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Slater's split-band theory of insulating anti-ferromagnetism is discussed in some detail by 
means of a simplified nondegenerate one-band model. A comparison with Anderson's theory 
of super-exchange is also made. 

A teoria de Slater do antiferromagnetismo em isolantes é discutida em algum detalhe por 
meio de um modelo simplificado. É também feita uma comparação com a teoria de super- 
troca de Anderson. 

I .  Introduction 

Magnetic interaction in insulators creates, with a few exceptions, antifer- 
romagnetic order. This is generally the case of substances, like transition 
metals and rare earths oxides and salts, where the magnetic atoms are 
separated by relatively large diamagnetic radicals. One can expect the 
Heisenberg model to be applicable since the metallic ions are far apart. 
However, the direct exchange interaction is positive and therefore forces 
ferromagnetic ordering. Kramersl in 1934 introduced the concept of 
superexchange; the intermediate radicals cause spin dependent pertur- 
bations on the magnetic atoms wave functions transmitting an antiferro- 
magnetic exchange effect at large distances. The reason. why such a.n 
antiferromagnetic state might come about was clarified in a more intnitive 
way by Mott2. The major contribution to the theory is due to A n d e r ~ o n ~ . ~ , ~ .  
Anderson's idea is to assume that the band structure of these compounds 
has been already solved, thus incorporating the effect of the radicals. 
Next, one solves the many-electron problem. Using Wannier represen- 
tation, it is possible to show that, up to second order in perturbation theory, 
a large contribution to the spin dependent interactions between d-electrons 
comes from virtual occupation of ionized states. Since electron transfer 
can occur, because of Pauli principle, only between electrons in neigh- 
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bouring ions with antiparallel spins, the interaction is necessarily antifer- 
romagnetic. The two parameters that enter the theory are the hopping 
integral b between nearest neighbours and the Coulomb interaction C'. 
Since U is much larger than b, the real occupation of ionized states is 
energetically forbidden thus making these compounds insulators. 

The effective magnetic interaction Hamiltonian in Anderson's theory can 
be written in the form of a Heisenberg-type i n t e r a c t i ~ n ~ , ~ , ~  

where 

2bi, A , .  = --- J . .  
IJ ' J '  

The first term is the so called kinetic exchange whereas the second is the 
usual direct exchange. Antiferromagnetic order will result if kinetic exchange 
exceeds the potential exchange. This seems to be generally the case, explain- 
ing why a large number of transition metal compounds are antiferromag- 
netic. However, it should be remarked that the direct evaluation of both 
parameters is a formidable task, to our knowledge not yet accomplished. 

Back in 1951, it was proposed a band model of antiferromagnetism in 
insulatorsó. According to this model, the electronic bands are assumed 
to be splitted due to a Hartree-~ock-type exchange potential which renders 
the material antiferromagnetic. If originally the band was half filled. now. 
under conditions that can assure non-overlapping sub-bands, the lower 
sub-band will be occupied whereas the upper sub-band is empty and the 
material becomes an insulator in the conventiona] Wilson sense. One 
difficulty associated with this molecular field model is that it predicts a 
metallic behaviour above the Neèl temperature, when the sub-bands 
collapse, which contradicts the experimental observation that most of 
antiferromagnets rernain insulators in the non-magnetic phase. 

Severa1 authors proposed a model of this kind to describe the cases of 
some transition metal oxides and sulfides which show a magnetic-non- 
metal to non-magnetic-metallic transition7. These results were shown to 
be incorrect: correlation effects, decisive near the transition point, should 
more properly be taken into account8. However, it is possible that a band 
model can give a good description of the ground state and the statistics 
of insulating antiferromagnets at low temperature

g
. 



In a previous paperlO, Slater's-split-band model and Anderson's theory 
of kinetic exchange were compared and a discussion was given on the 
common characteristics in the limit when the band width is small com- 
pared to the intra-atomic electron-electron interaction. Some advantages 
and disadvantages of both models were also pointed out. The present 
paper should be considered complementary to the paper of Ref. 10, since 
it considers in detail the characteristics of the ground state wave function, 
a discussion on the determination of the magnetic ordering being presented. 

