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The scattering of isovector photons on spin-3/2 targets is studied in detail up to second order
in the frequency o the incident photon. Using Singh’s lemma, new second order low-energy
theorems related to isospin-symmetric amplitudes are obtained.

O espalhamento de fotons isovetoriais em alvos de spin-3/2 é estudado em detalhe até se-
gunda ordem na frequéncia do foton incidente. Usando o lema de Singh, sdo obtidos novos
teoremas de segunda ordem relacionados com amplitudes isospin-simétricas.

1. Introduction

Exact low-energy results for the Compton scattering on hadrons have
been obtained by various authors'~7 using the technique invented by
Low!'. If the relevant amplitudes satisfy unsubtracted dispersion relations,
these theorems give rise to sum rules® which upon saturation with low-
lying bound states and resonances can be d help in understanding dyna-
mical symmetry properties® and also they can give ussful relations between
coupling constants.

In this paper, we study the Compton scattering o isovector photons on
spin-3/2 targetsin detail up to second order in the frequency o the incident
photon. The method of derivation goes back to the pioneer work of Low*
on physical photon scattering on spin-1/2 systems. Bég® considered the
case in which the photons also carry a'charge” label and thus are asso-
ciated with isovector currents of an octet satisfying current commutation
relations (non-Abelian). He showed, in particular, that the well known
Cabibbo-Radicati sum rule® follows from the obtained low-energy theo-
rems. Further work on theoremsof order w? in thefrequency o theincident
photon was done by Singh® who proposed a lemma giving the excited-
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states contribution to the scattering amplitude. He derived in this way
severad new second order low-energy theorems for spin-O and spin-1/2
targets both for physica and charged photons.

The scattering on spin-1 targets was studied to second order by Pais*
for physical photons and by Kumar® for isovector photons. Lea Ferreira
and Ragusa® considered the scattering o physical photons on spin-3/2
targets and several low-energy theorems were derived up to third order.
In two previous notes’, we have considered the scattering of isovector
photons on spin-3/2 targets and new theorems related to isospin-antisym-
metric amplitudes were established. In particular, a generaized form o
the Cabibbo-Radicati theorem and of the magnetic moment radius theorem
were obtained and conjectured to be valid for arbitrary spin targets.

In this paper, weconsider in more detail the scattering of isovector photons
on spin-3/2 targets and we obtain new low-energy theorems related to
isospin-symmetric amplitudes, to second order in the incident photon
frequency.

In Sec. 2, we give a genera discussion of the low-energy theorems and
Sec. 3 is devoted to their explicit expression. In Sec. 4, we have the con-
cluding remarks.

2. The Low-Energy Theorems

We consider the tensor T,,* given by

1/2
@n)*s( € k -p-K) [szfJ T,* = ijd”’xd“y @ (—ik’ - x+ ik y) x
—_ P

x (P |[TU,A0, TEO}—ipn®00* - )][p), (1)

which is related to the amplitude for the scattering of isovector photon
on a spin-3/2 target,

T = ¢ (k) T,/ &;(k). (2)

Here o and f are isotopic spin indices, k' and k (p' and p) are outgoing
and incident "photon” (target) momenta. Our metric is deiined by k, =
=k, k,) = k, ik) =&, io). The covariance of T,* is ensured by the
presence of p,.* that counter balances the noncovariant nature of the T
product'®. J,* is the conserved isospin current, d,J,%(x) =O. Eq. (2) is the
scattering amplitude in the transverse gauge k.e =k'.e =0.
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The basic equal-time commutations relations o the current operators
J* = (J 7, 1Y) are:

[Joa (%), Joﬁ (Y)] dxg — yo) = ie*f Jo'(x) 5* (x_»), 3)
[Jo*(x), JZ (0)]8(x0 - yo) = ie™ 7 (X)0*(x - Y)
+ ia, [am (x)6* (x - V)] “)

On contracting Eq. (1) with K, and k,, one obtains from current conser-
vation and Egs. (3) and (4),

