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The scattering of isovector photons on spin-312 targets is studied in detail up to second otder 
in the frequency of the incident photon. Using Singh's lemma, new second order low-energy 
theorems related to isospin-symmetric amplitudes are obtained. 

O espalhamento de fotons isovetoriais em alvos de spin-312 é estudado em detalhe até se- 
gunda ordem na frequência do foton incidente. Usando o lema de Singh, são obtidos novos 
teoremas de segunda ordem relacionados com amplitudes isospin-simétricas. 

1. Introduction 

Exact low-energy results for the Compton scattering on hadrons have 
been obtained by various authorsl-' using the technique invented by 
Lowl. If the relevant amplitudes satisfy unsubtracted dispersion relations, 
these theorems give rise to sum ruless which upon saturation with low- 
lying bound states and resonances can be of help in understanding dyna- 
mical symmetry properties9 and also they can give useful relations between 
coupling constants. 

In this paper, we study the Compton scattering of isovector photons on 
spin-312 targets in detail up to second order in the frequency of the incident 
photon. The method of derivation goes back to the pioneer work of Lowl 
on physical photon scattering on spin-1/2 systems. Bég2 considered the 
case in which the photons also carry a "charge" label and thus are asso- 
ciated with isovector currents of an octet satisfying current commutation 
relations (non-Abelian). He showed, in particular, that the well known 
Cabibbo-Radicati sum rule8 follows from the obtained low-energy theo- 
rems. Further work on theorems gf order 0' in the frequency of the incident 
photon was done by Singh3 who proposed a lemma giving the excited- 
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states contribution to the scattering amplitude. He derived in this way 
several new second order low-energy theorems for spin-0 and spin-112 
targets both for physical and charged photons. 

The scattering on spin-1 targets was studied to second order by Pais4 

for physical photons and by Kumar5 for isovector photons. Leal Ferreira 
and Ragusa6 considered the scattering of physical photons on spin-312 
targets and several low-energy theorems were derived up to third order. 
In two previous notes7, we have considered the scattering of isovector 
photons on spin-312 targets and new theorems related to isospin-antisym- 
metric amplitudes were established. In particular, a generalized form of 
the Cabibbo-Radicati theorem and of the magnetic moment radius theorem 
were obtained and conjectured to be valid for arbitrary spin targets. 

In this paper, we consider in more detail the scattering of isovector photons 
on spin-312 targets and we obtain new low-energy theorems related to 
isospin-symmetric amplitudes, to second order in the incident photon 
frequency. 

In Sec. 2, we give a general discussion of the low-energy theorems and 
Sec. 3 is devoted to their explicit expression. In Sec. 4, we have the con- 
cluding remarks. 

2. The Low-Energy Theorems 

We consider the tensor T,,,"~ given by 

( 2 7 ~ ) ~  6(p1 t k' - p - k) ir, T,,"Y = i {d4~d4y eexp (-ik'ex f ik.y) x 

which is related to the amplitude for the scattering of isovector photon 
on a spin-312 target, 

Tua = Eti(k/) TijaP Ej(k). (2) 

Here cc and p are isotopic spin indices, k' and k (p' and p) are outgoing 
and incident "photon" (target) momenta. Our metric is deiined by k, = 
= (k, k,) = (k, ik,) = &, io). The covariance of TPbaB is ensured by the 
presence of p,,"fl that counter balances the noncovariant nature of the T 
productlO. J,"s the conserved isospin current, a, J,,"(x) =O. Eq. (2) is the 
scattering amplitude in the transverse gauge k . E = k' . E' = 0. 



The basic equal-time commutations relations of the current operators 
Jp

a = (Jq ,  iJo
a) are: 

[J,"(x), JOB(y)] 6(x0 - y0) = kapy h4 ( x  - Y) ,  (3) 

[Joa (x), J! (y)] 6(xo - yo) = ieaay J ~ Y  ( x )  d4 ( X  - y) 

+ ia, [P , ;~  (x)  d4 ( X  - Y)]  . (4) 

On contracting Eq. (1) with k', and k,, one obtains from current conser- 
vation and Eqs. (3) and (4), 

(5 )  

Therefore, 

From the identity 

k',, T,:' k, = k', Tp4ag k4 + k4 T4:B' k, + k'i Tijbp k j  - k'4 T44aB 

and Eq. (6), follows the relation 

x (p' 1 [(o + o ' )  JoY (O) + ( K i  + ki) JiY (O)] 1 p) . 

