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It is shown that, given the potentials for spin 1 massless fields, the process of producing field 
potentials which commute with the generator of gauge transformations is equivalent to replace 
the classical commutator (the Poisson bracket), which holds for these initial potentials, by 
the Dirac bracket which describes the commutation algebra for the gauge invariant field 
potentials in the radiation gauge This result is extended for spin 2 massless fields without 
self-interaction. This last case is taken as the weak field approximation of the full non-linear 
gravitational field equations of general relativity. 

Mostra-se que, dados os potenciais para campos de spin 1 de massa nula, o processo de obter 
potenciais de campo que comutam com o gerador de transformaçóes de gauge é equivalente 
a substituir o parêntesis de Poisson, que vale para os potenciais iniciais, pelo pa~êntesis de 
Dirac que descreve a álgebra de comutadores para os potenciais de campo, gnlige invariantes 
no 11rrirqr de radiação. O resultado é também extendido a campos de spin 2 de massa nula. 
Esse último caso é tomado como uma aproximação de campo fraco das equaçQes completas 
não lineares do campo de gravitação da relatividade geral. 

Introduction 

For the Maxwell field, it is well known that a process for obtaining field 
potentials which are gauge invariant, in the Hamiltonian formalism, is 
obtained by introducing the transverse field potentials, as those which 
are divergence free. Since a spin 1 gauge transformation adds to the poten- 
tials the gradient of a scalar function and thus a longitudinal vector, it 
is clear that any divergenceless potential will be invariant under such 
transformations, as long as the transverse character is conserved after 
the transformation. This may also be seen from the expression for the 
generator of gauge transformations, 
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In this formula, A is the gauge function and p, is the canonical momentum 
density for the spin 1 field. Latin indica indicate degrees of freedom going 
from 1 to 3. Greek indices go from 1 to 4. The t e m  commutator used 
in this paper refers to the classical commutator, that is, the Poisson bracket. 
The metric tensor is the Minkowski tensor qpv with signature + 2; thus 
a11 three-dimensional operations are done for the metric q, = a,,, and no 
distinction is made between contravariant and covariant indices in three- 
dimensions. 

Given arbitrary (gauge variant) potentials A,, we have 

[ A , ,  C] = A,i. 

But the divergenceless field functional 

has a nu11 commutator with the gauge generator C. In this paper we show 
that the commutation algebra of the transverse potentials is identical to 
the algebra of the Dirac bracket. It is known that the algebra of the Dirac 
bracket for the case of the Hamiltonian formulation of general relativity 
is realized by the usual Poisson bracket algebra of the so called "starred 
field functionals"', which describe the field observables of the theory. 
Thus, we have shown that in the radiation gauge this conclusion may be 
extended for the spin 1 massless field in flat spacetime. Similarly, it is also 
proved that the same result applies to spin 2 massless fields without self 
interactions. This field is taken as the weak field approximation for the 
gravitational field equations of general relativity. 

This result may also be recasted as a proof of equivalence between the 
A-D-M method for quantization2 and the B-K method3, in the radiation 
gauge and within the approximations presently considered. 

With regard to notation, we indicate the partial derivatives by any one of the 
symbols, ai4,  a4/axi or $,i, for any quantity 4. Covariant derivativa are 
not used due to our approximation of a linearized gravitational field. 

1. Gauge Invariant Canonical Variables for the Maxwell Field in Flat Space 

The Hamiltonian theory for the Maxweli field contains one relation of 
constraint connecting the three components of the canonical momentum p,. 

B p,,, N 0. (1) 



The symbol " means equal to zero in the weak sense in Dirac's notation4. 
We want to prove that for this case the construction of the "starred field 
components" of B-K formalism is equivalent to the construction of the 
T-type potentials of the A-D-M formalism. As was stated in the introduction, 
the P. B. (Poisson bracket) relations among the starred field components 
is the same as the Dirac bracket among the potentials themselves. There- 
fore, as long as we show that the T-type potentials have the same com- 
mutation algebra as the starred potentials, we have proved that the 
commutation algebra of the T-type potentials is the same as the Dirac 
bracket algebra among the potentials. This last algebra will be the com- 
mutation algebra for the field observables in the Hamiltonian formulation, 
now written entirely in terms of gauge invariant degrees of freedom. 