A simple example is given in the Appendix in order to further clarify the 
subject. 

In the next Section, some results of Ref. 10 are summarized. Section 3 
is devoted to the discussion of stability of different magnetic structures, 
and Section 4 deals with the characteristics of the ground state wave 
function. 

2. Slater's Antiferromagnet 

Let us consider a material with one outer electron per ion, moving in 
a nondegenerate band, with 4k and E, being the single-electron Bloch 
functions and energies. These functions are assumed to contain a11 the 
effects of the diamagnetic radicals, but not the interaction with the other 
electrons. A magnetic state can be described by determinantal functions 
formed with the one-electron wavefunctions: 

A determinant @, formed with the functions (2-lu), in second quanti- 
zation notation, 

\<Do)  = n (cos Okck, + sin Okc,+Q,)lo) (2-2) 
k 

is an eigenfunction of the reduced Hamiltonian 

1 
H., =Zekchck. + 2 [ ( k , k f l í / k ' , k )  

k a  ku k'a' 



where V is the interparticle potential. Clearly, the first term in (2-3) is the 
kinetic or band energy, the second is the usual direct and exchange interac- 
tion energies and the last is the equivalent of the Weiss molecular field 
interaction; k runs over the entire Brillouin zone. The ground state energy 
E, = ((Do 1 H,, I <Do) follows immediately : 

- L V (k - k') cos2 (Ok - Ok ). 
kk' 

(2-4) 

We have assumed that the exchange matrix elements of the interaction 
potential only depends on the difference of wavenumbers k of the initial 
and final Bloch states, i.e., V&-k') =(kkt I 1/ Ikkl) =(k + Q,kl I V Ik, k' + Q), 
and V,/N = (kk' 1 V Ik'k). 

We observe that the Bloch functions appearing in (2-1) must, in principle 
be determined through a Hartree-Fock calculation. The resulting Bioch 
functions would now contain the molecular field effect. This is a very 
difficult procedure, which we have replaced by a simpler one in which the 
4's are the usual Hartree-Fock-Bloch solutions and two variational para- 
meters 8, and Q have been introduced into the theory. 

Minimizing E,(U,,Q) with respect to O,, we obtain the self-consistency 
condition 

2A(k) = L V (k - k') sin 20,. , 
k '  

where 0,. is given by 

with 

and 

Let us observe that sin2 8, = (O, Ink+,, 1 @,) and cos2 Ok = (OO I nk/ (DO): 
and therefore E are the norma1 Hartree-Fock one-electron energies. 



The Hamiltonian (2-3) can be diagonalized by means of the Bogoliubov 
transformation, 

c+, = cos f3,Ckt + sin í3kCk+Ql, (2-8a) 

a,(+, = -sinO,Ckt + (2-8 b) 

the one-electron eigen- energies being 

The magnetic character of state (2-2) can be put into evidence by evalua- 
ting the average magnetization 

which is different from zero whereas Eq. (2-5) admits a non-trivial, A # 0, 
solution. Q, which should be determined.by minimizing Eo(Ok, Q), deter- 
mines the magnetic structure and will be considered in the next section. 
It  whould be noted that Q was assumed to be commensurate with the 
lattice, i.e., k + 2 4  represents the same state as k. Otherwise, one would 
have to include higher harmonics in the present formalism in order to 
obtain a self-consistent average field solution. Let us remark that if we 
assume (2-2) as the ground state wavefunction, it is implicit that the band- 
width is small compared to A, in order to prevent an overlapping of the 
sub-bands. Hence, Ia),,) is the Hartree-Fock ground state of Hamiltonian 
(2-3) and represents a fully accupied lower sub-band. The system is clearly 
an insulator. 

