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It is shown that, given the potentialsfor spin 1 masdess fields, the process d producing field
potential swhich commute with the generator d gauge transformations is equivalent to replace
the classical commutator (the Poisson bracket), which holds for these initia potentials, by
the Dirac bracket which describes the commutation algebra for the gauge invariant field
potentialsin the radiation gauge This result is extended for spin 2 massless fields without
self-interaction. This last caseis taken as the weak field approximation of the full non-linear
gravitational field equations of genera relativity.

Mostra-se que, dados os potenciais para campos de spin 1 de massa nula, o processo de obter
potenciais de campo gque comutam com o gerador de transformagSes de gauge é equivalente
a substituir o paréntesis de Poisson, que vae para os potenciais iniciais, pelo paréntesis de
Dirac que descreve a dgebra de comutadores para os potenciais de campo, gatge invariantes
no guauye de radiagdo. O resultado é também extendido a campos de spin 2 de massa nula.
Esse tltimo caso é tomado como uma aproximagéo de campo fraco das equagdes completas
ndo lineares do campo de gravitacdo da relatividade geral.

I ntroduction

For the Maxwell field, it is wdl known that a process for obtaining fied
potentials which are gauge invariant, in the Hamiltonian formalism, is
obtained by introducing the transverse fied potentials, as those which
are divergence free. Since a spin 1 gauge transformation adds to the poten-
tials the gradient of a scalar function and thus a longitudinal vector, it
is clear that any divergenceless potential will be invariant under such
transformations, as long as the transverse character is conserved after
the transformation. This may also be seen from the expression for the
generator of gauge transformations,

Cx% =~ j Ax, x9)P, , (x,x%d;x.
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In thisformula, A is the gauge function and p, is the canonical momentum
density for the spin 1 field. Latin indices indicate degrees of freedom going
from 1 to 3. Greek indices go from 1 to 4. The term commutator used
in this paper refersto the classica commutator, that is, the Poisson bracket.
The metric tensor is the Minkowski tensor #,, with signature + 2: thus
all three-dimensional operations are done for the metric »,, = é,,, and no
distinction is made between contravariant and covariant indices in three-
dimensions.

Given arbitrary (gauge variant) potentials A,, we have
[Ai, d = A,i'
But the divergenceless fidd functional

1

AT = A;-8
has a nuil commutator with the gauge generator C. In this paper we show
that the commutation algebra of the transverse potentials is identical to
the algebra of the Dirac bracket. It is known that the algebra of the Dirac
bracket for the case of the Hamiltonian formulation o general relativity
is realized by the usual Poisson bracket algebra of the so caled " starred
fidd functionals™, which describe the fidd observables of the theory.
Thus, we have shown that in the radiation gauge this conclusion may be
extended for the spin 1 masdessfidd in flat spacetime. Similarly, it is also
proved that the same result applies to spin 2 masdess fidds without self
interactions. This fidd is taken as the weak field approximation for the
gravitationa fidd equations of general relativity.

This result may aso be recasted as a proof of equivalence between the
A-D-M method for quantization? and the B-K method®, in the radiation
gauge and within the approximations presently considered.

With regard to notation, weindicate the partial derivativeshy any one of the
symbols, 8;¢, é¢/0x* or ¢, for any quantity ¢. Covariant derivatives are
not used due to our approximation o a linearized gravitationa field.

1. Gauge Invariant Canonical Variables for the Maxwell Fidd in Flat Space

The Hamiltonian theory for the Maxwell field contains one relation of
constraint connecting the three components of the canonical momentum p,.

B=p, ~0 (1
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The symbol & means equal to zero in the weak sensein Dirac's notation®.
We want to prove that for this case the construction o the "starred fied
components” o B-K formalism is equivalent to the construction o the
T-typepotentialsd the A-D-M formalism. Aswasstated in theintroduction,
the P. B. (Poisson bracket) relations among the starred field components
is the same as the Dirac bracket among the potentials themsalves. There-
fore, as long as we show that the T-type potentials have the same com-
mutation algebra as the starred potentials, we have proved that the
commutation algebra o the T-type potentials is the same as the Dirac
bracket algebra among the potentias. This last algebra will be the com-
mutation algebrafor the fidd observablesin the Hamiltonian formulation,
now written entirely in terms of gauge invariant degrees of freedom.