K, T = Tyyky = l[V Ey EJ & (| 1.7 0)|p). )
Therefore,
V’E,E , ,
K, Tk, —%[“HTLEJ P (K, + k)P, 0)]p). (6)
From the identity
kK, Tk, = K, Tuk, T K Tak, + KT, k- K Tis® kg, (7)

and Eq. (6), follows the relation

, VZE E 11/2 i )
KTk = 0o Too™ + [_mg_e 73"‘” X

x (p'|[@ + @) (0) + (K; + k) J7(0)] ). ®)
Next, we divide T;* into two parts,
T = U, + E/*, ©

where U, refers to the unexcited or one-particle(target) pole contribution,

[—m——JmUu | [(pl] [ &|Jf10) I/ |-k K |0>J (10)

V4E, Ek)-m-w EK)-m + o

where a summation over the intermediate spin states is implied and we
have taken the target initially at rest, p = 0. We then recall that the fre-
guency o the outgoing photon is given by the relation

mw’ -wW) =k.K - oo’ = ww (cos 0-1). (11)
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Using Egs. (8) and (9) and splitting Tgo?" into its unexcited and excited
parts, we have for E;* the relation

K E*k; = 0w Egg™® + ww Ugo™ -k ;U2 k; + iV[E, /m]'* x

X S [ + @) 30'(0) € (e, + k)37(0)] [0), (12)
where
[ m ]‘/ZU [<P|J0 ) k[J"10) . [ |-k (k'] 10>J
V*E, 0o EK)-m-w EK)-m + o

(13)

and, since pyo* = 0, Eqo* is given by a similar expression containing all
but the single-particle intermediate state. As is wel known', E,,* is of
order w? and this statement has been casted in a more precise way by
Singh® who has shown that

0™ =K kA (k,K), (14)
where A, is free of kmematlcal singularities and symmetric under the
interchange o < f, i <> j, k< k', that is it obeys crossing symmetry.

Foliowing Pais*, we write now the "complete minimal basis" for E;*:

42
Eijap = Z Bnaﬁ(w’ w/)Eij(n)
n=1

= § ({1, 17} S, (0, ) T [1I" IP1 A, (0,0 ) B, (15)
n=1

where the E;™ are the basis element for spin® J = 3/2. We have decom-
posed the amplitudes in its isospin symmetric and antisymmetric parts,
I2 being the appropriate target isospin matrix. With some convenient
modifications, the basis elements Eij‘") arel,

n=1:46;,
n=3: {Ji’ Jj}*%(sij,
n=4: kk;+ kk;,
n=>5: kk;-k-k'é

ij»
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n==6: k'k;
n=7 56,8 & xk-k-key,d,,

N=8. &mkyd k +k,JK),

n=9: &k, ktk,JK),

n=10: k', x k);—-kJ x k), T (o)),

n=11 k@ x k);—k;(J x K); + (=)= 2K K & s
n=12 §,(J .k + (J.k?],

n=13 6,{3 kK, Ik} -k K {J,J},

n=14 k{J;, J-k} + k;{J;, I-x7},

n =15 k;{J;,, Ik} + k;{J;, J-K},

n=16: k{J;, J-K} + k;{J;, Ik} -2k K {J;, J}},
n=17: k., {J;, -k} + k;{J;, T-k'},

n =18 to n = 25: Ow*),
n =26 (<Ji’ ']j’ Jr> + <Jj’ Ji’ Jr>)(kl X k)r—‘ll—(l)J'(k, X k)éij’
n=27: g (kpnk'y T k k) {J,, J,, o,
; , 1 .
n =28 &, Knk, T kNI, Jo, I, 10k Kl

n=29 to n=42: 0(w*), (16)
.where (A, B,C) = ABC T CAB * BCA.