We now make the approximation of replacing the exchange matrix elements 
I/&-k') by a constant UIN,  which implies a contact-type interaction 
between electrons. This is the case of a highly screened interaction in an 
electron gas or the case of highly localized electrons. AI is then independent 
of k as can be seen from Eq. (2-5). 

One needs next to establish the stability of this antiferromagnetic state. 
This is not possible to accomplish In general. We shall consider here 
only the comparison with the saturated ferromagnetic and paramagnetic 
states. The difference in Hartree-Fock energies per particle are, respectively, 



and 

where x, = (1/2)(Lk + a - È k ) ,  E, = (x: + A2)'l2 and p is the paramagnetic 
Fermi energy. As shown in Ref. 10, (2-11) is non-positive. This is not pos- 
sible to show for (2-12) without a knowledge of the band structure. However, 
it is obvious that for A large enough compared to the band energies, the 
insulating state is doubltless more stable. This observation leads us to 
suspect that, in principle, an instability as compared to the paramagnetic 
state could occur for some critica1 value of U/T, where T is the non-mag- 
netic band-width. But, in lowering the ratio U/T, a sub-band overlap is 
not excluded to happen previous to the non-magnetic instability. For an 
f.c.c. structure, and in the tight binding approximation, band overlap 
began when A/F - 0.15. When the nesting condition, Ekce  = - E ~ ,  is 
satisfied such overlap does not occur for a11 values of the ration U/T (See 
Appendix). The Statistical Mechanics of the model, based on a thermally 
averaged exchange field, leads 10 a vanishing thermal gap for a certain 
critica1 temperature Tc,  resulting in a transition to the metallic paramag- 
netic state. This kind of behaviour was believed to apply to the thermal 
transitions in titanium and vanadium oxides7, but the method is invalid 
at intermediate and high temperatures". Recently, it has been speculated 
that stability of the magnetic phase can be improved when an additional 
correlation is introduced with further combinations of band-Bloch func- 
tionsI2. Another point that should be stressed is that we have been cons- 
tantly considering U and T as independent of the state of the system. This 
is a crude oversimplification, which however is not important in the limit 
OS large U/F ratio. Correlation effects will be discussed in a forthcoming 
paper. 

We omit here the comparison with Anderson's theory of superexchange 
given in Ref. 10 and proceed in the next Section to discuss the parameter Q. 

3. The Magnetic Structure 

The condition for energy (2-4) be extrema1 in relation to Q is 

In deriving Eq. (3-1) it was taken into account the Q dependence OS the 
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angle O,. Using the relationship 

and assuming that the Brillouin zone has a center of symmetry, i.e., that 
E, = it is straightforward to show that a solution of Eq. (3-1) implies 

= This means that either Q = O or Q is a vector of &e reci- 
procal space with end point on the Brillouin zone surface, Let us consider 
the limit of small TIA ratio. Expanding the Bloch functions in terms of 
Wannier functions and neglecting overlap between Wannier functions 
centered on different lattice sites R, the magnetization (2-10) becomes 

where 

The magnetization of (3-2) shows that a fractional Bohr magneton pesf 
per electron is distributed around each lattice site in the "plus" or "minus" 
direction according to the phase factor exp (iQ . R) being plus or miniis 
one, thus defining the magnetic structure. Obviously Q = O produces 
ferromagnetic ordering. 

In the limits of r / A  % 1 and T/A 9 1, it can easily be shown that E, depends 
quadratically on the order parameter A. Under these conditions one can 
use the arguments advanced by Dzyaloshin~kii'~ to derive a "selection 
rule" for Q stating that the values of Q that make the energy an extremum 
are tfiose ,whose group vectorI4 contain the inversion operator. Conse- 
quently, the group vector of Q should belong to one of the groups D,, 
D 2 d >  D3h, D3, D3h, S4, D4, Dó, T, Td, and 

In Table I, we give the corresponding values of Q that reproduce different 
magnetic structures in sc, bcc and fcc materials shown in Fig. 1 15. In 
order to determine which is the more stable magnetic structure, it is neces- 
sary to make a direct comparison of the ground state energies (See 
Appendix). 