In introducing the concept o the "starred fidd potentials”, we have to
introduce a gauge condition in terms o the dynamical components for
the field. We choose the radiation gauge condition,
D=4,,%0. 2
The two constraints (1) and (2) form a set of two second-classconstraints”,
since the P.B. of D with B is
[D, B] =-V2§(x -X). 3
Therefore, in presence of second class constraints, two aternatives are
possible, either we use the Dirac bracket directly instead of the P.B. or,
equivaently, we still retain the P.B. but modify each component o the
dynamical variablesby adding to them a linear combination o the second-
class constraints, such that it commutes with all second-class constraints.

This last alternative defines the so caled "starred dynamical variable”.
We use this process, by defining

AF(x,x%) = 4,(x,x%) + [ui(x, x)p, dyx T Jai(x,x‘) 4, ,dsx', (4

where A, is the vector potential, the configuration type variable in the
Hamiltonian formalism for eectrodynamics. Similarly, in place o the
canonical momentum p;, we write

p:k (X, xO) = pi(x, xO) + [ﬂl (X, xl)p;,rd?, X, + f Yi(x’ XI)A;_,.d3 x', (5)

where the coefficients y;, a,, f; and y; are determined by the conditions
[A:"’Bl] = [A,DI] =Ol (6)
[p¥.B] = [p}.D] =0. ™
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From the first two conditions, Egs. (6) and (7), we see that the starred dyna-
mical variables are gauge invariant, since the generator of gauge trans-
formations is

C(x% = - J A(x, x°) B dy x

and all starred dynamical functions commute with C, even if the gauge
function A isalso a function of the dynamical variables 4; and p; (we have
to put p,,, equal to zero after computing all commutators). For the case
o spin 1 masdessfields, the imposition of gauge invariance for the cano-
nical momentum is not readly necessary since p, is gauge invariant by
definition. However, for spin 2 masdess fields, this imposition will be
necessary and, since the method o definition o the "starred canonical
variables" is general, we have maintained this condition here.

Conditions (6) and (7) imply

V20,(X,X) =8, (x-X), Y
V2L (x,x) =Q )
V2 Bi(x,X) =8 (X-X), (10)
V2y(x,x) = 0. (11)

The solution o (8) and (10) is given by

1 1
w0 =p = in (BTI),,

so that the 4* and p* have the form

AF = A+ f <|~‘——> A dsx + fﬂxx,x')p;,,dsx', (12)

4n x—x'|

1 1
= g [ () e + [rend i, a3

[x —x| y

with g; and y; solutions of Laplace's equation. These formulas may be

written as
Al* = Ai’aiv—lz

arA' + j“i(xs XI)P;,rd.’, x,’
1
p:k = pi_aiﬁf arpr + f))i(x> x,)A;,rd.%xl'
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Thus, up to the terms containing g; and y,, the 4¥ and p¥ are just the trans-
verse fidd variables of the A-D-M theory. It may be shown that the terms
in 4; and v, do not contribute to the commutation relations o the A4¥
and p¥ (use (9) or (11)),

[AF, pt] = 500 —x) + - (—‘—) = Gux-x),  (4)

47 \|x~x'|

where 6, (x — x") is the transverse delta function. Since all fidds o interest,
similarly to the case of the A-D-M theory, have to be free o singularities
and vanish at spatia infinity, we can take as the solution of Laplace's
eguation

w =7y =0.