Note in particular that E;* is an irreducible second order tensor. In
thisway, the generalized form of the Cabibbo-Radicati theorem will involve
only the spin independent amplitude A,.
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As we shall be interested in the part d E;* which is  order »?, we have
not written tliose basis elements which are already o 0(m®). Upon con-
traction with k';k;, we obtain

KEPk, =K.k B, - %k KBy + (0 + w2k K B,
+ 2 W?BH + Ik x K[B, + (@ + w'Z)Bm«h%k'-k
x (By6™® + Byg™)] + {J.k', J-k)[B;# t (0* + 0'?)B,s*]
+ [(0.x)? + (3. K[k .k (B,,* + 2B, ,*) + 20° B,,*]
+ (Kik; + kik' Y& x K),(J;, I, 0 (By™ + Byg™)
+ (kK + k)& x k),{J;, i, J)) By, F 0(0?). (17)

The unknown term A;# o Eq. (14)can be expanded in the same basis as
E. % that is, we can write

ii o
42
A = b E, ™
1

n=

42
2 (I, s, + (1017 a) B, (18)

where the b,’s are unknown coefficients which we have decomposed in
its isospin symmetric and antisymmetric parts.

Therefore, 'from Egs. (14) and (16), we can write
ww Eqo* = oo’k K bl""g—%b;‘”) +J ® x Koo b,
+{J-K,J.K)ow b* T 0wb). (19)

We state now that it is possible to know which o the amplitudes B,*
present in Eq. (17)can be determined to lowest order. Going back to Eq. (12),
we notice that the three last terms on its right-hand side can be calculated
exactly. Moreover, by Eq. (19) ww’ Ey* starts two powers o « ahead
d k'E;*k; and therefore it cannot compete for the determination of
BY, 5361727 Bi® T 2B and By t Byi? to O(w), giving cor-
responding low-energy theorems.

To get more information, we expand both amplitudes B, (w, w’) and
b,*(w, ) in powers of ww'.
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The genera expansion of these amplitudes will contain termsin 1, w + o/,
00', o? + w?, etc. Recaling Eq. (11), it is easy to see that to order w?
the expansions can be taken to contain 1, o + o',k .k' and wo'. Since

T and U,;* are crossing symmetric, so it is E;**,
E*(k,K)= E;-Kk, -K). (20)
From Egs. (15)and (16), it then follows that for r = 1, 3 to 6, 12 to 17,
B*0,0)=Bf(-0', -0), (2la)
and for s = 2,7 to 11, 26, 27, 28
B*#(w,w) = - B (-, - w). (21b)

Therefore, to the order that we are interested in, we have the expansions

S,~ (wa wl) = Sr(o) + k ‘k, Sr,l + oo’ Sr,2 + 0(0)3),

A (w,0")= (ot O'A,, +0(0%),

Siw, ) = (@ + @) S;; + 0(0?),

Ao, ) = 4,0 € kKA, +oo'A,, + 0@?). 22)
Similar expansions hold for s, and a, o Eg. (18). These expansions are

now substituted in Eqgs. (17) and (19). For the isospin symmetric part
o Eq. (17), we have to O(w*),

' @, '3 ’ 5 : n2 5
Sy = 1% ) oK (5,0-5-9,0) + 6ok (5,0-5 50,

+ w2w1256(0) + a)w,k 'k/ (51’2 ——;—S?’,Z + 2S4(0))

+ 3K x K@+ )8, + (kI K}[S;0) +k-KS;,
+ @o'(S3,,+28 5O)] + (k) + T k) [k k(S 2(0)+251,4(0)

T 2075,,0)] + 0<w5>}, (23a)

and for the isospin antisymmetric part

k',-E,-j[“mkj = [I*, "] {k'k'((z) + ) (Al,l —%A;;,‘l +J-& xKk)
e e
| 420+ K 0+ 4240
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+ 0w’ (4, , + 2A10(0))J + {J°k, J -k} o + 0)4;,

+ (K'ik; + kik )& x k), <Ti, 5, J,) (26 0) + A5(0)
+ (KK + kk)& x k), {J;, T}, 0, A,70) + 0(@%)}.  (23b)

Similarly, for Eg. (19), we can write
ww' Eg* = {1, IF} {a)w'k -k’ (sl(O)—%s3 (0)> +{J-k',J -k} ww’s3(0)}

+ [I%,I°]13 - k' x K)o a,(0) + O(w?). (24)

Egs. (234a), (23b) and (24) are now to besubstituted into Eq. (12).1t is apparent
that only S; ,,51.,,85.,(0),8;5(0), A,, and A4,,(0), will receive an unknown
contribution from ww’Ey*. All the other amplitudes in Egs. (23 a, b)
will suffer no competition from ww’ Ego? and will therefore be completely
determined by the other known terms of Eq. (12), giving fourteen low-
energy theorems.