It would be instructive to study the ground state wave function 
of the Slater model, mainly in the limit of small r / U ,  i.e., the re- 
gion of equivalence with Anderson's theory. This is done in the next 
Section. 



Crystal Magnetic Q (units Brillouin Zone Symmetry 
Structure Structure of n/a) voint G r o u ~  

First class 
sc Second class 

Third class 

First class 
bcc Second class(a) 

Second class(b) 

First class 
Second class 

f c c  
Fourth class 
(two magnetiza- 
tion axes) 

Table 1. 

Fig. 1 - Different classes of rnagnetic ordering. 



4. Ground State Wave Function 

The ground state wavefunction of the insulating antiferromagnet (2-2) 
can alternatively be written 

where 

and 

I a) = (COS Ok + sin 8, b;) I FM) 
k 

is the wavefunction of the insulating ferromagnetic state. 

In the limit of small A, 8, becomes small and 

which corresponds to the creation of a small amplitude static spin density 
wave in the ferromagnetic state",. The wavefunction (4-1) shows the 
character of the AFM state: a static spin density wave of large amplitude 
and period 2n/Q = 2R superimposed on the- ferromagnetic state. When 
A = O both states are degenerate in energy. In fact, there are 2N dege- 
nerate states that correspond to a11 possible orientations of the N electrons 
spins one per atom. 

If Q tends to zero, one lias 

where 



and 

The state can be described as an FM state with domains of width - 271/Q1'. 

In the limit of small T/U and Q describing antiferromagnetic ordering 
of the kind considered in Section 3, one finds 

Hence 

where we have defined 

, Introducing the Wannier transformation, we find 

where b, is the transfer or hopping integral, R and z are lattice vectors and 

This is quite general. To obtain some insight into the characteristics of 
function (4-10), we shall consider antiferromagnetic ordering of the first 
class in a bcc material. In this case the antiferromagnet can be described 
by two interpenetrated magnetic sc lattices, one with spins in (- x)-direction 
with their positions indicated by L in the original bcc lattice, and the 
other with spins in (+x)-direction with their positions indicated by R 
in the original bcc lattice. Evidently, L = R + z, where z is the vector 
displacement from a point L or R to a nearest neighbour bcc lattice point. 



Let us choose the origin of coordinates in an R-type point. Then 
exp (iQ . R) = 1 and exp (iQ . L) = - 1, since exp (iQ . z) = - 1. Using these 
results, we obtain, when considering only nearest neighbours, 

where 

and br = b is a constant independent of z. Clearly, RIR, for instance, 
transfers an electron with (+) spin from a lattice point of R-type to a neigh- 
bouring L-type lattice point, without spin flip. 

In coordinate representation, the wavefunction (4-10) is the Slater deter- 
minantal function formed with the one-electron functions 

where 

if Rj  belongs to sub-lattice of type R and 

if Rj  belongs to sub-lattice type L. The order is antiferromagnetic and 
the orbital part is an admixture of Wannier functions, centered on each 
lattice site, with Wannier functions centered on nearest neighbouring 
lattice sites. This is the type of one-electron wave-functions extensively 
discussed by Anderson3s4. As he stated, kinetic exchange occurs because 
the best Hartree-Fock orbitals must be orthogonal but, when they are 
antiparallel, the orbitals may overlap each other. An energy of the order 
-2b2/U per orbit pair can be gained. 



