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Multiperipherism and Inclusive Reactions 
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The general properties of hadronic inclusive reactions are reviewed. They are mainly analy- 
zed in the frame-work of the multiperipheral and Regge-exchange models; recent results 
from dual models are also outlined. Particular emphasis is given to those features which 
are independent of the details of the model and are essentially based on general concepts 
and hypotheses. 

São revistas aqui as propriedades gerais das reações hadrônicas inclusivas Sua análise é 
feita sobretudo no esquema dos modelos multiperiférico e de Regge, embora sejam tam- 
bém esboçados resultados recentes de modelos duais. Particular ênfase é dada aos aspectos 
que são independentes de detalhes dos modelos e que se baseiam, essencialmente, em con- 
ceitos e hipóteses gerais. 

1. Introduction 

The field of multiparticle hadronic reactions has been rapidly growing 
in the last few years, and the outcoming results of the new machines, the 
CERN-ISR and the NAL accelerator, are expected to increase further 
the interest in it. Even if exclusive analyses of multiparticle reactions wilf 
probably be needed for the comprehension of hadrondynamics, and results 
from the practically unexplored region of large transverse momenta may 
modify drastically the present theoretical schemes, the information coming 
from the iiiclusive analyses has not been exploited completely, and may 
still provide new clues on the dynamical mechanism. 

Many review articles exist in the literature on the subject, some of them 
devoteú to exclusive analysesl, others, with different emphases, to inclusive 
reactions2; a comprehensive review covering severa1 aspects of multipar- 
ticle reactions is given by Frazer et aL3. 
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In this paper, we shall be mainly concerned with the general features of 
the inclusive reactions in the framework of the multiperiphera14 and rela- 
ted models5. The multiperipheral scheme has developed, in the last decade, 
into a self-contained and well-equipped theoretical laboratory. New ideas, 
such as Regge and Toller poles, received further support and implements 
in this scheme. Severa1 models have been formulated from the original 
one4, but the main properties, such as scaling and logs dependence of 
the average multiplicity, are independent of the details of the models, and 
were already exhibited by the original one. The new concept of duality 
leads naturally from the multiperipheral and Regge-exchange models to 
dual models6; we shall briefly examine the consequences of duality ideas 
on inclusive reactions. 

The material will be organizei as follows. We begin, in Part 2, with a 
recollection of kinematical formulae and defínitions of inclusive distribu- 
tions, especially with the aim of specifying our conventions. Then, we 
consider briefly the energy-momentum sum rules, which will be relevant 
in later discussion. Next, we survey the general features of inclusive reac- 
tions, the main approaches and the different kinds of models. Part 3 is 
devoted mainly to multiperipherism for inclusive reactions. We start with 
a simplified version of the uncorrelated jet model, to illustrate in a simple 
fashion the important role of the transverse momentum cut-off. Then we 
analyze the predictions given by the multiperipheral and Regge-exchange 
models, and discuss some recent results obtained from dual models. For 
the discussion of other models and a detailed analysis of the phenomeno- 
logical situation, we refer to existing review papers. 

*2. Generalities on Inclusive Reactions 

2.1 Kinematics 

In this section, we collect the essential kinematical formulae which cair 

be found in any review paper on the subject. They are reported here for 
completeness and for specifying our conventions. 

First of ali, we notice that the number of independent kinematical variables 
for an inclusive reaction of'order k, 

where k particles are observed in the final state, is equal to 3k, as can be 
easily checked. 



A. Kinematics for One-Particle Inclusive Reactions 

In this case there are tlree independent variables; one can make different 
choices starting from the four-momenta P , ,  P , ,  Pc (see Fig. 1 ) .  In the 
following, we shall always denote by a and b the target and projectile 
particle, respectively. 

Fig 1 - Inclusive reaction 

i) Set s, t ,  MX (Mandelstarn variables plus missing mas). 

s = (Pn + Pb)', 
t = (Pb - Pc)', (2-2) 

Mg = (P ,  + Pb - P,)'. 

ii) Set s, t c ,  pc (longitudinal rapidity and transverse momentum of the 
observed particle). 

Taking the z-axis along the direction of the projectile momentum P,, we can 
write in an arbitrary frame of reference: 

P,  = (ma cosh t a ,  0, O, m, sinh t a ) ,  

Pb = (m, cosh 5 ,  , 0, O, m, sinh t,), (2-3) 
Pc = (Pc C O S ~  t c  , Pc COS (Pc 7 Pc siri v , ,  Pc sinh t c ) ,  

where pc = Jm, and where pc denotes the magnitude of the trans- 
verse momentum. 

The quantity t i ,  defined by 
Pp + P; t i  = log 9 

Pi 
is the so-called longitudinal rapiditv. Under a Lorentz transformation along 
the z-axis, longitudinal rapidities change by an additive constant. 

The relative rapidities, defined by 



are therefore invariant under this kind of Lorentz transformations. The 
range of variability of't, for large s can be expressed, in general, as 

The following relations will be often used: 

s = m,2 + mb + 2 mamb cosh t b a ,  (2-7) 
M i  = s + rn; - 2 mapc cosh tCa - 2 mbpc cosh tbC. (2-8) 

Denoting by 5; the longitudinal rapidity in the C. M. frame, one gets 
for large s 

1 s c,* = -logL, J S  5; 25 log - 
ma m b 

and 

The corresponding relations in the laboratory frame are 

c, = o, 5 b  log (s/m?) (2- 1 1) 

and 

One sees that the range of the longitudinal rapidity of the observed par- 
ticle is of the order of log S. 

iii) Set s, xc, pc (Feynman's variables). 

The scaling variable x, can be defined as 

(2-1 3) 

where P,*" is the longitudinal rnornentum in the C. M. frame. Other de- 
finitions are used in the literature, which become equivalent to (2-13) 
at high S. 



This variable is related to the longitudinal rapidity by 

~ P C  x, = - sinh 5 ; .  
f i  

For large value of s, since from (2.9) one gets 

,h % mb exp 5; % ma exp (-r,*), 

we can use the expressions 

B. Kinematics for Two-Particle Inclusive Reactions 

In this case, one needs to specify 6 independent variables. One can take, 
for instante, either of the following sets: 

i) S, r c  r d  Pc , Pd (Pcd , 
i.e., the longitudinal rapidities r , ,  5 ,  of the particles c, d; their transverse 
momenta p, , p, and the relative angle cpcd ; 

ii) s, x c ,  x d ,  P, , pd , qCd , 
where the rapidities are replaced by the scaling variables x,, x, defined 
as in (2-13). 

Also in this case, one often uses the missing mass variable, defined by 

M; =(P, + P, - P, - P , ) ~  (2- 18) 

and which can be expressed as follows, in terms of the rapidities: 

M i  = s + m,2 + ma2 - 2p,(ma cosh <,, + m, cosh r,) 
- 2pd(ma cosh r,, + mb cosh r,,) + 2pc,ud C O S ~  r,, (2-19) 

- 2 ~ c ~ d  cOs (Pcd 

2.2 Definitions of Inclusive Distributions 

We start with the exclusíve reactíon 

a + b + c ,  +c ,  +... c,,, 



in which, for the sake of simplicity, we assume c , ,  c,, . . . c, to be n iden- 
tical particles with spin zero and m a s  m. The integral cross section for 
this process is defined by 

n 1 " 
a4(p, + Pb - 2 Pi) I M,(Pl , . . . , P,) l 2  - n! i = l  II (dPi), (2-21) 

i = l  

where M, is the relevant matrix element (to get a handy expression we 
eliminate a11 usual 271-factors which are supposed to be inserted in M,); 
l / (n ! )  is the permutation factor. which gives the right counting of the final 
states, and y(s) is the incident flux 

y(s) = [(s - m,2 - m,2)' - 4m: m;] ' i2,  (2-22) 

which asymptotically reduces to 

y(s) X S. (2-23) 

Finally, dPi denotes the invariant phase space element 

which, in terms of t i ,  pi ,  qi becomes: 

The totql cross section for the process 

a + b -+ everything, (2-26) 

which can be defined as inclusive reaction of order zero, is obtained sum- 
ming over n from 2 to the maximum value allowed by energy conservation: 

The differential one-particle inclusive cross section for fixed n (probability 
of finding one particle out of n in dP,) is given by 

da'," -- 1 " 1 = FL1)(Pl) = - nJ 6'(pa + Pb - 1 Pi) 1 M, l2 h (dPi). (2-28) 
dP1 14s) i=l  n. i = 2  

Summing over n, one gets the inclusiye one-particle distribution function 



From the normalization (2-28), one obtains immediately 

P l )  dP1 = C n o&) = (n) o, , 
n 

where (n) is the &erage multiplicity. 