3. Expresson of the Low-Energy Theorems

We shall now establish the explicit expression o the low-energy theorems.
As we are working on E;* to order »*, we need in Eq. (12) both U,y
and U, to 0(w?) and (p |/,%(0)|0) to O(w?). To compute these quantities
we need the J = 3/2 isovector current matrix element. We have!?

2 1172 F.* 2 -
IOy = ’[#I,EPJ i,(p) {[F (@9 6,, + En(g )q,,an Va

+ gy a)| P @3+ 55 00, |, 29

where q = p'—p and we have supressed polarization indices. F#(q%) =
= FY(¢*)1*, with i = 1,2, 3,4, are the isovector form factors: F,'(0) =1,
F,¥©O t F,"(0)=4" is the isovector magnetic moment in units of 1/2m,
F Y (0j+F,"(0)=Q" 1s the isovector quadrupole moment in units of 1 m*
and F'(0)+F,' tO)TF,"(0)+F.'(0)=Q" 1s the magnetic octupole mo-
ment in units of 1/2m?(6)'?. The Rarita-Schwinger wave function u,(p)
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may be expressed as follows:

E+m o-p P .—
u(p) = ( m) <1+E+m>[u+m(E+m)p uJ,

1/2 . .
up(0) = (E ;nm> (1 + —;ﬁ) p—,;g, (26)

where E2 = p? + m? and u is the wave function for p = O The calculation
d the known part of Eq. (12) is straightforward. From Eg. (11), one has
the relations

m + E, m + E;.
2E,(E,-m-w) ~ 2E,.(E,.—m + )

tos0 w? * w? _
=- 0; g T 0, for (+) sign,

1 140 -0 -
=35 + ﬂgrﬁ‘;’_ + 0(w?), for (O sgn. (27)

Using Eg. (25) in Egs. (10) and (13), one obtains from Eg. (12),
k-k (00)

m 4m?

K E P k;— ww Egg™® = —;- (I, 1*}u] {50' [—

1 2 N\ , k)
+ww'k'k'<—l%;n—3*—7n*F1V)+lG'(k x k) + o) imz J
- (R T kKK 2 Q -+ o 5)} u, (28)

and

i 2
KL E [P k;— w' Ego!™® = %—[Ia,lﬂ]ui'{ |[(a) + ok k’( ,um —2F," )

L b -(k'xk)—V-2k-k’FV'+FV'.”V-3 — 20w
—'-.ma nor 1 2 82
uV - 14
<F1V' + Fzyl—‘—‘gm )ﬂ] (Kik; + kK)o + )5z

Qv , ) , )
- 53 (k- k)= K)o - & x k) + 0°)p uj, (29)
where F, ,"" = [dF ,#)/dt],.
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Now, we have to write Egs. (28) and (29) in J space. For that purpose,
one needs the following relations®,

ui (0, k' x K)u; = %u"'J-(k' x k)u,

(K K + ok i u; = _%u*‘ (Jk,3 K+ %k Ku'u,

(i, + ki = -3 [0 K02 + QRPJu+ 3 (02 + w2

K k; + kK )ui @,k x K)u; = —%(k’ikj + kK YK x K),u' (T, T 0, u

+ gk Ku'J- & x K)u;

(kK ; t kk)u @k x Ku; = -%(k',.k'j T kk)& x k), u' (I, T, u
13, , P
+I§(w + o)u J-K x k)u (30)

Taking Eqg. (30) into Eqg. (28) and Eq. (29), and recalling Eq. (24), one finds
k-k' (ww) 00k k'
an 8m® T 2m

k,iEij{“mkj = {Iu, Iﬁ} {

[M_zf.“ + 2msl©)—5ms3(0)J + il X K)o + o)

4m?