In introducing the concept of the "starred field potentials", we have to 
introduce a gauge condition in terms of the dynamical components for 
the field. We choose the radiation gauge condition, 

The two constraints (1) and (2) form a set of two second-class constraints", 
since the P.B. of D with B is 

[D, B'] = -V2 6(x - x'). (3) 
Therefore, in presence of second class constraints, two alternatives are 
possible, either we use the Dirac bracket directly instead of the P.B. or, 
equivalently, we still retain the P.B. but modify each component of the 
dynamical variables by adding to them a linear combination of the second- 
class constraints, such that it commutes with aií second-class constraints. 
This last alternative defines the so called "starred dynamical variable". 
We use this process, by defining 

A: (x, xO) = Ai(x, xO) + pi(x, xt)p;,, d3 x' + ai (x, x') A;, ,d3 x' , (4) S 
where A, is the vector potential, the configuration type variable in the 
Hamiltonian formalism for electrodynamics. Similarly, in place of the 
canonical momentum p,, we write 

PT (x, xO) = f i  (x, xO) + Bi (xy x')~:, r d3 x' + yi (x, xf)A:, ,d3 x' , (5) S 
where the coefíicients p,, a,, /3, and yi are determined by the conditions 

[ A r ,  B'] = [A:,  D'] = O, 
[P?, B'] = b:, D'] = 0. 



From the first two conditions, Eqs. (6) and (7), we see that the starred dyna- 
mical variables are gauge invariant, since the generator of gauge trans- 
formations is 

C(xO) = - A(x, xO) B d3 x S 
and a11 starred dynamical functions commute with C, even if the gauge 
function A is also a function of the dynamical variables Ai and pi (we have 
to put p , ,  equal to zero after computing a11 commutators). For the case 
of spin 1 massless fields, the imposition of gauge invariance for the cano- 
nical momentum is not really necessary since pi is gauge invariant by 
definition. However, for spin 2 massless fields, this imposition will be 
necessary and, since the method of definition of the "starred canonical 
variables" is general, we have maintained this condition here. 

Conditions (6) and (7) imply 

VJ2 ai (x, x') = (x - x'), 
v'2 pi (x, x') = O, 

VI2 &(x, x') = h,i# (x - x'), 

V'2yi(x>~')  = o. 
The solution of (8) and (10) is given by 

so that the A* and p* have the form 

with pi and y ,  solutions of Laplace's equation. These formulas may be 
written as 



Thus, up to the terms containing pi and y,, the Ar and p,* are just the trans- 
verse field variables of the A-D-M theory. It may be shown that the terms 
in pi and y ,  do not contribute to the commutation relations of the A* 
and p: (use (9) or (ll)), 

where dik(x - x') is the transverse delta function. Since ali fields of interest, 
similarly to the case of the A-D-M theory, have to be free of singularities 
and vanish at spatial infinity, we can take as the solution of Laplace's 
equation 

In this case the A: will commute with A: (the same for the momentum 
pf), and the identifkation of the "starred field potentials" with the T-type 
functionals of the A-D-M theory is completed: 

From the relations 

[A?, p'T] = [A*, p'j*] = [Ai, p>] * 
(by [f,g]* we indicate the Dirac bracket of any given quantities f and 
g), we see that the commutation relations among the T-type functionals 
are just the commutations arising from the Dirac bracket of the initial 
gauge variant Ai and the original momentum pi. 