The inclusive two-particle distributions are obtained in a similar way from 

and 

From the above definitions, one gets 

The above relations can be easily generalized to the case in which different 
kinds of particles are present in the final states7. 

Sometimes, instead of the above distributions, it is more convenient to 
use inclusive densities, defined by 

In this connection, also correlation functions are often introduced, accor- 
ding to the cluster decomposition used in many-body theory. Since, in 
the following, we shall limit ourselves mainly to two-particle inclusive 
reactions, we give here only the two-particle correlation function 

P ( ~ ' ( P ,  ,P,) = f ( 2 ' ( ~ ,  , P,) - f y P l )  f (l'(P,). (2-36) 



The three particle correlation function p'3) (P, , P, , P,), is defined by the 
relation 

from which one can immediately obtain the generalization to the case 
of correlation functions of order k :ptk)(p, , P, , . . . , P3. 

As it will appear in the following, it is very useful to deal with the cor- 
relation c~eff ic ients~~,  i.e., the integrals of the correlation functions: 

In the case k = 2, from Eqs. (2-38) and (2-36) one gets: 

R(') = (n(n - 1)) - (n)' = 0") - (n), 

where the quantity 

= ((11 - (11))~) 

is the multiplicity (mean square) fluctuation (or dispersion). 

We end this section by defining a generating function, 

such that 

Q(1,s) = 



The analogy of the definition (2-41) with the partition function of a grand 
canonical ensemble lead to a statistical mechanical analogue (Feynman's 
liquid) for the description of the multiparticle process'es in the rapidity plots. 

2.3 Energy-Momentm S m  Rules 

In this section, we want to discuss briefly some general relations based 
only on the energy-momentum conservation This imposes relations (sum 
rules) amongst inclusive distributions of different order; their physical 
implication will be commented in following sections. Sum rules based on 
other conservation laws, such as charge9 and isospintO, will not be consi- 
dered in this paper. 

Energy-momentum sum rules, first obtained by Chow and Yang", have 
been expressed in a general way12. We follow here a simplified derivationl 3. 

It is convenient to start from the k-particle inclusive distributtion, which 
can be written, as simple generalization of (2-31), as 

(2-43) 
and 

F ' k ' ( ~ l  , . . . Pk) = 1 c k ) ( P ,  , . . . P,) (2-44) 
n 

The sum rules we want to consider can be expressed in the form 

in terms of the inclusive densities. This relation can be easily cliecked 
by making use of the definitions (2-43),(2-'44) and of the symmetry pro- 
perties of M,. 

It is instructive to consider the simplest cases k = O, k = 1:  

( P
p
-  Py) f"'(P,) = ( P$ f ")(P1 , P,) dP,  . (2-47) 



In terms of the correlation function (2.36), one gets from the above relations : 

P? f '"(Pl) = - P; p")(P1 , P,) dP, . S (2-48) 

We note that energy-momentum conservation imposes the correlation 
function to be different from zero at least in some region of the phase 
space. 

By multiplying Eq. (2-47) by P'j and integrating over P ,  , one gets the 
Predazzi-Veneziano sum rulel : 

which for transverse momenta (p = v = 1, 2) becomes 

{ p :  f ' " (~ , )  dPl = - plp, cos <p, , f"'(P1 . P,) dPl  dP2 . (2-50) SS 
The latter relation implies an aiimuthul dependence of f í2 ' (P,  . P,) (v , ,  is 
the angle between the two transverse momenta p , ,  p,). 

Different expressions for energy-momentum sum rules can be found in 
the literature; however, it can be shown that Eq. (2-45) provides a11 the 
independent sum rules for the k-order inclusive density13. 

2.4 Main Features of Inclusive Reactions 

We start with two general features of high energy multiparticle reactions, 
i.e., the smallness of average transverse momentum and the low multi- 
plicity of the particles produced. 

i) Distribution of transverse momenta The number of particles produced 
decreases very rapidly with increasing of the transverse momentum. In 
particular, the inclusive distributions, for fixed values of the scaling va- 
riable x, decrease exponentially, at least in the region 0.15 < p < 1 GeV'c. 
They a11 have reached scaling above 1000 GeVic. but the slopes of the 
distributions differ for different kinds of particles (see Fig. 2). 



Fig. 2 - Inclusive one-particle cross sections versus tr;insverse nionicntuiii íixed K N - K  
CERN-ISR energies. The solid lines represent exponential fits. 

The following values for the average transverse momenta are estimated 
from the CERN-ISR data14: 

(p) N 350 MeV/c for 71' 

( p )  N 450 MeV/c for K' , 
( p )  N 500 M eV/c for p, P. 

ii) Multiplicity of particle produced. The average nun;ber of particles pro- 
duced in a high energy reaction is rather small, in comparison with the 
number which could be created The multiplicity increases slowly with 
energy; its exact dependence has not yet bem definitely established, but 
a form of the type 

(o,, )A + B log s (2-5 1) 

for the average number (/I,, ) of charged particles, is favoured for ener- 



gies above 80 GeV (Ref. 14). A compilation of charged multiplicity versus 
enecgy is shown en Fig. 3. 
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Fig. 3 - Average charged multiplicity versus incident lab. momentum. The solid iine repre- 
sents a fit of the type A + B log s + C s - ' I 2 .  

Besides these basic properties of multiparticle reactions, the hypotheses 
of scaling and limiting fragmentation reflect general features of the single 
particle spectra. They can be formulated as follows: 

iii) Limiting fragmentation": in the laboratory frame, the inclusive dis- 
tribution F(')(Pc, s) = F(')(Pf, pc , s) approaches a finite limit 

when P: is held' fixed and s -+ co. The particle c is considered a fragment 
of the target. Similar statement holds in the rest frame of the projectile, 
and then c is considered a fragment of the projectile. 

iv) Scaling hypothesis16: in the C. M. frame, the inclusive distribution 
depends, in the asymptotic limit for large s, only on the scaling vanable 
X, (2- 13) : 

For fixed value xc # 0, this is equivalent to the limiting fragmentation 
hypothesis; however, Eq. (2-53) applies also to the central region x, N O, 



Fig. 4 - Inclusive one-particle cross sections from CERN-ISR data versus the longitudinal 
rapidity li., - l*. 



which does not correspond to any finite momentum in the laboratory 
or in the projectile frame. 

Similar statements are extended to higher order inclusive distributions. 
When the above. hypotheses are satisfied, we shall refer, indifferently, to 
scaling or limiting distributions. 

One can separate the single particle spectra in the rapidity plots in diffe- 
rent regions, making the hypothesis of a certain correlation length L: one 
assumes that two particles are uncorrelated if their relative rapidity is 
larger than L. One can then define the three following regions: target jrag- 
mentatioii when [,,c L; projectilefragmentation when c,,< L; central region 
when both inequalities c,, > L and <,, > L hold. It can be shown that 
the predictions of limiting fragmentation and scaling can be derived from 
this correlation length hypothesis. In accordance with recent experime~ial 
indications, it is convenient to make use of a correlation length of the 
order of 2. 

In Fig. 4, recent data on single particle inclusive distributions are presen- 
ted. They indicate that limiting distributions are reached at the ISR energia; 
the way of approaching the limit depends on the type of particle observed. 