NN {J-K,J k}ow's;0) + [ k) + (J-k)z]k'k"ﬁgy—
12m2 ? 3 12m3

+ 0(w9) } | (1)

and

V 1 _ |4
k.E*k; = [I*, IF] {(a) + o)k k' (— FJY + 34#—) +iJ- & xk)

14 vV __ v Vv’ 14
x[_y +k-k'<" 3 F,Y +F, )+13Q>

3m me Im 36m°
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14 v’ v \4
+ wa)( p ARy + F, )—13Q3>—iww’a2(0)]

12m? 3m 36m
’ Q QV ’ ’
+ {‘] k "] k}(w +(1))12 2 im3 (klkj+kkj)(l( Xk)r<']l$ j» 1
iQV 1L k 7 k 5 32
+ 1o Kk + k)& xR, (JiJ5 0, + 0@ (32)

By comparing Egs. (23a4) and (31), we obtain the following low-energy
theorems for the symmetric case:

1
5,(0) = “om (33a)
20 -3
Saq =it r, (33b)
$5(0) =0, (33¢)
S, , =0, (33d)
$3: =0, (33¢)
1
S6(0) = ~8m3" (331)
QV
Slz(o) + 2S14(0) = W’ (339)
S,,(0) =0, (33h)
From Egs. (23b) and (32), one obtains for the antisymmetric case
0¥ -1 . QY ‘
A =R -2 (34a)
V
A,(0) = 3lm (34b)
-3 2(F1V' +F,”)  2qY
A2 = [12m T am 5w | (349
14
Ay = 1o, (34d)
QV
Az6(0) + Ay5(0) = 18 (34e)
iQv
Ay (0) = 5. (341)
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The first-order theorems (33a), (33b) and (33¢), and the second-order
theorem ((33g) are, of course, a trivial extenson d those obtained by
Pais* for physical Compton scattering on arbitrary spin targets.

Theorems (33d) and (33¢) are new second-order theorems.

Theorems (33f ) and (334) refer to amplitudes which, due to transversdlity,
will not be present in the Compton amplitude in Eq. (2).

Theorem (34b) satisfies the general relation
'uv
AO= m (34)
that has been conjectured before® for arbitrary spin.
Theorems (34a) and (34c) to (34f ) have already been discussed before’

and here we shall quote the main results for completeness. These theorems
can be casted in the following generalized forms:

a4y, =42, (35)
(R 1
Az,1 ”[ 57 +4Jm “am | (33b)
__
Az = m, » (35¢)
QV
\4
437(0) = 2 (350

12JQ2J - 1)(J - ym’

where{r?)" and (R?)" are, respectively, theisovector chargeand magnetic-
moment mean-square-radius given by the usud definitions'?,

()Y I =<0 , J. Jor(m)ridr 0> = V3i=n(} Pl’ir=np V2 P |Jo%p)s (36)

<R2>VI« - —;_<0, g J(r x 3, r? dr‘(), )'> ‘1': A=
ciPv 2
= euslim Im V5 O 107, (37)
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As was shown’, these generaized forms are valid for J < 3/2 (of course,
for 3 =0 we have only (35a), for 3 =1/2 only (354, b), for 3 =1 only
(35a,b,¢) and for J = 3/2 all will be present), and they were conjectured
to be valid for arbitrary spin targets. In particular, theorem (354j 1s the
generalized form o the Cabibbo-Radicati theorem and (35b) is the gene-
ralized form o the magnetic moment radius theorem.

4. Concluding Remarks

The new second-order theorem (334 is analogous to those corresponding
to the spin-0 and spin-1/2 cases® and to the spin-1 case®. Theorem (33¢)
is analogous to the corresponding one for spin-1 targets®. Taken together,
these two theorems confirm for J = 3/2 the following second-order

conjecture® :

Let

Tr € T;/Pe)/Tr (1) = TP (w, @) e + T,' (0, »)

x &k e k-k-Ke¢- &), : (38)
where the trace is over spin states, and let
T, (w, 0) = T, (0,0) T 1,2k .k’ + £,/ wo' + 0(w?); (39
then
t, " =0. , (40)

The genera proof of these new second-order theorems, Egs. (334 and
(33e), and of all previousconjectures® > for arbitrary spin targets, is under
investigation‘and will be reported elsewhere.
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