In this case the A¥ will commute with 4} (the same for the momentum
p¥), and the identification of the"starred field potentials” with the T-type
functionals of the A-D-M theory is completed:

A¥ = A, pF =p].
From the relations
47, p]] = [4F, 7] = [4:, 9]
(by [f,g]* we indicate the Dirac bracket o any given quantities f and
g), we see that the commutation relations among the T-type functionals

are just the commutations arising from the Dirac bracket o the initial
gauge variant A; and the original momentum p;.

2. The Canonical Variables h# and p,; for Spin 2 in the Linear
Appmximation

Here we extend our previousconclusionsfor the wesk field approximation
o the genera relativistic fidd equations of the gravitationa fidd. The
field obtained is a spin 2 masdessfied without self interactions. The cor-
responding Hamiltonian version contains four relations of constraint

Hr=2p,;,~0, (15)
e%pL = hrs,rs_hrr,ss ~ 0’ (16)

which correspond to the unique constraint (1) for electrodynamics. Here
we have four constraints due to the fact that a spin 2 gauge transfor-
mation involves four arbitrary gauge functions instead of just one as

63



was the case for the spin I masdess fidd. In the Lagrangian formalism,
which is a four-dimensional formalism, we have for the symmetric second
rank Lorentz tensor h,, related to the metric g,, and to the Minkowski
tensor #,, by

Guv =My + Py
the gauge transformation
h:tv (x) = huv (x) - Au,v (x) - Av, I (x)5

involving the four components of the gauge function A,. In the Hamil-
tonian theory we obtain a similar structure, but now divided in the gauge
transformation of the configuration field variables, the &;;, and the gauge
transformation of the momentum variables p;;. Before writing the expres-
sions for the generators of these transformations, we give some formulas
which will be needed. The wesk fied approximation (from now on it
will be denoted by W.F.A.) is given by taking the previous metric g, =
=1, t h,,, where only 7,, acts as the metric. The fied equations are
the spin 2 wave equation plus the Lorentz covariant gauge condition

1
Yy =0, 0" =1"0,, 7, = huv——z—num“” hog. (17)

We call attention to the fact that, in the W.F.A. approximation, the momen-
tum p,, is afirst order quantity. The explicit expression for p; is obtained
by linearization of the exact formula derived from the Dirac Lagrangian-
density for genera relativity:

1 1
Dik = — (hao, a” Ty haa, o) O + 2 (hio, s hko,i - hik,o ). (18)

Under a gauge transformation on the potentials #,,, o the form written
before, the p, change according to

Pa =Pu—0aV2A%+ A%, (19)

The generator for this type of gauge transformation, in the Hamiltonian
theory, is (recall that #°° =-1)

G(x°%) =- J A® (X, x°) #; (X, x%) d; x. (20)

Since
[pilu GJ = Ao,ik - 5ikv2 A° s



the remaining part of the gauge transformations, that is, the part which acts
on the configuration potentials h;, is generated by

J(x%) = J A, (x, x0)H# ,(x, x°)d, x. (21)

Thus, as before, the constraints are basicaly the generators for the inva-
riance function group of the theory.

The Lorentz covariant gauge condition (17)is separated into the conditions
giving the radiation gauge for spin 2,

hu = hu :0! (22-1)
A= hss ~ 0’ Br = hrs,s ~ 0. (22_2)

The set of eight constraints given by (15), (16) and (22-2) is o second
class, since

[#:, #.1 =0, [#., Al =0 [#,, B]=0 [A B] =0,
[#, A1=-26,x-X), [#,, B] = (6.V> + 57)o(x - x)).