Next, we divide Ti? into two parts, 

T . ~ ~  V = uiap + ~ ~ j b f l ,  (9) 

where Ui;p refers to the unexcited or one-particle (target) pole contribution, 

where a summation over the intermediate spin states is implied and we 
have taken the target initially at rest, p = O. We then recai1 that the fre- 
quency of the outgoing photon is given by the relation 

m(o l  - w) = k . k' - wo' = ou'  (COS O - 1). ( 1 1 )  



Using Eqs. (8) and (9) and splitting TooaP into its unexcited and excited 
parts, we have for EigP the relation 

1 x - & ~ P Y  
2 (P' 1 [ ( o  + o') JO

Y (O)  t (kf i  + ki) Ji
Y (O)] 1 O), (12) 

where 

and, since p O O a f l  = O, EOOaP is given by a similar expression containing a11 
but the single-particle intermediate state. As is well known', E~~~~ is of 
order o2 and this statement has been casted in a more precise way by 
Singh3 who has shown that 

EOOaP = Ki kjAijaP(k, k'), (14) 

where Aig"s free of kinematical singularities and symmetric under the 
interchange a tt P, i c* j, k ct k', that is, it obeys crossing symmetry. 

Foliowing Pais4, we write now the "complete minimal basis" for Eige : 

4 2  

= C ( { I " ,  1" s, (o, o') + [ I " ,  IP] A, ( o ,  o')) Ei j ( n ) ,  
i 1 = 1  

where the E,?' are the basis element for spin6 J = 312. We have decom- 
posed the amplitudes in its isospin symmetric and antisymmetric parts, 
Ia being the appropriate target isospin matrix. With some convenient 
modifications, the basis elements Eijcn) are1', 



n = 6: kikj 

n = 7: dijJ.(kl x k) -k .k '~~ , ,J , ,  

n = 8 :  ~,,(k',J.k'+k,J.k),  

n = 9 :  ~~,(k' ,J .k + k,J.k'), 

n = 10: ki(J x k'),- ki(J x k), + (i* j), 

n = 11: ki(J x kOj-k',(J x k), + ( i++j ) -2k .k '~~ ,J , ,  

n = 12: 6, [(J . k')' + (J . k)2], 

n = 13: 6,(J-k',  J . k ) - k . k t { J i ,  Jj}, 

n = 14: ki{Jj, J . k )  + k',{Ji, J .k') ,  

n = 27: Eijr(k',k', + k,k,)(~,, J , ,  J,), 

41 
n = 28: eijr(kl,k, + k,k',J(~,, J,, . l , ) - - k . k ' ~ ~ ~ , J ,  10 

. where (A, B, C) = ABC + CAB + BCA. 

Note in particular that EiJ3) is an irreducible second order tensor. In 
this way, the generalized form of the Cabibbo-Radicati theorem will involve 
only the spin independent amplitude A,. 



As we sball bc interested in the part of ~ ~ j " ~  which is of order w2,  we have 
not written tliose basis elements which are already of 0(m4). Upon con- 
traction with k',kj, we obtain 

5 k', Eij"P k j  = k . k' BiUP - - k . kt B3a'J + (o2 + d 2 ) k  k' B4@B 
2 

x ( ~ ~ 6 " ~  + B ~ ~ ~ ~ ) ]  + {J . k ' ,  J k )  [B3aB + (o2 + of2) B1 5aB] 

+ [(J . k')2 + (J  . k)2] [k . k ' ( ~ ~ ~ ~ ~  + 2Bi4aB) + 2m2 B17afl] 

(k',kj + kik'j)@' x k ) , ( ~ ~ ,  J j ,  J I )  (B2(jaP + B ~ ~ " ' )  

+ (k',k; t kikj)@' x k),(J,, J, , J,) B27"' + O ( 0 5 ) .  (17) 

The unknown term AiY5 of Eq. (14) can be expanded in the same basis as 
E,;@, that is, we can write 

4 2  

= ({lu, lB) sn + [ I a,  I P]  a,) ~ ~ j ( " ) ,  
n = l  

(18) 

where the b,'s are unknown coefficients which we have decomposed in 
its isospin symmetric and antisymmetric parts. 