2. The Canonical Variables h: and pij for Spin 2 in the Linear 
Appmximation 

Here we extend our previous conclusions for the weak fíeld approximation 
of the general relativistic field equations of the gravitational field. The 
field obtained is a spin 2 massless field without self interactions. The cor- 
responding Hamiltonian version contains four relations of constraint 

which correspond to the unique constraint (1) for elect-~odynamics. Here 
we have four constraints due to the fact that a spin 2 gauge transfor- 
mation involves four arbitrary gauge functions instead of just one as 



was the case for the spin 1 massless field. In the Lagrangian formalism, 
which is a four-dimensional formalism, we have for the symmetric second 
rank Lorentz tensor h,,, related to the metric g,, and to the Minkowski 
tensor q,, by 

the gauge transformation 

involving the four components of the gauge function A,. In the Hamil- 
tonian theory we obtain a similar structure, but now divided in the gauge 
transformation of the configuration field variables, the h,!, and the gauge 
transformation of the momentum variables ptj .  Before writing the expres- 
sions for the generators of these transformations, we give some formulas 
which will be needed. The weak field approximation (from now on it 
will be denoted by W.F.A.) is given by taking the previous metric g,, = 
= qpv t h,,,where only q,, acts as the metric. The field equations are 
the spin 2 wave equation plus the Lorentz covariant gauge condition 

We cal1 attention to the fact that, in the W.F.A. approximation, the momen- 
tum pik is a first order quantity. The explicit expression for pik is obtained 
by linearization of the exact formula derived from the Dirac Lagrangian- 
density for general relativity: 

Under a gauge transformation on the potentials h,,, of the form written 
before, the p, change according to 

The generator for this type of gauge transformation, in the Hamiltonian 
theory, is (recall that qoO = - 1) 

G(xO) = - Ao (x, xO) 2, (x, xO) d ,  x. S (20) 

Since 
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the remaining part of the gauge transformations, that is, the part which acts 
on the configuration potentials h,, is generated by 

Thus, as before, the constraints are basically the generators for the inva- 
riance function group of the theory. 

The Lorentz covariant gauge condition (17) is separated into the conditions 
giving the radiation gauge for spin 2, 

h,, = h,, = 0, (22-1) 

A r h s s N O ,  B r z h r S , , ~ 0 .  (22-2) 

The set of eight constraints given by (15), (16) and (22-2) is of second 
class, since 

[%L, %i] = O, [ZL, A'] = O, [ZL,  Bi] = O, [A, Bi] = 0, 

[xr, A'] = - 2 ~ , ,  ( X  - x'), [x, , B;] = (drSv2 + a;) S ( X  - x'). 

Thus, as before, we define the quantities 

h.. - - h,, . .  t pijr (x,  x f ) 2 ,  (x,  x0)d3 x' + aij(x, x ' ) Z L  (x' , x0)d3 x' S S 

+ t+bij(x, xf)A(x',  x0)d3 x' + rij,(x, x')B,(xl, xO)d, i, (24) S 
the coeffícients being determined by the conditíons 

[h:, 9'1 = O, [p$, 9'1 = O, 

where by 9 we indicate the set of a11 eight constraints 



We determine first the coefficients standing on Eq. (23). From the condition 
that h$ commutes with X, ,  A and B,, we get the equations: 

From the commutator of h$ with Z,, we get no information since h: 
automatically commutes with X, within the gauge conditions presently 
used. 

We can write (25) in the form 

From this equation we can write 

- 26sr 8ij + Yijr, S. + Yijs,rr = (6ir6sj + 6jr6is)S(x - x'). (28) 
In obtaining (28) we have neglected a divergenceless term 4,(xf) (such 
term may be added to the left-, or to the right-side of (28) but, as we shall 
see, we can obtain the desired solution without using this new term). Solving 
(28) for the Pij, we obtain 

Now, from (26) and (27), we have 
Vt2p.. = o, vr 

and since we look for fields which are free of singularities and which tend 
to zero at spatial infinity, we may take 

/Lijr = o. (30) 

Eqs. (29) and (30) allow us to write the h$ of (23) as 



where h:j is the trace free combination 

- 1 
h.. = h. .-- &.A.  

