 360)

s a4 53 72 Loos 4 53 52

== (47 3 s i — (A . 242054
6n+5 720(/ 4+ 154* +854° +2654° + 180(/ + 15254854 +205.° +

+4742 4 280) +174/.+ 40)

Table 2 - Same as Table 1, for odd A. Note that in this case a = §
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For odd 4, the counting is finished and the results are given in Table 2
For even A, the counting of the polynomials of mixed symmetry is alsa
finished, but one till has to count the contribution of the cases u =v
and j=j toaand £

When g =v and j =j', the sum
[A/4) [(A—4py2) 24

L 2L + 1] (3-9)

u=0 Jj=0

gives the contribution to a and # when restricted to even or odd values
of L, respectively. These contributions, when added to the contribution
of thecases (i, v, j, j) # (V. i1, ', j)givesaand . Thefinal resultsfor 1 even
are given in Table 1.

To besurethat thevaluesd a, § and v givenin Tables 1 and 2 are correct,
they were checked, by a computer program, against the corresponding
values obtained by direct counting.

From Tables 1 and 2, one obtains
D} = 560t 208 + 35y =
:(%(18/15+270)u4_+1530}13+4185A2+5782/1+3360), for =0 (rnod 6),

1
=p(94° +1351* F7651° +201512+23962+980),  for 1=1 (mod 6),

(184° 4 270A%+ 1530A3+ 42052 + 58424+ 3320), for A r2 (mod 6),

|—~8I|—\

=g 94" + 135A%+ 76543 +202522 + 24864+ 1140), for 1=3 (mod 6),

[EY

= g5 1845 +2702 +1530A3+4165A2 + 56024 + 3040), for 1— 4 (mod 6),

(92° +135A%+ 76543 +203512 + 251641 1120), for A=5 (mod 6),

Eﬂl—\

(3-10)

4. Extension to General Central Interactions

In this section, we consider possible quark models of non-harmonic type,
described by central interaction potentials V(r) and the corresponding
counting problem. For those central potentials V(r) which do not present
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accidental degeneracy, the counting of states of a given symmetry follows
the same lines as described in section 2, with new numbers o', §° and »’
in the place o «, § and y. The &, g, y now count the number o linearly
independent homogeneous and harmonic polynomials o degree 4 in six
variables of the type S, A and M, respectively. It turns out, from I, that
those numbers can be obtained from «, f and y by a simple subtraction
procedure, namely,

o (A) = ad) — oA - 2), etc. (4-1)

This follows from Eq (4-13) of I. The values o o', # and ', obtained in
this way, are given in Tables 3 and 4. From them, one gets that the dege-
neracy o thelevel A for acentral interaction potential ¥ (r), without acciden-
tal degeneracy, is given by

D§ conray = (560 F 208" + 35y) =
:%(180/14+1440A3+4160/12+568()i+3360), for 1=0 (mod 6),

:3_10 (90A*+ 720A%+ 208042+ 244021 1000),  for A=1 (mod 6),

=$ (1804* + 1440A%+ 416047 + 564041 3280), for 4=2 (mod 6),  (4-2)

(9044 +72043+208042+2570,+1140), for A=3 (mod 6),

|~ B~ Q-

(180A%+ 144023 + 410042 542021 3080), for A=4 (mod 6),

3 (007 + 72023 + 208022 + 25503, + 1100), for i=5 (mod 6),

in the case of a symmetric quark model.

2 o 5 y
1 e ous  nmes YN Aoy ear e

6n 75 (A 48234277 + =y (12 +84% 2744 30) g8+ 21+ 18)
+664+72)

6nt2 7_12(R4+813+27;L2+58x+ 712(/14+8/13+27/12+222— —1%()~4+8/'.3+2]/22+

+56) 16) +22,+8)
1 R

6ntd o5 (244827151 + 140+ %()‘4+8/13+15/12—22).- %(/‘.4+8},3+27).2+
+16) 56) +447.428)

Table 3 - Number of linearly independent homogeneous und harmonic polynomials d even
degree 2 in Sx variables of symmetric &, antisymmetric f* and mixed y'.S; symmetry.
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A o =p ' y

1

entl = (A* +8A3 4+ 1542 - 44 - 20) % (A* 481342702 + 44/ 4 28)
1 .

6n+3 =5 (244813 +27)% + 4804 36) % (A +8224+211418)

1
6n+5 ﬁ(/14+8/13+27/12+40/1+20) %(A4+823+2122+22)~+8)

Table 4 - Samc as Table 3, for odd i. Note that in this case o’ = #

5. 'Conclusions

As shown in the previous sections, the degeneracies o the baryon spectrum
in quark models appear in the form o a polynomial in 1. In particular,
for the HSQM case and for large 4, one has from (3-10)

3
D~ %6(3,12 + 450 4 255). (5-1)

From (2-7)it is also clear that the power of the leading term in D} depends
on the number n of constituents as 3n-4. The form of the hadronic spec-
trum for large excitations is physically important in successful models
such as the Hagedorn relativistic bootstrap model®. For large excitations,
Hagedorn has a spectrum proportional to (a/m*?2)exp(m/T,), where m
isthe hadron mass, a result also reproduced by the dual-resonance model®.
The latter model, however, corresponds to a hadron structure with an
infinite number of harmonic oscillators and the corresponding counting
problem, which can be solved with the help of the celebrated theorems
of Hardy and Ramanujan on partitions, gives an exponential (in contrast
to polynomial) behavior, for large excitations. Therefore, ore can conclude
that the asymptotic form of the hadron spectrum depends, essentialy,
on the assumed structure of the hadrons.
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