Therefore, 'from Eqs. (14) and (16), we can write 

( "'-+ b3"') + J (kf x k )  m ~ ' b ~ "  oo'EooaB = o o ' k  . k' b1 

+ (J - k' , J . k )  mo' b,"O + 0(06). (19) 

We state now that it is possible to know which of the amplitudes B / ~  
present in Eq. (17) can be determined to lowest order. Going back to Eq. (12), 
we notice that the three last terms on its right-hand side can be calculated 
exactly. Moreover, by Eq. (19) ou'EooaP starts two powers of o ahead 
of kfiEijbPkj and therefore it cannot compete for the determination of 
BaP1,2,3,6,17,27, BlzaB + 2B14aB and B26"' + Bzaafl to O(m), giving cor- 
responding low-energy theorems. 

To get more information, we expand both amplitudes BnaB(o, o ' )  and 
b,"@(o, o') in powers of mo'. 



The general expansion of these amplitudes will contain terms in 1, o i o', 
o o ' ,  o2 f oT2, etc. Recalling Eq. ( l l ) ,  it is easy to see that to order w2 
the expansions can be taken to contain 1, o t o', k . k' and wo'. Since 
T,:~ and Ui;P are crossing symmetric, so it is EijaP, 

~ ~ j q k ,  k') = Ejp(- k', - k). (20) 

From Eqs. (15) and (16), it then follows that for r = 1, 3 to 6, 12 to 17, 

Br(XP (O, o') = B p  (- o ' ,  - o), (2 1 4  

and for s = 2, 7 to 11, 26, 27, 28 

B S @ ( ~ ,  o') = - B? (- 0 '  , - o). (2 1 b) 

Therefore, to the order that we are interested in, we have the expansions 

s,. ( 0 , ~ ~ )  = s,(o) + k -k' s,,, + + o ( w ~ ) ,  
A,(o, o') = (o t o') A,,, + 0(03) ,  

s,(w, ú) = (W + w') s,,, + 0 ( ~ 3 ) ,  

A,(o, o ' )  = A,@) t k . k' A,,, + ow' A , ,  + O(w3). (223 

Similar expansions hold for s,, and a, of Eq. (18). These expansions are 
now substituted in Eqs. (17) and (19). For the isospin symmetric part 
of Eq. (17), we have to O(w4), 

and for the isospin antisymmetric part 



Similarly, for Eq. (19), we can write 

Eqs. (23a), (23b) and (24) are now to be substituted into Eq. (12). It is apparent 
that only SI,, , S, , ,  , S,(O), S,,(O), A,,, and Alo(0), will receive an unknown 
contribution from ow'Eooafl. A11 the other amplitudes in Eqs. (23 a, b) 
will suffer no competition from oo' Eooaa and will therefore be completely 
determined by the other known terms of Eq. (12), giving fourteen low- 
energy theorems. 

3. Expression of the Low-Energy Theorems 

We shall now establish the explicit expression of the low-energy theorems. 
As we are working on EigB to order 0 2 ,  we need in Eq. (12) both Uooaa 
and UigP to 0(02) and (p 1 J,"(O) I O )  to 0(03). TO compute these quantities 
we need the J = 312 isovector current matrix element. We have12 

where q = p ' - p  and we have supressed polarization indices. F,"(q2) = 

= FLV(q2)Ia, with i = 1,2,3,4, are the isovector form factors: FI
V(0) = 1, 

F, (O) t F2'(0) = pV is the isovector magnetic moment in units of 1/2m, 
f ,L(0)+~iL(O)=Q'  1s the isovector quadrupole moment in units oí 1 m' 
and F,'(O) + b2' (O) + J ,' (OJ+F,~ (O) =R" 1s the magnetic octupole mo- 
ment in units of 1/2m2(6)'". The Rarita-Schwinger wave function u,(p) 



may be expressed as follows: 

where E2 = p2 + m2 and u is the wave function for p = O. The calculation 
of the known part of Eq. (12) is straightforward. From Eq. (ll) ,  one has 
the relations 