11 11 3 V 

In order that the h$ be of the type 7'T of the A-D-M theory, it is first of 
a11 necessary that the trace of h$ vanishes. In the formula (23), or equiva- 
lently in (31), the coeficients a ,  and yijr are symmetric in i,j (the other 
coeficients having the same symmetry). Taking the trace in (31), it is simple 
to verify that h: is zero only if 

Therefore, the two-point functions cri,, yii, have to be symmetric in i , j  
and traceless for a11 x and x'. Besides, they cannot depend on the dynamical 
variables since this would generate higher order terms which are neglected 
in the W.F.A.. Since in (31) we have no further information on the explicit 
form of aij and y i j r ,  we can make use of this arbitrariness in the form of 
these functions in rewriting (31) with coefíícients 

)i-.. = y.. -L&. 
i j r  y r  3 iJYsw,  

in place of the aij and y,. These last two-point functions are symmetric 
in i, j (if the original two-point functions a,  and y ,  are so) and are trace 
free. This recalibration in (31) implies that h$ is trace free but, if we compute 
its divergence in x j ,  we find 

h$,j = h,i + ãi j (~,~')(pjnt ,m-Vr2A')d3x'  
3 S 

Imposing that the divergence of h: vanishes, we get a relation between 
the &j and G,. This relation after partia1 integration may be presented 



in the form 

1 (+ dYt - B:) b(x - x')!, = - o&, ,. (x, x') d,  xt S 
a;.j, j , , ( ~ ,  ~ ; ) a ;  ~ ' d ,  l/ijr, j ( ~ ,  xI)~:  ~ ' d ,  X' 

+ S  ?/,,, j(x, x') BS d, x' 

We separate this equation into two relations, one containing only ôk A', 
the other involving only Em (this is possible since A and B, represent inde- 
pendent combinations): 

Consequently, 

These equations are compatible for olij = 0, since then we get just one 
independent equation : - 

yijs, j ( ~ ,  x') = - hiS6(x - x'), (32) 

which is a condition fixing the value of ./,,. Its solution is 

L '/-. 11s (x, x') = -6 i sD , j (~  -x') - djSDsi(x -x') t - bijD,,(x -x') 3 
1 - 

t TAij,,$ -xl), (33) 



where D(x - x') is the Green function of the Poisson equation and 

The relation (33) represents a c-number two-point function, symmetric 
in the first pair of indices and traceless over this pair of indices. Note that 
the divergence of 1/,, of (33) in x '9ives 

which is different from its divergence in xj which is given by (32). 

With the choice oi;.j = O and given by (33), the h; is identical to the 
h;T of the A-D-M theory for spin 2, in the so called N-decomposition 
for a second rank symmetric tensor4. From (33), (35) and tij = O, we 
have for h;, 

An inspection on this formula shows that indeed the trace and divergence 
of h; are zero. .This relation coincides with the usual form for presenting 
a TT part of a given tensor h, in the N-decomposition. 

The gauge invariance of h$ is made clear, even before the identification 
with h y ,  since it commutes with the gauge generators (20) and (21) even 
for q-number gauge transformations (when the gauge functions depend 
on the dynamical variables). 

The A-D-M method may be looked at as a process for producing field 
functionals such that, from given initial arbitram canonical fields, we 
obtain new fields which satisfy the gauge conditions A = B, = O. The 
method for obtaining the starred field variables is similar in this point 
and this is made clear from the fact that we used only the left hand side 
of the radiation gauge conditions for the definition of h: and did not take 
directly A = Bs = 0, but rather showed that the final h$ may be chosen 
so as to satisfy these requirements. 

For the momentum pz of (24), we cannot use the gauge conditions under 
form (22-2) since this leads to a contradiction. Indeed, taking the com- 



mutator of p$ of (24) with ZL,  se get 

which cannot be true. To avoid this difficulty, we rewrite the radiation 
gauge conditions for spin 2 in a form slighly different, but mathematically 
equivalent5, the quantity A being replaced by 

while the remaining conditions B, = O are retained. Then, we can write 

The imposition that p$ commutes with a11 constraints leads to the fol- 
lowing equations: 

v2 Sijr(x, xr) + d);szijs(x, x') = 0, (38) 

V2V2 4ij(x, x') = o, (40) 