Thus, as before, we define the quantities

ht =h, « fuij,.(x,x’)yf,(x,xo)dsx’ + foc,-j(x, x)H# (X', x0)d3X
+ J‘ Bis(x, X) AKX', x°)ds X' + J‘ V4s %, X) By (X', x%)d° X, (23)
Pl =p; + j'lijy(X, X)), (x', x%)dy x" + J(f)ij(xa X)H (X', x%)ds x'

+ fwij(x, xX)AX', x°)dsx’ + [rijs(x, x)B,(x', x%)d,x’, (24)
the coefficients being determined by the conditions
(a5, €1=0, [p} 91=0,
where by 9 we indicate the set of all eight constraints
% ={A, By, #,, H.
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We determine first the coefficientsstanding on Eqg. (23). From the condition
that h¥ commutes with #,, A and B,, we get the equations:

0,0 j(x-x') + 5j,5,,~(x -x)=-2 f Bii(x,x")6 . (x" —x)d; x"

- J‘ yijs (X, XI/)(és'VHZ + a”rZS)a(x”“XI) d3 x" s (25)

J ,
Wﬂijr(x’ x) =0, (26)
0 i (x, X))
2 . ijk \y — 27
v :ul]r(x5 X ) + ax/k ax/r 0' ( )

From the commutator of A% with »#,, we get no information since h¥
automatically commutes with s, within the gauge conditions presently
used.

We can write (25) in the form

d Ny | O 0
R e — ) Lr iJs = e— - . o : - ’
axls ( 255’ ﬁlj + axls + axlr> axls (6" 58} + 5}" 518) 5(x X )'

From this equation we can write

'25srﬁij + yijr, s’ + yijs,r’ = (5ir6sj + 5jr5is)(s(x—x/)' (28)
In obtaining (28) we have neglected a divergenceless term ¢,(x') (such
term may be added to the left-, or to the right-side of (28) but, as we shall
see, we can obtain the desired solution without using this new term). Solving
(28) for the B;;, we obtain

1
Bis =~ [858(x —x)~ sy, (%, X)]- (29)
Now, from (26) and (27), we have
\% M =0,

and since we look for fieldswhich are free  singularitiesand which tend
to zero at spatia infinity, we may take

Hijr = 0. (30)
Egs. (29) and (30) alow us to write the 4} of (23) as

~ 0B,
h:’; = hl] + J’ Otij(x, xl) (ax,§ _VIZ AI) d3 xl +
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oL f W) g 4 f Vi X) B ods X, @31

where k;; is the trace free combination
~ 1
A, =h, -3 &.A.

In order that the A#; be of the type TT of the A-D-M theory, it is first of
all necessary that the trace of h¥ vanishes. In the formula (23), or equiva-
lently in (31), the coefficients a, and y;;, are symmetric in i,j (the other
coefficients having the same symmetry). Taking the trace in (31), it issimple
to verify that A% is zero only if

ass(x’ X’) = VSsr(x7 X’) =0.

Therefore, the two-point functions «,;, y;;, have to be symmetric in i, j
and tracelessfor all x and X'. Besides, they cannot depend on the dynamical
variables since this would generate higher order terms which are neglected
in the WFA.. Sincein (31) we have no further information on the explicit
form of «;; and y;;, we can make use of this arbitrariness in the form of
these functions in rewriting (31) with coefficients

- 1
o = % e 0;j0sss

. 1
Y1jr = yl]r —% 6inSwa

in place of the «;; and y;;. These last two-point functions are symmetric
in i, j (if the original two-point functions«; and y;; are so) and are trace
free. Thisrecalibration in (31) implies that h is tracefree but, if we compute
its divergence in x/, we find

1

Mo =hy - h t f Gy 06, X) (Bl =7 )3 X

lrxx / ~ r ’ )
+ = J'_ay_%%—A X'+ jyijs,j(X,x)Bst-x

Impos ng that the divergence d h¥ vanishes, we get a relation between
the &;; and y,,, This relation after partial integration may be presented
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in the form
1
[(—a;A'-B;)é(x—x')dsx' = [ OB
3 A
} 1 ~ N A AL 1
* U im’ (Xx)a Ad X' 3 Vijr,i(x’x)érAd3x

+ J i (% X') Byd, X'

We separate this equation into two relations, one containing only &, A',
the other involving only B,, (thisis possible since A and B, represent inde-
pendent combinations):

1 Ar 1 ; i ¢ ’ ’
3 »[(),mc*mA Ox—-xX)dyx = ( O e (X, X0, A'dy x

! ~
_'3— J‘yijm,j(x7xr)a;nA/d3xl’

- J@ingé(x—x’)d3x' =_J ij,js (X, X')Bidyx" + f}:js.j(xa x)Bdy x'

Conseguently,

1 ’ ~ 7 1 ~ ’
?5im5(x*x) = oy, e (X, X )__:,”“/ijm,j(x’ x'),

=0, 0(x = X') = —dy; ;5 (X, X) + Vijs ; (%, X).