2.5 General Approaches to Inclusive Reactions 

We discuss briefly here the problem of constructing inclusive cross sections 
starting from a given model. Two general approaches have been followed 
up to now: 

i) the Direct Approach, which requires the knowledge of the n-particle 
production amplitudes; the inclusive distributions are then obtained by 
summing exclusive cross sections over the appropriate unobserved quan- 
tities : 

ii) the Mueller's Approach17, which is based on the knowledge of fonvard 
elastic multiparticle amplitudes; the inclusive distributions are obtained 
by taking appropriate discontinuities of these amplitudes. 

Of course, if one can derive from a given model a unitary S-matrix, the 
results obtained following either of the two approaches must coincide. 
However, the two approaches can lead to different results for the inclusive 
cross sections, if an approximate form of the S-matrix is used. Which of 



the two ways is more convenient to employ depends essentially on the 
specific model that is considered. Different examples will be presented 
in this paper. 

The rest of this section is devoted to the specification of Mueller's pres- 
criptions for obtaining inclusive cross seetions from forward multiparticle 
amplitudes. These prescriptions can be considered a generalization of the 
optical theorem which relates the total cross section for the process 
a + b  -t anything (inclusive cross section of order zero) to the imaginary 
part of the forward amplitude of the process a + b  -, a + b. 

Let us consider the one-particle inclusive process 

a + b + c + X  

represented in Fig. 1. The corresponding cross section is related, accor- 
ding to Mueller's Ansatz, to a certain discontinuity of the forward ampli- 
tude for the process 

Fig 5 - Inclusive one-particle cross section as discontinuity of fonvard elastic 3-body 
amplitude. 

The situation is depicted in Fig. 5; in formulae, we write 

F"'(P,) = A- A(P, , Pb , - P,), (2-56) 
Y ( 4  

where A is the discontinuity of the connected part of the forward 3-body 
amplitude M(s, t, Mi), taken across the cut of the variable Mi = (P, + 
+ Pb - P,)*, which is just the missing m a s  for the process (2-54) We note 
that, in contrast with the optical theorem, the forward amplitude is not 



evaluated in its physical region, since in going from (2-54) to (2-55) one 
needs to invert the four momentum of particle c and replace c by its anti- 
particle 2. The discontinuity has to be evaluated from the non-forward 
amplitude M ( P a ,  Pb ; Pá, Pb ; P,), where IY,, Pb refer to the final state, 
in the limit Ir, = Pa , Pb = Pb . Specifically l : " 

A(Pa , Pb , - P,) = M(s + i ~ ,  s' - i&, t, M i  + i ~ )  - M(s + i&, s' - iç:, t, M i  - iç:), 
(2-57) 

where s and s' = (c + Pb)2 are to be taken above and below, respectively, 
the physical cut of the process a + b -, a + b, while no ambiguity exists 
for t, since it is below threshold. 

The above prescription can be extend to the cases of higher order inclusive 
distributions. In general, one can write 

where the discontinuity A of the forward (2  + k)-body amplitude has to 
be evaluated with the due care. 

Although no general proof exists for the Mueller's extension of the optical 
theorem, its validity has been established in the framework of quantum 
field theory ' '. 

2.6 Models 

Severa1 models of multiparticle reactions have bem developed, from diffe- 
rent view points and with different scopes. Some are based on general 
concepts, others refer to specific theoretical schemes. Some have a more 
phenomenological character, and describe specific and detailed properties 
of experimental data; others exploit mainly theoretical ideas. Common 
features are shared by different models, while different aspects are empha- 
sized by similar ones. 

In the following, we list general classes of models, each class being defined 
in a'rather loose way. 

i) Diffractive Fragmentation Mod& We include in this class the eikonal 
treatment of high-energy hadronic rea~tions*~, ard a11 kinds of the so- 
called "fireball", "jet" and "nova" models2'. In general, these models des- 
cribe a reaction in terms of the excitation of either or both incident hadrons; 



the word "diffractive" is usually employed in the broad sense that the excited 
states carry the same interna1 quantum numbers of the corresponding 
incident hadron. Single and double excitation modelsZ2 have met recently 
some success in describing the properties of the inclusive distributions. 

ii) Statistical Thermodynamical Models. The first version of these models 
is due to FermiZ3 ; refined versions have been developed recently2". The 
reaction products are considered to be originated by a state of statistical 
equilibrium of "fireballs", where this word means here both particles and 
resonances. The most successful outcome of this kind of models is the 
prediction of the transverse momentum distributions. 

iii) Field Theory Models. In these models, the asymptotic behaviour of 
scattering amplitudes is derived in perturbation theory, by summing the 
leading terms of an infinite set of diagrams2'. It is interesting to note that, 
by a convenient choice of the set of diagrams, one can derive, in the frame- 
work of quantum field theory, a simple eikonal form for the scattering 
amplitude. 

iv) Multiperipheral and ReggsExchange Models. In this class we include 
both a11 versions of multiperipheral models, which originated from the 
simple ladder model for the multiparticle production processes4, and a11 
kinds of multi-Regge models5. A11 these models have the common features 
that the production matrix element can be factorized in a specific way, 
and that the absorptive part of the elastic amplitude satisfies an integral 
equation with definite symmetry properties. General predictions of these 
models are the scaling behaviour of the distribution functions and the 
log s dependence of the average multiplicity. 

v) Dual Models. Duality requirements and specific dual models have been 
applied to one- and two-particle inclusive distributionsZ6. One of the most 
interesting outcome is the strong, universal cut-off in transverse momentum. 

The above list is by no means complete. For detailed analyses of the various 
models, we refer to the quoted review paper~'.~. The multiperipheral ideas 
and related models for inclusive reactions will be discussed in the next 
part of this paper. 

3. Multiperipherism, Duality and Related Models 

3.1. A Shpk Version of Uncorreloted Jet Model 

As pointed out in Sec. 2.4, one of the prominent features of high energy 
multiparticle reactions is the smallness of the average transverse momentum. 



Before going to the multiperipheral model, we shall examine the conse- 
quences of a transverse momentum cut-off in a very simple model. 

We assume that the n-particle production matrix element M, can be facto- 
rized in the form 

where N ( p i )  is taken to be a universal function depending only on the 
magnitude of the transverse momentum pi . It is not necessary to specify the 
form of the function N(pi), but only to assume that it decreases fast enough 
with increasing p, to make certain integrals convergent Eq. (3-1) represents 
the simplest version of uncorrelated jet models, also called P-factorized mo- 
delsZ7, in which each particle is emitted independently, and the only correla- 
tion is due to the overall energy-momentum conservation In this section, 
we outline the derivation of the inclusive distribution functions given by 
Bassetto et alS7, following the direct approach (see Sec. 2.5). 

A. Calculation Aids 

It is useful to introduce the generating function of the four-vector R: 

Clearly, @(R) vanishes unless R is time-like and R, > 0. 

It foilows that the total cross section is simply given by 

Making use of the spdf ic  form (3-1) for the production matrix element, 
one can write the single and two-particle inclusive densities in terms of 
the function @(R): 



The evaluation of the generating function @(R) is more easily carried out 
in terms of its Fourier transform 

&(V) = d4R eiVR @(R), S (3-7) 

which is an analytic function for Im V" > O. Due to the symmetry pro- 
perties (3-1) of the matrix element, both functions @(R) and &(V) are inva- 
riant under rotations about and boosts along the z-axis (defined, e.g., in the 
laboratory frame by P,). Then @(R) depends only on the quantities 

and &(V) on the analogous ones 

Eq. (3-7) can be written more explicitly as 

where the quantity is the analogue of a relative longitudinal rapidity, 
and rp is the angle between v and r. Integrations over 5 and rp give: 

r r K -  i uL r )  r ,  r ) ,  (3-1 1) 

so that by inverse transform one gets, putting v, = iz, 

1 
c + i m  

@(r, rL) = a 1- z dz Io(zrL) v dv ~ ~ ( r u )  &(v, iz). (3-12) 

The transform &(v, v,) is obtained by 

where 

and 



We 
the 
(3- 1 

are interested in the asymptotic expressions of @(r, r,) valid for large r, ; 
leading contributions in,this limit come from small values of v, v, in 
2), (3-15). Specifically, one uses for p(v, v,) the approximated form 

where 

h = . Jnm P dp "(~1; 

In the above formulae, we have replaced, for the sake of simplicity, the 
quantity g2h by h. 