It is proper to remark, however, that Slater's treatment is more general 
than Anderson's because it is not restricted to small b/U values since it 
implies that one starts with the insulating ferromagnetic state (4-2) modifying 
it with the creation of a giant static spin density wave of periqd 24Q. 
In Anderson's model, one starts with 2N degenerate states of N-localized 
electrons with intra-atomic interaction and then using kinetic (or band) 
energy as a perturbation, one finds the AFM state to have lower energy. 
In Section 2, we did not compare the stability of the AFM state against 
other possible states, except the insulating FM and normal paramagnetic 
states. A more general comparison would require methods similar to those 
of Penn'8. In fact, Penn finds a ferromagnetic state as a more stable state 
but with the hypothesis, not justified, of neglecting the (positive) eletrostatic 
energy involved in the formation of a static charge density wave which 
is also present. To discuss this kind of structures, it is necessary to consider 
lattice deformation19. 

Finally, let us observe that the magnetic moment per electron is fractionary. 
In the limit of small b/U, one obtains 

Pef f - P[1 - (16b2/U2)1. 

For systems satisfying the "nesting condition" &k+e = -ck, when the insu- 
lating antiferromagnet is stable for all values of b/U, peff/p can have any 
value between O and 1. It is also interesting to note that even if there exists 
superposition of sub-bands for a critica1 value of b/U in fcc structures, 
it is possible to stabilize new insulating states by succesive phase transfor- 
mations in the way described by Kohn12. This can be done with admixtures 
of states of wavevector (n/a) (1,0,2) and (7~12~) (1,1,1). Such combination 
produces complex magnetic stryctures. 

In conclusion, we may say that the discussion of a simplified Slater's band 
model presented here, even if not quite realistic, attempts to put in evidence 
some characteristics of the magnetic insulating state. 

Appendix. Magnetic Ordering in SC Structure 

In the tight binding approximation, the band structure of a simple cubic crystal is 

= bO - ~ ( C O S  ak, + cos ak, + cos ak:); (A-1) 

when A % b, we have 

- - sin aQi ('4-2) 



Therefore, (8Eo/8Q,) = O  implies Qi = O  or (?tia). Consequently, the Q values that make 
the AFM energy an extremum are the surface Brillouin Zone points R, X and M as predicted 
in Table 1. Futhermore, 

Q = (zía) (1, 1, I), first class magnetic structure, corresponds to a minimum energy. This 
result is in agreement with that derived by ter Haar and ~ i n e s "  using Anderso?'~ model. 
This value of Q satisfy the "nesting condition" %+a = -4  and the one-electron energies 
become 

w: = f J E , ~  + A'. ('4-3) 

The stability of the AFM solution when compared to the PM state can easily be verified. 
Eq. (2-12) becomes 

where g(e) is the band density of states. This result can also be obtained by application of 
the Pauli-Feynman theorem 

where (H  int) = - AZ/U, and the gap equation is 

( N í U )  = C ( A 2  + E : ) ' ~ ' .  
k 

Fig. 2 shows the qualitive behaviour of E, - E,, vs A/T. The energy gap is given in Fig. 3. 

Fig. 2 - Comparison of antiferromagnetic and paramagnetic energies as a function of the 
band width to intra-atomic interaction ratio. 
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Fig. 3 - The energy gap as a function of the band width to intra-atomic interaction ratio. 

For small T/U values ( r  = 6b), the gap equation is approximately given by 

where 

The solution of cubic equation (A-6) is indicated by the dashed line in Fig. 3. It can be obtained 
in second order perturbation theory in b/A5. Based on this result, Anderson was lead to con- 
clude that, above a critical TIA value, the magnetic state can no longer be maintained, beco- 
ming unstable with respect to a redistribution of the electrons making the metallic-paramag- 
netic state more stable. As a result of the present discussion, one can see that this is not the 
case. The perturbation series has a weak convergence and their exact sum is the self-consistencj 
or gap equation. The insulating AFM state is stable for a11 values of r / U .  For large íalues 
of T/U, the gap decreases as exp [ c o n s t  (T/U)] and so do the magnetization and effecti~e 
magnetic moment. 

Invaluable suggestions, discussions and comments from Dr. A. M. de Graaf (Waqne State 
Univ., Detroit, Michigan) on this and related problems, are gratefully acknowledged. 
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