These equations are compatible for o;; = 0, since then we get just one
independent equation:

‘/T'js. (X, X'") = = 6;,6(x - X'), (32)

which is a condition fixing the value of 7. Its solution is
~ L
yus(X,x) = =0 D ;(x —X') - 0D ;(x -x) t 3 0;;D (x=x')

€ 2 K, (x-X) (33)
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where D(x — X') is the Green function o the Poisson equation and

~ 1 1
Ajix-x) = ——ZD,,.j(x—x')—TéijD(x—x’). (34)

A%
The relation (33) represents a c-number two-point function, symmetric
in the first pair of indicesand traceless over this pair of indices. Note that
the divergence of 7;; of (33) in x* gives

~ 3 1 ,
Vs, (6 X) = =D 3 (X = X) = - 0;;0(x —X) 35)
which is different from its divergence in x/ which is given by (32).

With the choice d;; = 0 and y;;, given by (33), the 4} is identical to the
hIT of the A-D-M’ theory for spin 2, in the so called N- -decomposition
for a second rank symmetric tensor®. From (33), (35) and d;; =0, we

have for h%,

hE = hij"_l"'éijhss + = af]vz hy a,vz O hy
1 1 1
zvz akhk_) ij asvz a h + s V2 a121v2 akhks

An inspection on this formula shows that indeed the trace and divergence
of hf are zero. This relation coincides with the usual form for presenting
aTT part of a given tensor k;; in the N-decomposition.

The gauge invariance of h¥% is made clear, even before the identification
with #f;T, since it commutes with the gauge generators (20) and (21) even
for g-number gauge transformations (when the gauge functions depend

on the dynamica variables).

The A-D-M method may be looked at as a process for producing field
functionals such that, from given initia arbitrary canonica fidds, we
obtain new fields which satisfy the gauge conditions A =B, =0. The
method for obtaining the starred fidd variables is similar in this point
and this is made clear from the fact that we used only the left hand side
of the radiation gauge conditions for the definition of A% and did not take
directly A = B, =0, but rather showed that the fina h* may be chosen
SO as to satisfy these requirements.

For the momentum pf; of (24), we cannot use the gauge conditions under
form (22-2) since this leads to a contradiction. Indeed, taking the com-
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mutator of p¥ of (24) with s, se get
[pija WIL] =0,

which cannot be true. To avoid this difficulty, we rewrite the radiation
gauge conditions for spin 2 in a form dighly different, but mathematically
equivalent®, the quantity A being replaced by

Q = vzpss_prs,rs = 09 . (36)
while the remaining conditions B, =0 are retained. Then, we can write

P?} =p;; + Jlijr(x’ XV H,dyx' + jd);j(xa X)Hpdyx
+ J !ﬁij(x,x')Q'd3x/ + Jrijs(x,x/)B;d3x'. 37

The imposition that pf; commutes with all constraints leads to the fol-
lowing equations:

V21,(x,x) T 021,x,x) =0, (38)
VIV, X) 4 o (57 - 073l -x) = 0, (39)
V22 ¢;x,X) =0, (40)

V2200 X) + 02,24, (%, X) = _% (0,40 + 8,0)5(x—x).  (41)

From (40) and (39) we conclude that
¢ij =0, (42)
and

Vs =ors 5 [0 ~X) - 5,925 x]. @)