- tos 0 o2 + or2 - -- 
+ 8m3 + 0(o3), for (+) sign, m 

1 1 o2 -ot2 - - + ---- + O(w3), for (-) sign. (27) 
o o' 8m3 

Using Eq. (25) in Eqs. (10) and (13), one obtains from Eq. (12), 

QV - (k', k', + k, k,)k - k' -3 + 
2m (28) 

and 

iQV 
- --(,ti - kfi)(kj- 

2m3 (29) 

where F,,," = [dF, , ,  (t)/dt], . 
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Now, we have to write Eqs. (28) and (29) in J space. For that purpose, 
one needs the following relations6, 

1 ' 3 
(Ei kfj + ki kj)u: uj = - - u [(J - k')' + (J . k)'] u + - (o 2 + CO'~)E:' U, 

3 4 

2 (ki,k', + k,kj)u; (a, k' x k)uj = - - (k',kJj + ki kj)(kl x k) ,~. '  (Ji ,  Jj, J,)u 
9 

Taking Eq. (30) into Eq. (28) and Eq. (29), and recalling Eq. (24), one finds 

k .k' ( ~ o ' ) ~  oo 'k  .k' kliEifaO)kj = p , p )  + -- 
2m 8m3 2m 

' + 2pv - 3Qv - 2 ~ ~ ~ '  + 2ms, (O) - 5ms, (0) + i3 - í,kf x k)(w + o') [ 4m2 

and 



QV RV + { J  ek', J k } ( o  + o ' ) ~  + 7 ( K i k j  + kiKj)(kl x k ) , ( J i ,  J j ,  J , )  
12m 18im 

By comparing Eqs. (23a) and (31)' we obtain the following low-energy 
theorems for the symmetric case: 

1 s, (O) = -- 
2m ' 

s3 (0)  = o ,  
SI , ,  = o ,  
S , , ,  = o ,  

1 
S,  (O) = - - 

8m3 ' 

QV SI ,@)  + 2Sl,(O) = m. (339) 

S,,(O) = o.  ( 3 3 4  

From Eqs. (23b) and (32)' one obtains for the antisymmetric case 



The first-order theorems (33a), (33b) and (334, and the second-order 
theorem ((33g) are, of course, a trivial extension of those obtained by 
Pais4 for physical Compton scattering on arbitrary spin targets. 

Theorems (334 and (33e) are new second-order theorems. 

Theorems (33 f )  and (33h) refer to amplitudes which, due to transversality, 
will not be present in the Compton amplitude in Eq. (2). 

Theorem (34b) satisfies the general relation 

pV A, (O) = --- 
2imJ ' 

that has been conjectured befores for arbitrary spin. 

Theorems (34a) and (344 to (34 f )  have already been discussed before7 

and here we shall quote the main results for completeness. These theorems 
can be casted in the following generalized forms: 

where (r2)' and ( R ~ ) ~  are, respectively, the isovector charge and magnetic- 
moment mean-square-radius given by the usual definitions13, 



As was shown7, these generalized forms are valid for J I 312 (of course, 
for J = O we have only (35a), for J = 112 only (35a, b), for J = 1 only 
(35a, b, c) and for J = 312 all will be present), and they were conjectured 
to be valid for arbitrary spin targets. In particular, theorem (350) 1s the 
generalized form of the Cabibbo-Radicati theorem and (35b) is the gene- 
ralized form of the magnetic moment radius theorem. 

4. Concluding Remarks 

The new second-order theorem (334 is analogous to those corresponding 
to the spin-0 and spin-112 cases3 and to the spin-1 case5. Theorem (33e) 
is analogous to the corresponding one for spin-1 targets5. Taken together, 
these two theorems confirrn for J = 312 the following second-order 
conjecture3 : 

Let 

where the trace is over spin states, and let 

T ~ ( ~ B )  (o, UI) = ~ ~ ( ~ p )  (O, O) + tl(ap)k . kr + tlap) COCO1 + 0(03) ; (39) 

then 

The general proof of these new second-order theorems, Eqs. (334 and 
(33e), and of a11 previous c o n j e ~ t u r e s ~ , ~ , ~  for arbitrary spin targets, is under 
investigation 'and will be reported elsewhere. 
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