From (40) and (39) we conclude that 

and 

Now we note that a11 avaílable two-point functions have to depend on 
6(x - x') or on the Green function D(x - x'), since they have to be c-numbers. 
Thus, any double differentiation with respect to x" is equivalent to diffe- 
rentiate on xr and we may rewrite (41) as 



Differentiation in xs gives 

1 
v2Âijs,s(~,  x') = --a 2 31' ..(x - xl), 

which has as solution 

D(x - x") 6,irrf, (x" - xl)d, x". (44) 

Differentiation with respect to x" in Eq. (38) gives 

VI2 ,cijs, s' (x, x') = o, 

which implies that 

,cijs, s' (x, x') = o 
and thus, ,cijs is constant. We take this constant as zero since we know that 
p: cannot depend on the h,, as it would depend if T , ~ ,  did not vanish. 
Eq. (44) is integrated over the delta function to give 

1 n..  (x, x') = - - D , ~ ~ ( x  - XO. IJs, S 2 (45) 

The solution of this equation is 

for Oijs(x-x') a c-number two-point function, symmetric over i,j and 
divergenceless over the last index: 

Oijs, s(x - x') = o. (47) 

The value for Oijs is obtained by imposing consistency of the solution (46) 
with the original equation (41). With this end, we compute the Laplacian 
of (46) : 

and, also from (46), 

(condition (47) was used). Therefore, 



and the left hand side of the original Eq. (41) is 

v2 Â~~~ + a,, ' i J r  .. = - a;a, D(X - X ' )  + o2 a i j s ( ~  - XO. 

By consistency, we should have 

This is a differential equation in Oij,. Its solution is 

which may be written as, 

(48) 

The Oij, of (48) satisfies condition (47). Therefore, from (46) we have 

1 1 1 
3 ?js  =--a2.a z ~ ( x - x ' )  + 2 a ; a , ~ ( x - x ' )  

2 V 

We note that by an argument similar to the one used for the A-equation, 
we can write (43) in the form 

1 1  
$.. = - - [6,,(x - x') - hijQ2 b(x - x').]. 

lJ  V4 2 (50) 

This formula may be simplified to 

Using the value for the severa1 coeficients, we can finally write down the 
formula for the p$ : 



which is a functional of the original momentum p,. As for the configuration 
variables, we also have here that p$ = pcT. 

3. Conclusion 

In the usual formalism, involving the gauge variant canonical variables 
h, and p ,  for the linearized gravitational spin 2 field, the gauge functions 
cannot be arbitrarily chosen in the radiation gauge. Under a gauge trans- 
formation, the hij change as 

Then, the gauge conditions 

are valid in a new gauge frame only if 

A , ,  = O, V2 A, = 0. 

These last relations are equivalent to impose that the left hand side of 
the above gauge conditions commute with the generators of the gauge 
transformations : 

[A, J] = o, [B,, J] = O 

(if we use in place of the gauge condition A = h,, = 0, the condition 
Q = V2p,, - p,,, ,, = O, a similar situation holds). However, in the case 
where we work.with the functionals h; and pi,, no condition need to be 
imposed on the gauge functions A, and A,, since under gauge transfor- 
mations 

and thus h$ and p$ automatically commute with the generators of the 
gauge transformations: 

[A*, J] = O ,  [BP, J] = O 

and also trivially we have, 

[A* ,  G ]  = O, [BS , G] = 0. 

Since [A*, J] = [A, J]*, with the same property for the other commu- 
tators, we have that in the Dirac bracket algebra a11 eight constraints 
A?,, X,, A and B, become of the first class. This indeed was the basic 
idea underlining this new commutation algebra. What was proven is 



that this new commutation algebra is just the commutation algebra of 
the transverse-transverse field functionals of the type used in the so called 
N-decomposition of the A-D-M formalism. 

Since in the A-D-M theory a process is suggested for generalizing this 
for the full non-linear gravitational field equations of general relativity, 
in the so called C-decomposition, we may hope that similarly it may also 
apply for the starred field functionals underlined in the Dirac commutation 
algebra. Since no closed and simple form is known for gi). and p*ij in general 
relativity, it may happen that this analogy turns out to be useful in this 
case. 
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