Inserting (3-16) into (3-14), one gets finally from (3-12) and (3-13) the appro- 
ximate expression for the generating function : 

r 
2m 

2h log L/ 

B. Inclusive Distributions 

We can now evaluate, using (3-4) and (3-20), the asymptotic expression 
of the total cross section. Since in this case R = P, + P , ,  one has in the 
C. M. frame r = O, r ,  ,h, so that: 



We see that, in order to obtain a reasonable behaviour for o, (decreasing 
at most as (log s)-' , we have to assume I? 2. The average multiplicity 
is obtained, according to (2-42), in the form: 

(n) = h $log@(s, h) = h log s + comt, (3-22) 
Where we have neglected terms of the order of (1ogs)-'. 

The one-particle inclusive density is obtained from (3-5). Since now 
R = P, + Pb - Pc , one gets 

and making use of (2-7), (2-8) and neglecting terms of the order (log s)- ' : 

We distinguish the following regions of tbe rapidity plot: 

i) Central Region (cbc $- 1, tC, 9 I). It  is also called "pionization" region 
and it wrresponds in the C. M. frame to x, zz O. The inclusive density 
depends only on the transverse momentum 

f (l)(pc) z g2 N(pc); (3-25) 

ii) Target Fragmentation (c,, P 1, 5 ,  small). It corresponds to a longitu- 
dinal rapidity i;, closed to i;,, i.e., to smali values of 9, in the laboratory 
frame (ca = O). We see that one gets a finite lirnit in the laboratory frame 
for s -* m, i.e., 

iii) Projectile Fragmentation (5,  P 1, 5 ,  small). This region corresponds 
to small c, values in the rest frame ofb(<, = O). One gets, for s -+ a, the limjt : 

We note that the asymptotic expressions of the inclusive distributiona 
exhibit the scaling properties, provided that terms of the order of (log s)- ' 
are neglected. According to what was said in Sec 2.4, the inclusion of such 
terms would correspond to iniinite correlation lengths. 
From the explicit form of the inclusive density (3-25), it is easy to see that 
the quantities h and 1/A2, defined by (3-17) and (3-18). can be interpreted 



as average multiplicity per unity of rapidity, and average square trans- 
verse momentum, respectively, in the central region. 

Similar analysis can be carried out for the two-particle inclusive densities. 
With the same approximation (neglecting terms - (log s)-I), one obtains 

f '2'(pc 5 Pd) g4 N ( ~ c )  N(~d) (3-28) 

where the following approximate form of (2-19) is used: 
1 

M: z s(1 -pc[iexp(-i,) ma + -exp(-th) mb 

pc pd + -- [exp (tCd + exp (- <cd)] exp (- 560) 
ma mb 

Let us consider particular regions for t C ,  t;, : 

i) Central Region: both particles c and d are in the central region, so that ali 
relative rapidities appearing in (3-29) are large and one can write: 

f.'2'(p, , Pd) g4 N(P,) N(P;) (3-30) 

ii) Fragmentation Region: particles c and d are fragments of particles 
a and b, respectively. One obtains in this case: 

We obtain, also in this case, factorization, so that the correlation function 
P(~)(P,, P,), defined by (2-36), vanishes; 

iii) Double Fragmentation Region Y7- take both particles c and d in the 
rapidity range closed to the same particle, say, a We have then (both 
tbc and tbd being large): 

In this case there is no longer factorization, since a kinematical correlation 
is obviously present. 



We would like to remark the following fact: the inclusive densities obtai- 
ned in this section, since derived by the direct approach from the matrix 
element M ,  , are expected to satisfy automatically the energy-momentum 
sum rule. One can check, however, that in order to saturate the sum rule 
(2-50), one need to include in (3-28) non-leading contribution coming 
from the exponential present in (3-20). This seems to be a quite general 
feature, occurring in other models: since the sum rules require the know- 
ledge of the inclusive densities in a11 the phase space, non-leading contri- 
butions are usually needed for their saturation. 

Before closing this section, we would Iike to mention a limiting case of (3-1) 
which shows the importante of the cut-off function N(pi). Let us suppose to 
eliminate the pi-dependence in (3-I), so that I Mn12 - g2", and @,, reduces 
simply to the n-particle phase-space. The evaluation of can be performed 
by means of a Laplace transformZs; summing over n, one obtainsZ9 

@(P, + P,) N f l  g4/3 s - ~ / ~  exp(ag2I3 s'l3), (3-33) 

where a, B are two positive constants. The average multiplicity (n) obtained 
from (3-33) grows with s as s1I3; the upper bound for (n), in the case of 
identical particles, is - s1I2, and it would correspond to creation of par- 
ticles at rest. 

3.2 Multiperipheral Models 

The inclusive reactions are examined in this section in the framework of 
multiperipherism. The simplest version of multiperipheral model was iirst 
formulated a decade ago4 and its properties of scaling and logarithmic 
increase of the average multiplicity were put fonvard at the same time. 
After this pioneering work, multiperipheral dynamics has been extensively 
exploited, and more elaborated versions, among which we mention the 
multi-Regge model by Chew and Pignotti5, have bem proposed. 

Fig. 6 - Multiperipheral graph for production amplitude. 



This class of models is characterized by general properties which will be 
discuqsed in the following. For the sake of simplicity, they will be formu- 
lated here in terms of the simplest ,version, in which the n-particle produc- 
tion process is represented by the "multiperipheral graph" of Fig. 6. With 
reference to this graph, one usually defines the two sets of variables: the 
momentum transfers 

ui = Q2 
I ?  Qi = P, - P,  -. . . Pi , (i = 1 , .  . . , n - 1 (3-34) 

and the sub-energies 

The main properties can be expressed as follows: 

i) Q-Factorization - The matrix element M, is supposed to be factorizable 
according to 

MAPI 2 . . - 3 PJ = c&) g(u2) - . g(% - I). (3-36) 

This property, which can be expressed in a much more general form, is 
an essential ingredient of the models; it allows to build the M,,, matrix 
element by multiplying M ,  by a simple factor, i.e., by adding a link to 
the chain represented in Fig. 6. Since each factor describes the dynamics 
locally in the multiperipheral graph, this property implies a finite (possi- 
bly small) correlation length. 

ii) Momentum Transfer Cut-off. The function g(ui) is assurned to decrease 
rapidly with increasing lui 1. This damping in the momentum transfer de- 
pendente is necessary in order to limit the transverse momenta p,. 

iii) Strong Ordering. The particies are ordered in the multiperipheral chain 
according to increasing longitudinal momenta or, equivalently, longitu- 
dinal rapidities. (According to our convention, the rapidities are increasing 
from right to left in Fig. 6). The matrix element (3-36) is assumed to be 
small outside the phase space region corresponding to the "right" order 
indicated. Since we are dealing with identical particles, it will be necessary, 
in order to obtain the cross sections, to sum over the n! permutations of 
(P, , . . . , P,); for each of these terms, the matrix element will be dominant 
only in a small region of the phase space. 

Next we examine, in the framework of the simple multiperipheral model 
outlined above, the forward scattering amplitude and the inclusive dis- 
tribution functions. 



A. Forward Scattering Amplitude 

We are interested here in the absorptive part A(Pa , - Q) of forward (off-shell) 
scattering amplitude. In the multiperipheral model, it can be obtained in 
terms of the sum 

A(Pa , - Q) = An(Pa , - Q), 
n >  1 

Fig. 7 - Ladder graph for forward elastic amplitude. 

where A, is the contribution of the n-ladder graph of Fig. 7. In terms of 
the matrix elements (3-36), corresponding to the production of n particles, 
one can write: 

Defining, for the sake of simplicity, 

1 M,(P, , . . . , P,))' = ( 2 ~ ) ~ - ~ "  gZn A(ul). . . A(un- ,), (3-39), 

the following recursion relation can easily be verified: 

In the original version4, the functions A(ui) in (3-39) are given explici- 
tly by 

However, it is not necessary to specify the dependente of A(ui), and Eq. 
(3-40) can be adapted to various specific cases. 



