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Models of Flat Regge Trajectories 
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Dispersion relations are exploited to obtain models of Regge trajectories. For trajectories 
that tend to a constant, at large, s, a systematic procedure is developed and several examples 
are presented. 

Utilizam-se relações de dispersão para obter modelos de trajetórias de Regge. Para traje- 
tórias que tendem a uma constante, para grande s, desenvolve-se um tratamento sistemático 
e apresentam-se vários exemplos. 

The study of the consequences of analyticity and unitarity on the form of 
the trajectory of a Regge pole has been considerably developed in the last 
few yearsl. Though many general properties are now well understood, 
few detailed models are available. It is of particular interest to learn about 
trajectories that escape the treatment given, for instance, in Ref. 1. In this 
paper, several models of this kind are discussed. They are based upon 
a once subtracted dispersion relation which is transformed into an inte- 
grodifferential equation through the assumption of a specific form for 
the width function. The method is not new and has been used by the first- 
named author recently2. The trajectories studied here are, nevertheless, 
of an entirely different type, and many new features both of the equations 
and of the solutions are made clear. The problem to be discussed has, 
amusingly enough, another kind of interest: the formalism is exactly that 
of the theory of aircraft wings of finite span. An application of our results 
to this theory is contemplated for the near future. 

In Section 2, we briefly review the idea of the model, formulating the inte- 
grodifferential equation and transforming it into a Fredholm integral 
equation. General results are then stated. Section 3 covers trajectories 
with an asymptotically vanishing imaginary part. Severa1 solutions are 
presented and we concentrate in those that look more interesting. 
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2. The Model 

We assume, as usually, that the trajectory is an analytic function of s except 
for a cut along the positive axis starting at the lowest threshold, and that 
its asymptotic behavior for large s is compatible with a once subtracted 
dispersion relation. Detailed discussions about these assumptions may 
be found elsewhere2s3. 

Denoting by a(s) the trajectory, we write 

- ds' 
Im a(sl) 

a(s) = a(s,) t -- 
7t (s' - s0)(sf - S) 

The essential input will be the width function 

Im a(s) 
G(S) = JS r(s) = --- 

Re a' (s) ' 

where T(s) is the usual (Breit-Wigner) width. It is now easy to show that 
the following integro-differential equation obtains: 

ds' d 
Ima(s) =@ 1 - -[imo(sl)]; 

71 s'- s ds' 

where the integral is, now, a principal value. The problem is that of, given 
g(s), determining Im a($. Use of (1) then determines the real part of the 
trajectory. There is, of course, no complete theory of integro differential 
equations of an arbitrary type, and discussion of the existence and uni- 
queness of solutions is not simple. In the case of trajectories with an asymp- 
totically vanishing imaginary part, (3) may be transformed into a Fredholm 
integral equation, for which general theorems exist. As a matter of fact, 
the result is more general: subtracting the dispersion relation once more 
than it is strictly necessary, one gets Fredholm equations for a11 cases. 
They are, however, slightly more complicated to treat. Let us see now 
how is it possible to do that. 

First, change variables in .equation (3) so as to avoid infinite integration 
limits. A convenient variable is 



l t y  s' - So = -- 
1 - Y  

In the new language, (3) reads 

where 

and the prime denotes differentiation with respect to y. Use was made, 
in a partia1 integration, of the fact that the imaginary part of the trajectory 
vanishes asymptotically. Equation (6) is of the form 

with 

R(x) = (1/2)g(x)(l- x ) ~ .  

Equation (8) appears in the theory of aircraft wings of fínite span and has 
been dealt with by severa1 mathematicians. The best treatment known to 
us is due to L. G. Magnaradze5 and is reported in its essentials in Ref. 4. 
Equation (8) is shown to be equivalent to the Fredholm equation 

with 

and 



with 

The knowledge of the function B(y) determines everything and the Fred- 
holm theorems assert that if there is a solution, it is unique (for a given 
BOI)). As an example, observe that taking 

B(Y) = A J I - j2 
in (13), R(z, y) vanishes and Eq.  (10) reduces to 

f (x )  = f (O) cos - arc sin x (i 1 
and, for A = 1, 

We will come back to this solution later. It is conveniente now to state 
general results concerning the asymptotic behavior of Regge trajectories. 

Let us assume that a(s) tends to powers of s as s -+ _+ x along the real 
axis and that it is boun'ded by an exponential along every direction of 
the upper half-plane. These assumptions are not really new, being implicit 
in the hypothesis of validity of the dispersion relation in Eq. (1). We can 
write 

A being a real number and, by applying the Phragmén-Lindelof theorem6, 
conclude that 

Computing now the width function it is easy to see that 

tan (nk) 
g(s) - - - 

s++m k S' 

that is, a11 solutions of (3j with a power behavior are connected with width 



functions satisfying Eq. (19). These solutions have been treated in detail 
in Ref. 2, so that we will not bother to discuss them again here. 