Summation over n gives the well-known integral equation 

A(Pa , - Q) = ng2 6[(Pa - - m2] @(P,O - QO) + 

which is discussed extensively in many review ~apers~ ' ,  and is described 
symbolically in Fig. 8. 

Fig 8 - Gr;iphical rcprcicnt;ition of the multiperipheral integral equation. 

We need now to recall some general properties of the solutions of Eq. 
(3-42). This equation can be partially diagonalized performing a harmonic 
analysis of the absorptive amplitude. Since we are dealing with a forward 
amplitude, the appropriate little group is the Lorentz group 0(3,1) itself. 
Choosing a generic frame of reference, we can write 

S 
c + i m  

A(P, , - Q) = - iwG a(Â, u) B{,(L(a)q) d A  
r-im 

where q is a unit four-vector defined in the rest frame of particle a by 

Q 
q = - - = (sinh o, q cosh ó). 6 

We indicate by 9-?," j ,m,  (cr) the unitary irreducible representations of the 
Lorentz group, and by B!&) the relative bases; lu is the elernent of the 
group corresponding to the Lorentz transformation which relates the 
chosen frame to the rest frame of particle a. For more details we refer 
to specific papers27*31. 



In the rest frame of a, Eq. (3-43) reduces essentially to a Laplace transform: 

It can be shown, in the frame of the present model, that the asymptotic 
behaviour of A(a, u) for large o is dominated by the leading singularities 
of the "partial wave amplitude" a(I, u) in the I-complex plane, which are 
isolated poles with factorized r e ~ i d u e s ~ ~ .  They are called Toller or Lorentz 
p01es~~;  a single Toller pole is equivalent to an iniinite sequence of Regge 
poles equally ~ p a c e d ~ ~ .  

Starting from Eq. (3-45), one can obtain the absorptive part of the on-shell 
forward amplitude. With a re-definition of a "partial wave amplitude" 
a@), we can write for large s: 

c+im 

A(Pa , P,) = A(<) % - i exp(I0 &, j ' ( I )  sinh < (3-46) 
c-iw 

where < coincides, in the laboratory frame, with the relative rapidity <, , 
related to s by (2-7). 

Supposing that the leading singularity of a(I) is an isolated pole at I = a + 1, 
one can obtain from (3-46) the asymptotic expression for the total cross 
section aT(a + b -, everything): 

The cross section tends to a constant if a = 1: the Toller pole then cor- 
responds to the Pomeranchuk singularity. 

B. Inclusive Distributions 

In this section we shall indicate how one can obtain, from the multiperi- 
pheral model, the explicit form of the ipclusive distributions. 

We consider first the case of single-inclusive reactions. One can obtain 
FL1'(Pa, P, , Pc), with n fixed, from the matrix element (3-39) corresponding 



to Fig. 6, summing over a11 final momenta except Pc. If we re-label the 
momenta as in Fig. 9, we can write (with u; = Q' '): 

Fig. 9 - Multiperipheral graph for one-particle inclusive distributions. 

where the sum over r takes into account that the observed particle can 
be emitted at any point of the multiperipheral chain. 

Finally, the one particle inclusive distribution function is obtained, by 
summing over n, in the form: 

F"' (Pa ,Pb ,Pc) = 

The three terms in which F") is decomposed in Eq. (3-49) are the con- 
tributions represented by the three graphs of Fig. 10. One can easily 
convince oneself that the second and the third t e m  give contribution to 
the inclusive cross section only in the fragmentation region of particles a 
and b, respectively. 



Fig. 10 - Multiperipheral amplitudes contributing to one-particle inclusive distributions in 

the central and fragmentation regions. 

We are interested here mainly in the central region of the rapidity plot defi- 
ned by tCa % 1, c,, 9 1, so that we shall keep only the first term in Eq. (3-49). 

Replacing the two absorptive amplitudes appearing in this term by har- 
rnonic expansions of the type given in (3-43), one obtain the following 
expression for F'l)  valid in the central region: 

F")(P,, P,, P,) = 

1 g2 
c + i w  c + i w  

- dX C 9Oijm(aCa) Fj(A, A') @$&,c). 
y(s)@")'l-iwdAl-im jm (3-50) 

For convenience we have chosen the rest frame of particle c, so that a,, , 
a,, are the elements of the Lorentz group which relate the rest frames 
of particles a and b, respectively, to the rest frame of particle c. The expli- 
cit expressions of a,, , a,, are given in the quoted paper27. The function 
5 (1, X) is defined by : 

Fj(A, X) = - A(u) A(u') a(1, u) a(l', u') bj"(o) b;'(o') 
m " SS 

[T(u, u', m2)]'12 du du', (3-51) 
where a(1, u), a (2, u') are the two transformed absorptive amplitudes and 
the bf are related to the basis functions Btrn appearing in Eq. (3-43). 

Extracting from Eq. (3-51) the leading singularities in A, 2, which con- 
sist in two poles with factorized residues at A = a + 1, X = a + 1, with 
a i 1 ,  we get 



In the central region, both relative rapidities t ca ,  tbC are large, so that 
one can use the asymptotic expressions for the 9-functions given in the 
quoted paperZ7 and Eq. (3-52) reduces to: 

From the asymptotic expression (3-47) of the total cross section, one gets 
then for the inclusive density: 

f (l)(PC) = NC(P,), (3-54) 

where N ,  is a universal function depending only on the nature of the par- 
ticle c, and not on particles a and b. The above formula coincides with 
Eq. (3-25) of the previous section; in the present case, however, it is an 
output of the multiperipheral hypotheses. 

It is interesting to remark that the same expression (3-54) could be obtained 
following the Mueller's approach. One would start directly from a 3-body 
fonvard elastic amplitude, and analyze it in terms of the irreducible repre- 
sentations of the Lorentz group. In the central region, one should perform 
a double harmonic expansion and, making the hypothesis that the asymp- 
totic behaviour is dominated by Toller pole exchange, one would obtain 
Eq. (3-52). This expression for F") can then be interpreted directly as the 
absorptive part of the amplitude described in Fig 11. 

For the asymptotic expression of F") in the fragmentation regions, it is 
sufíicient to start from a single harmonic analysis; the leading terms corres- 
pond to a single Toller pole exchange, as represented in Fig. 11. The inclu- 
sive distribution shows the limiting fragmentation behaviour. 

Fig. 11 - Toller-pole amplitudes contributing to one-particle inclusive distributions in thc 
central and fragmentation regions. 

If we note that keeping only the leading contribution from the Toller pole 
is equivalent to keep the dominant Regge pole in the corresponding Regge 
trajectory sequence, the above results reduce, in this approximation, to 
those obtained fírst by Mueller17. Some of these results will be discussed, 
with more details, in a later section. 



We shall limit ourselves here to the two-particle inclusive distributions in 
the central (pionization) region, in which the general analysis in terms 
of Toller pole exchanges can give new interesting information. Following 
the Mueller's approach, the relevant inclusive distribution is obtaineú from 
the 8-point function represented in Fig. 12; we assume that a11 the relati- 
ve rapidities t b d ,  tdC,  C,, are large enough to make a three Toller pole 
expansion meaningful. 

Fig. 12 - l'hree Toller-pole amplitude contrtbuting to two-particle inclusive distributions 
in the central region. 

The inclusive distribution function can then be written as follows: 

We note that the M-quantum number of the Toller pole exchanged between 
c and d could be, in general, different from zero. If we keep only the leading 
Toller pole corresponding to the vacuum quantum number (a = a' 1: l), 
we obtain the asymptotic expression 

and the inclusive density reduces simply to 

f '2'(pc Pd) N c ( ~ )  Nd(~d). 