3. The Solutions 

Consider equation (17) when k = 0, that is, when the trajectory tends to 
a constant at infinity. We have 

with a real A, and the limit is the same for s + + so. We can, therefore, 
conclude that the imaginary part goes to zero and the real part to a constant, 
at infinity. Nothing can be said about g(s), except that it is not proportional 
to s, and this is the main point: these trajectories are different from the 
usual ones mainly in the form of the width function. To determine them, 
we use the following technique: we choose some specific function for 
g(x), determining, in this way, Eq. (10) completely. After solving it, we 
must check whether Im a(s) vanishes both at infinity and at threshold. 
Let us start with a particularly simple case: the one described in equations 
(14) and (15). We have 

Im a(x) = Im a(0) cos (20) 

corresponding to 

2A Js !m = (1 x ) "  

It is necessary that Im a(1) = Im a(- 1) = O. Hence, 

cos - arc sin 1 = O, I 
that is, 

Requiring, further, that Im a(x) have a constant sign in the domain of 
x, it is not difficult to see that A = + 1. Inserting, finally, (20) and (21) 
into (6), one concludes that A must be equal to - 1. The solution is, after 



changing variables to s again, 

Im a(s) = 2 Im a(s, t 1) 
s-s, t 1 '  

corresponding to 

One can use equation (2) to compute Rea(s) for s > s,, getting 

2 Im a(s, t 1) 
Re a(s) = B t 

(s-s, + 1) ' 

B being an arbitrary constant. For s < s,, Re a(s) must be computed from 
the dispersion relation, Eq. (1). 

The solution is, therefore, completed, with 

There is a simple way to get many new solutions of Eq. (8). Though no 
use is made of the Fredholm equation (10), the existence of the latter is 
essential, in that it ensures for a given g(s), the uniqueness of the solution. 

Start from Eq. (3), which we rewrite for the reader's convenience: 

where the integral is a principal value. Changing variables to 

and putting t = s-s,, Eq. (3) is transformed into 

Im a(t) Im a' (u) du 
u - t 



Consider now some particular form for Im a(t), like, for instance, 

Im a(t) = tv-I ( t  + l ) ' -P,  (30) 

with O < Re v < Re p. The derivative of (30) has the same form, namely, 

Im u'(t) = ( V -  l ) t v - 2 ( t  t 1)'-p + ( 1 - p ) t v - ' ( t  + 

Using Ref. (8), we may compute the second member of (29). Using (30) 
in the first member, we can then determine the function g(t): we hava, 
in this way, found a solution, as we determined the Im a(t) corresponding 
to some value of g(t). The existence of the Fredholm equation warran1.s 
that the solution found is the only one for that choice of g(t). Let us go 
into details: using (30) in (29), we get 

I-(p-V-211-(V + 1) 
- (v - 1) 2 - p , 1 ;  3 - p +  v ;-  

~ ( t  + i ) r ( p  - 1) t + l  

Using (30) in the first member of (31) one gets 

1 - ( v - 1 ) c o t  [ ( p - v - l ) n ]  cot [(p  - V + 1) n ]  
- 

g(t) - t 
1 -  t + i  

Equation (32) provides us with a large class of solutions, including those 
with g(t) proportional to t ,  which correspond to the terms proportional 
to the cotangent. These come out where the solution has the form of a 
nonvanishing power of t .  This case has already been treated in great 
detai12 and we refrain from considering it again. Take, instead, solutions 
connected with the terms containing hypergeometric functions. These 
are new and present some interesting features. They are gotten, for instance, 



when v is taken to be of the form (2n + 1)/2, n = 1,2,. . . , and /.L is an integer. 
Let us examine some cases. 

3 a) V = -, y = 2. We have, 
2 

JS - so Im a(s) = --- 
s-s, + 1 ' 

which is exactly the solution found before (Eqs. (23) and (24)); 

3 
b) v = -, p = 3. The solution is 

2 

Im a(s) = Js-so . 
(s-s, + 1)Z 

Using now (2)' one gets 

that is, a logarithmically increasing trajectory. Trajectories of this kind, 
characterized by a very slow increasing rate, can be used to describe the 
Pomeron, though the teachings of duality seem to exclude it from the 
world of Regge trajectories. To give this discussion an end, we exhibit 
a slightly more general solution of equation (3): 

c )  p = 2, 1 < v < 2. The solution is 

and 



with the asymptotic behavior 

From these three examples, we can observe the variety of forms that a 
trajectory which tends to a constant (except eventually for a logarithmic 
term) can have, as compared to the very restricted possibilities that are 
open when it behaves at infinity as a nonvanishing power of S .  
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