However, if c and d are still in the central region, but t, is not very large 
(we take Sd, > O), we have to take into account correction terms. The 
simple expression (3-57) is then replaced by 

f '2'(p~ 3 Pd) N c ( ~ ~ )  Nd(~d) + 3 Pd 3 <,C 3 V~C). (3-58) 

The function Hcd represents such correction and corresponds to the corre- 
lation function p(2)  (in the central region), defineú by (2-36). We remark 
that it depends explicity on the relative azimuthal angle cpdc between the 



transverse momenta of the two observed particle. We know that a cpdc 
dependence of the inclusive density is needed in order to saturate the trans- 
verse momentum sum rule (2-50), and we have already pointed out that 
for such saturation non-leading terms are necessary. The function H,, 
receives contributions from different terms. If one keeps the other terms 
in Eq. (3-55) corresponding to M # 0, one gets27,35 : 

Hcd bC(~c)  bdl(~d) ex~{(aL - a) tdc) M ~ , c .  (3-59) 
M 

In principle, looking at the energy dependence of the azimuthal correla- 
tion function, one could detect the presence of Toller poles with M # O. 
However, since such possible poles are believed to have a rather low in- 
tercept, such effect would be masked by contributions coming from the 
non-leading terms of the vacuum pole a 1. These terms are in fact esti- 
mated to be the main source of the azimuthal correlation in Eq. (3-58)36. 
Correlations originated by more complicated singularities are exbected to 
be small in the central region and could be discriminated, since they should 
decrease much slower than the other contributions with increasing 5,. 

C. Average Multiplicity 

As already remarked, a general feature of multiperipherism is the predic- 
tion that the average multiplicity (H) increases with log S. This is a simple 
consequence of the fact the leading part of the inclusive density f "' is 
independent of the longitudinal rapidity in the central region, and this 
region increases linearly with the rapidity range t,, log S. 

The log s dependence of (n) is, in fact, a crucial test for a11 kind of multi- 
peripheral models. It has been shown by Bassetto et that not only 
the models based on matrix elements M, of the type (3-39), but a much 
more general class for which a factorization property is applied to a bound 
of (M,(, exhibit a log s dependence for the average multiplicity. 

To be more specific, the condition imposed on I M,l can be formulated 
in the following way: 

1 MLP1 9.. . , Pn)l2 I C [f,(P, x)12, (3 -60) 
n 

where x indicates a set of (3n -4) kinematical invariants built from 
P, , . . . , P, , and 9, x the set of invariants obtained from x by means of 
the permutation .rr of the final particles. The function f ,  is assumed to be 



Q-factorized. For general purposes, it is sufficient to assume for it a simple 
factorization of the multi-Regge model type: 

where u i ,  are the momentum transfers and subenergies dqfined in 
(3-34), (3-35); g(ui) is a suitably decreasing function of lui 1 and the expo- 
nent cr is of the order of 1. 

Adding to the conditions (3-60), (3-61), the incontrovertible assumption 
'that the total cross section does not decrease faster than any negative 
power of s, Bassetto et obtained the result that the average multiplicity 
can increase at most as log S. The importante of this result lies in the fact 
that an experimental disproof of such prediction would invalidate a11 kinds 
of models based on multiperipheral ideas. On the other hand, one has 
to remember that this prediction has an asymptotic character, since the 
bound in Eq. (3-61) contains an arbitrary numerical factor. 

Since the recent data from the I. S. R. and Batavia experiments14 show 
that scaling is well satisfied and indicate the presence of a central plateau, 
one would think that an asymptotic regime for which ( n )  - logs has 
already been reached. As shown in Fig. 4, the data on multiplicity can 
be fitted, at least above 80 GeV/c, with a log s dependence. 

Finally, we want to remark that the bound (3-60) gives also restrictions 
on the moments of the multiplicity d i ~ t r i b u t i o n ~ ~  : 

The simplest versions of the multiperipheral model give a Poisson distribu- 
tion for the multiplicity @e., for the "topological" cross sections o,): 

so that the integrated correlations vanish. 

For a11 kinds of generalized multiperipheral models, the topological cross 
sections o, have to satisfy the contraints (3-62). 

A different prediction is provided by the diffractive models; since they 
give the behaviour 



one gets for the moments: 

E~perimentally~~, the multiplicity distribution is broader than Poisson's, 
but in disagreement with the behaviour (3-64). 

3.3 The Mueller-Regge Model 

In the previous section we have shown how the asymptotic expressions 
of the inclusive distributions can be obtained, in terms of Toller or Regge 
poles, starting from the multiperipheral models. We give here a more 
complete survey of the single-particle inclusive distributions, obtained by 
Mueller's approach from the Regge limits of the forward elastic 3-body 
amplitude. In the original paper17, this amplitude was expanded into irre- 
ducible representations of 0(2,1) and analyzed in terms of the leading 
(Pomeranchuk) trajectory. In the following, we start directly from the 
asymptotic expressions of the amplitude relative to the process (2-55), and 
take into account also non-leading trajectories; this will allow us to discuss 
briefly the rate of approach to scaling. 

As done in Sec. 3.1, we distinguish different regions in the rapidity plot. 

i) Fragmentation Region. We consider the fragmentation region of the tar- 
get a, defined by small<, and large tbc ,  i.e., <, fixed and tbc - log S. In terms 
of the Mandelstam vanables, this corresponds to the limit s -+ co, t -+ - x, 
with both u and ( M i l > )  < 1 fixed. In the laboratory frame (rest frame of a), 
the limit corresponds to keeping P, fixed, so that we can write for the 
inclusive distribution function : 

Fig. 13 - One-Regge amplitude contributing to single-particle inclusive distributions in the 
target fragmentation region. 



Each term is a contribution of a single Regge-pole, as represented in Fig. 13, 
and the sum is extended to the different Regge poles which can be exchanged. 
If we keep only the leading (Pomeranchuk) trajectory with intercept 
a(0) = 1, and the dominant meson Regge trajectory for which aM(0) X 112, 
Eq. (3-66) reduces to 

We see that the Pomeranchuk contribution is independent of s, so that 
for s -+ co one obtains the limiting fragmentation. The rate of approach 
to this limit depends on the nature of the particles involved; scaling is 
expected to occur at lower energy for those processes in which the contri- 
bution from meson Regge trajectory is negligible, so that the second term 
in Eq. (3-67) disappears. 

If we include the hypothesis of factorization of the Regge pole residues, i.e., 

we obtain for the inclusive density (using Eq. (3-47) for the total cross 
section) : 

In the limit s -+ co, the inclusive density becomes independent of the na- 
ture of the projectile. 

Similar considerations hold in the region of projectile fragmentation. 

ii) Central Region. This region corresponds to both relative rapidities 
tbC,  5, large, and, in terms of the Mandelstam variables, to the limit s -+ co, 
t -+ - co, u -+ - co, (MXIs) -+ 1. Making use of Fenman's scaling variable xc , 
this region can be defined by I xc 1 < sk, -3 I k < 0, and one can write 

One gets, immediately, 

In this case the inclusive distribution function is obtained from a two-Regge 
limit amplitude, and one gets: 



A generic term in the sum is represented in Fig. 14. Keeping also here 
only the Pomeranchuk term with a(0) = 1, and the dominant meson con- 
tribution relative to a,(O) = 112, Eq. (3-72) becomes: 

Ftl'(s, x, , p,) % p? qP(pc) + p? .clpu(p,) ( t  - ' I2  + u -  'I2). (3-73) 

We see that Feynman's scaling law is satisfied by the Pomeranchuk con- 
tribution; in general, scaling is approached slower in this region, since 
the second term in the r.h.s. of Eq. (3-73) goes like s-'I4, as can be imme- 
diately checked by (3-70) 

The hypothesis of factorization gives, in the present case, 

f %> Xc 9 PC) = ~ f 2  YC(PC) + O(s- 'I4), (3-74) 

so that the inclusive density, neglecting terms - s-'I4, is independent of 
the nature of both particles a and b. 

iii) Triple-Regge Region - This region corresponds to both MX and S/M; 
large with u (or t) fixed. For fixed u, this is the phase space boundary of the 
target fragmentation region (for fixed t, of the projectile fragmentation 
region). In fact, in the fragmentation regions, one can write: 

and a small ratio M;/S for M: large is obtained for Ixcl % 1, i.e., near 
the boundary. A triple-Regge asymptotic form is required in this case 
for the six-point amplitude, which is represented in Fig. 15. Making use 
of the factorization property of the Regge pole residues, the inclusive 
density can be written as3*: 



Fig. 15 - I riple Regge Iiinit of ;i I'oraard el;isiic 2-bodq amplitude. 

where c@) is the Pomeranchuk intercept, ac,(u) the leading Regge tra- 
jectory coupled to ?a, yc,(u) the corresponding residue function, and LJP,,(U) 
represents the coupling among three Regge trajectories. In particular, with 
appropriate choice of the particle c, a,, - r and LJ',, coincides with the three- 
Pomeranchuk coupling g:, . 

Much interest has been devoted to these couplings and to the inclusive 
density (3-76), which could provide information about them. The impor- 
tance of the determination of gi, and &, lies on the following facts. If the 
Pomeranchuk trajectory satisfíes a(0) = 1, then g;,(O) = 0, othenvise unita- 
rity is violated. This can be sem by considering the double diffraction 
dissociation, which is represented in Fig. 16. It can be ~ h o w n ~ ~  that the 
probability for this process increases without bound with s (like log log s). 
Moreover, a multiple Pomeranchuk exchange in the multiperipheral mo- 
de1 would lead to a total cross-section violating the Froissart bound40: 
this would require the vanishing of the two-Pomeranchuk coupling: y,Rp = 0. 

Fig. 16 - Doublc diffraction dissociation. 



On the other hand, a non-vanishing gp, is expected by factorization and 
duality4' : g&, g:, - (gg,)2. In connection with these problems, finite mass 
sum r ~ l e s ~ ~  have been written for inclusive distributions, which relate 
triple Regge couplings (which appear in (3-76) at high M:) to integrais 
over low missing masses. 

The above analysis of single inclusive reactions can be easily extended to 
higher order inclusive distributions Here we would like to mention the 
correlation which appears in the two particle inclusive spectra, when 
non-leading Regge trajectones are taken into account. We consider the 
case in which the two observed particles c and d are in the central region 
and the relative rapidity tCd > O is large. The eight-point amplitude is 
then dominated by three Regge exchange terms, and is represented in 
Fig. 17. analogous to Fig. 12 in which Toller poles were considered. The 

Fig. 17 - l'hree-Reggc limit of eight-point amplitude. 

inclusive density, assuming a(0) = 1 and taking into account a meson 
trajectory with &,(O) N 112, can be written as43: 

One can check that the second t e m  on the r.h.s. of the above equation 
gives contribution to the correlation function p'2). We can then interpret 
the quantity 

[I - a,(O)] - ' " 2, (3-78) 

as the correlation length L defined in Sec. 2.4, since for tCd > L the corre- 
lations become negligible. 

Finally, we want to add a few words on the so-called "two-componenf 
modeW6O, in which one describes the production mechanism as the super- 
position of a short-range component (e.g., of multiperipheral type) domi- 
nating the pionization region (higher multiplicities), and a diffractive 



component, mainly affecting the fragmentation regions (low niultiplicities). 
Neglecting the interference between the two components, one can write 
for the total cross sedion and distribution functions 

a, = o, + a,, (3-79) 

where the subscripts M and D stand for "multiperipheral" and "diffractive". 
By integration, one gets from (3-80) the average multiplicity 

where (n,) is usually chosen constant and small. 

The two-partiçle correlation function (2-36) is given by 

By integration, one obtains the correlation coefiicient R('): 

Noting that the short-range component gives Rg)  - logs (as can be seen 
by direct evaluation from Eq. (3.77)) and taking Rg)  - const, one obtains 
the behaviour R") - (log s)'. 

3.4 Dual Models 

In the previous sections we have seen how the multiperipheral and the 
Mueller-Regge models give a satisfactory description of the general features 
of the inclusive reactions. We shall not discuss the phenomenological 
application of these m~de ls*~ ,  nor the attempts to include unitary correo 
tions and Regge cuts into the multiperipheral s ~ h e r n e ~ ~ .  We shall, instead, 
outline the general properties of inclusive distributions expected from 
the dual models, which are, to a certain extent, related to the models con- 
sidered previously. 



Dual models present the advantages of incorporating reasonable high and 
low energy behaviour, and indicating an appealing scheme for the Po- 
meranchuk singularity. 

Before going to inclusive reactions, we discuss briefly the general proper- 
ties of the dual models. 

A. Elastic Two-Body Amplitudes and Total Cross Sections 

The simplest form of dual model was proposed by Veneziano for a four- 
-meson amplitude46. In the case of four identical scalar mesons, the Vene- 
ziano amplitude is given by 

M(s, t ,  u)  = B[V(s, t )  + V(s ,  u) + V ( t ,  u)] (3-84) 

arid 

where B is a constant; a(s) and ~ ( t )  are linear Regge trajectories. The ampli- 
tude (3-84) corresponds to an infinite sum of poles and exhibits asymptotic 
Regge behaviour in a11 channels. The property of dualitv requires that 
each term in (3-84) is invariant under a cyclic or anticyclic permutation 
of the externa1 momenta. as represented in Fig. 18 for V ( s .  t ) .  As originally 

Fig. 18 - Dualitv property of a four-point amplitude. 

expressed in terms of finite energy sum rules, resonances in one channel 
generate Regge trajectories in the crossed channel. It was conjectured inde- 
pendently by Freund and H a r a ~ - i ~ ~  that, while "normal" trajectories (on 
which lie physical particles) are built by resonances, the Pomeranchuk tra- 
jectory is built by the non-resonant background part of the amplitude. 



These properties can be nicely expressed in a pictorial way in terms of the 
so-called duality d i a g r a m ~ ~ ~ ,  in which a meson line is represented by two 
quark-antiquark (qij) lines (see Fig. 19). We introduce in a graphical way. 
in Fig. 20, the notion of "twisted" propagator. Let us now consider the 
loop diagram in Fig. 21; in terms of quark-antiquark lines, we see that i t  

Fig. 19 - Duality diagraiii foi ti four-point amplitude 

Fig. 20 - Diagram with a [wisted propagator. 

Fig. 21 - Duality diagram for tlie Pomeranchuk singularity 

corresponds to exotic quantum numbers in the s-channel (qq@) and va- 
cuum quantum numbers in the t-channel. A detailed analysis of this dia- 
gram49 shows that its leading singularity in the angular momentum variable 
is a logarithmic cut with a fixed intercept 113 and a slope about 112 of 



that of the input Regge trajectory. It is then very tempting to identify this 
singularity with the Pomeranchuk and describe diffraction processes in 
terms of the graph of Fig. 21. 

Dual amplitudes have been written for multiparticle processes, in the 
so-called "tree" approximation50. Of course, unitarity is violated by these 
models, since they contain zero width resonances. For phenomenological 
purposes, one adds an imaginary part to the Regge trajectories; a general 
program of unitarization has been proposed, based on the idea that uni- 
tarity is ensured by adding higher order loop contributions5' to the tree 
approximation. However, even in the tree graph amplitudes a little bit 
of unitaritv appears through factorization. Froin the fact that the general 
amplitude factorizes completely and that interference among resonances is 
excluded, it follows that the optical theorem can be applied to the ampli- 
tude (3-84)52 : 

1 
a&) 7 (Im M(s, t = O)). 

Of course, the above relatíon does not hold locally, but on the average. 
in the same sense that the averaged amplitude in the resonance region 
extrapolates, according to duality, the Regge behaviour. The physical 
meaning is clearly understood if one thinks of the process a + b + c, . . . c, , 
which contributes to the total cross section, as accurring through an in- 
termediate s t e ~ ~ ~  

a + b + R + c ,  + . . . + c , ,  (3-87) 

where R stands for a compound or one-resonance state. The cross sec- 
tion relative to (3-87) will be the produci of the cross section a(a + b -, R) 
for producing the resonance R times the probability that R decays into 
the specific final channel. Summing over all final states, the second factor 
gives one, and the total cross section is simply a sum of o(a+ b+R) over 
a11 different resonances R. However, in (3-87), only one resonance R was 
assumed; the total cross section gets contributions also from those in- 
termediate states which cannot be reduced to a single resonance. It is a 
consequence of (planar) duality that a11 possible intermediate resonances 
collapse either into one or two, so that one has to take into account, besides 
Eq. (3-87), the process 

a + b +  R, + R,-,(c, + ... c,)+(c,+, + .. .  c,). (3-88) 

Besides these terms, one should add the contribution from diffraction 
dissociation processes. We obtain in this way a three-component model 
for the production amplitudes, contnbuting to the total cross section, 



Fip. 22 - Three-component dual model for the total cross sections. 

which are described in Fig. 22. We note that the corresponding extension 
of the optical theorem (3-86) would require the addition of loop contri- 
butions to the elastic two-body amplitude. 

B. Inclusive Distributions 

The previous considerations about the total cross section would indicate 
that dual amplitudes are expected to give more reliable results for in- 
clusive rather than exclusive reactions, since in the former the critical 
dependence due to narrow-width resonances is washed out by summing 
over all unobserved final states. 

We know that inclusive cross sections can be obtained following either 
the "direct" or the Mueller's approach. Since the dual amplitudes are 
non-unitary, one expects that the cross sections evaluated from Mueller's 
approach do not satisfy, in general, the energy-momentum sum rules of 
Sec. 2.3. Therefore, in principle, the direct approach appears to be pre- 
ferable. In practice, the inclusive cross sections are 'computed as discon- 
tinuities of dual tree and loop amplitudes, but the direct approach indicates 
clearly which diagrams are to be included. 

Starting from the three-component model for the total cross section, 
Tye and V e n e ~ i a n o ~ ~  proposed a model for single-particle inclusive dis- 
tributions, which consists of 13 components: they are indicated in Fig. 23. 
If one is interested only in the quantum number structure of the inclusive 
distributions, it is suffícient to take into account the first 9 componeiats 
of Fig. 23. 

In the frame of this model, a detailed analysis of the way in which scaling 
is approached has been carried ouP3. The rate of approach to scaling 
depends, in general, on the quantum numbers of the systems ab, ab?, a?, h?: 
the conditions differ for each of the 9 components of the inclusive distri- 



Fig. 23 - The 13 components of the Tye-Veneziano model for one-particle inclusive dis- 
tributions. 

butions. We shall not review here this analysis, but quote only a gene- 
ral result. The energy sum rule, Eq. (2-46) with p =O, written in the 
C.M. frame in terms of the scaling variable x, (2-14), becomes in the pre- 
sent case: 

a ,C S F ! ~ ~ Y  .C Y PC) PC d ~ c  dx,  = odab), (3-89) 



where we have assumed to deal with identical particles. For the present 
purposes, it is sufficient to decompose the inclusive density, similarly to 
Eq. (3-67), as 

F!"(s, xc PJ gi(xc PJ + gi(~c 3 pC) S- ' I 2 ,  (3-90) 

so that, if the system ab is exotic and a,(ab) is practically a constant, 
Eq. (3-89) gives for the non-leading terms 

C [di(Xi P )  Pc dxc = 0. (3-91) 
i =  1 

This shows that, since some of the @i are shown to be positive, others must 
be negative: then it is possible to have inclusive cross sections approaching 
the scaling limit from belowS3, in wntrast to the case of total cross section 
which, according to duality, reach their constant lirnit from above. 

Analytic expression for the distribution functions have been given for few 
components of the above model. The contribution from the components 
1, 2 and 4 of Fig. 23 have been computed applying Mueller's approach 
to the 6-point tree amplitudez6 indicated in Fig. 24. (For the analytical 
expression of dual 4-point amplitudes we refer to the review paper by 

Fig. 24 - Tree graphs analysed for one-particle inclusive distributions. 
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Alessandrini et a/.''). The distribution function can be written in the 
form 

~ ( l ) ( p , )  x sa(o)- 1 g(xc , pc) (3-92) 

and, since in the sanie approximation one gets a, - sa'O'-' (first compo- 
nent of Fig. 22), one generally uses the inclusive density and speaks still 
of scaling behaviour. With a convenient choice of the Regge trajectory 
intercepts, finite limiting distributions are obtained both in the fragmen- 
tation and in the central regions. A reasonable fit of the experimental 
data is obtained with the distribution evaluated from the third diagram 
of Fig. 24 (Ref. 54). In the central region, only this diagram contributes; 
it gives 

g(xc 2 PC) cc ~ C l c  expr- 4(~,2 f m31. (3-93) 

We note the remarkable result that the inclusive distributions show an 
exponential cut-off in the square transverse momentum. 

In order to use a consistent descnption of the Pomeranchuk singularity 
in the duality scheme, one-particle inclusive distributions have been eva- 
luated also from the 6-point loop amplitudes represented in Fig. 25 (Ref. 55); 
they correspond to the components 5 and 6 of Fig. 23. The results confirm 
also in this case an exponential cut-off in the square transverse moinentum. 

Fig. 25 - One-loop graphs analysed for one-particle inclusive distributions. 

4. Conclusions 

Referring to the main features of inclusive reactions outlined in Sec. 2.4, 
we summarize here the most important predictions of the multiperipheral 
and dual models. 

The property of scaling and limiting fragmentation is a general output 
of these models. This property is clearly exhibited by the CERN-ISR 



inclusive cross sections, which show, at higher energies, the presence of 
a plateau in the central region of the rapidity plot (see Fig. 4). The data 
indicate also the presence of a short-range correlationS6 of the type pre- 
dicted by Eq. (3-77); even i. long-range correlations are certainly present, 
the main contribution can be interpreted in terms of a correlation length 
L [a(O) - u~(O)] - ' 2, corresponding to Pomeranchuk and meson-tra- 
jectory exchanges. 

Scaling is predicted by most of the popular models, s o  that it is belived 
to be based on very general grounds. The rate of approach to scaling is 
very important for differentiating the various models; several interesting 
predictions have been g i ~ e n ~ ~  and they await for experimental tests. 

The logs dependence of the average multiplicity (n), which is a very 
general prediction of the multiperipheral scheme, seems to be confirmed 
by all high energy data; deviation of this simple law at lower energies is 
probably due to the fact that the logs regime is fully attained when the 
plateau in the central (pionization) region is already populated. 

Besides the average multiplicity (n), it is very important .to analyze the 
correlation coefficients, such as, for the case of two-particle inclusive 
reactions, the dispersion D ( ~ )  (Eq. (2-40)). 

The energy dependence of these coefficients provida a useful test to discri- 
minate among different models. While the diffractive model predicts the 
behaviour D(') - s1l2, the multiperipheral model with a leading pole with 
factorized residue (or, equivalently, the Mueller-Regge model) gives 
02) - log S. Modified multiperipheral models, in which one takes into 
account unitarity cor rec t ion~~~ (diffractive contributions), generating long- 
range correlations, give D(2) -- (log s ) ~  and a multiplicity distribution broa- 
der than Poisson's. 

The experimental datas9 seem to favour a (log s ) ~  dependence, indicating 
the presence also of long-range correlation effects. Then modified multi- 
peripheral models would be in better shape than diffractive ones. 

The same behaviour D(2) N (10gs)~ is exhibited by the two-component 
models6', in which the distribution functions consist of two terms: one, 
corresponding to short-range correlation, is the main responsible for 
high multiplicities, while the other, corresponding to diffraction, is do- 
minant at low multiplicities. 



The strong transverse momentum cut-off in the high energy multi-particle 
reactions is perhaps one of the most fundamental features of hadron dy- 
namics. This property is introduced as a main ingredient into the multi- 
peripheral scheme, through a momentum transfer cut-off. One of the 
successes of dual models is that they predid a strong cut-off of the type 
exp[- a(p2 + rn2)]. We note that the dependence exp(- o,/-), shown 
by the experimental distributions, follows rather directly from the statis- 
tical moclel; the essential point is a bootstrap p o ~ t u l a t e ~ ~  which leads to 
density of hadronic levels increasing exponentially with energy. The cut-off 
prediction of dual models is probably related to the analogous energy 
dependence of the multiplicity of levelsS8. 

Multiperipheral ideas, implemented with duality, seem to provide an 
adequate description of multlparticle phenomena; the formulation of more 
specific models in this general scheme will probably require more strin- 
gent tests from both inclusive and exclusive analyses. 
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