Now we note that all available two-point functions have to depend on
d(x — x') or on the Green function D(x - x'), since they haveto be c-numbers.
Thus, any double differentiation with respect to x" is equivalent to diffe-
rentiate on x" and we may rewrite (41) as

V2 It By = (530 + 5,8) 3k —X)
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Differentiation in x* gives
2 , 1 ,
Aijs,s(X, X) = — 3 dy(x - X),

which has as solution

Aijs, s (X, X) = —% fD(x_X")5,i,,i,,(x"_x’)d3X". 44)

Differentiation with respect to x” in Eq. (38) gives
V2 Tijs, s (X, X) =0,
which implies that
Tijs, ¢ (X,X) =0

and thus, .. is constant. We take this constant as zero since we know that

ijs

p¥; cannot depend on the h;;, as it would depend if ¢,;, did not vanish.

Eq. (44) is integrated over the delta function to give
Ny, %) = - 2 D (x - X). 45)
The solution of this equation is

lijs(x, X’) = 5121 svz
for ®;;(x~x’) a c-number two-point function, symmetric over i,j and
divergenceless over the last index:

®ijs,s(x _xl) =0. (47)

The value for ©;; is obtained by imposing consistency o the solution (46)
with the original equation (41). With this end, we compute the Laplacian
o (46):

D(x—x) + O;;(x —X'), (46)

V2, = _%a,?jasp(x—x') + V20, (x—x)

js
and, also from (46),

arzs)“ijr(xa X,) =- 2 62 0 arzsvz
(condition (47) was used). Therefore,

0224 (%, X) = - % 3%.0,D(x ~ X)

Dix—-x')
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and the left hand side o the origina Eq. (41)is
V2 Ay T 2 4ijr = ~0%0,D(x —x') + V> @
By consistency, we should have

lls(x_x,)'
~G0.D(x—X) + V2O (x~X) =~ [6,8,(~X) + 6,0,(x ~x)]

This is a differential equation in ©,;. Its solution is

1 ,
O =~ (’SVZ(S (x-x) + 5‘SV25 (x—x)> vzaua D(x - x),

which may be written as,
1

®,-,-s=—7<5,~3D‘i(x—x')+5,-SD,,-(x—x'>> 0D -X). (49

The ©,,, o (48)satisfies condition (47).Therefore from (46)we have

1 1
3"1'5'——_762 3\—72D(X X) + vz i

— % [0;D(x—x') + 8D ;(x —x')]. 49)

ijs

0%0,D(x —X')

We note that by an argument similar to the one used for the A-equation,
we can write (43)in the form

1 1

i = [5 (X =X)=6,V?d(x - x')]. (50)
This formula may be smplmed to
1 1
lpij 2 V2DU( _X) ijD(X—X/). (51)

Using the value for the several coefﬁcwnts, we can finally write down the
formula for the p¥:

1
p:l;:pil—rJ\[VZalzj ( )— U ssz(x_xl)
5 {8,D,xx) + 5isD,J-(x—x’)}:l H(X)dyx +
+ % j[% D ;;(x —x)-d;; D(x -x")} o(x)d, x (52)
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which isa functional of the original momentum p;;. Asfor the configuration
variables, we also have here that p¥ = p/”.

3. Conclusion

In the usual formalism, involving the gauge variant canonical variables
h;; and p;; for the linearized gravitational spin 2 field, the gauge functions
cannot be arbitrarily chosen in the radiation gauge. Under a gauge trans-
formation, the h;; change as

h;j = hij_Ai
Then, the gauge conditions
A=hy,=0 B, =h,, =0,

—A.

2 d Jit

are valid in a new gauge frame only if
A,,=Q V2A =0.

These last relations are equivalent to impose that the left hand side of
the above gauge conditions commute with the generators o the gauge
transformations:

[A’ J] :Ol [B,, J] =0

(if we use in place o the gauge condition A = h, = 0, the condition
Q =V2p,-p..,s =0, @ Similar situation holds). However, in the case
where we work-with the functionals k}; and p};, no condition need to be
imposed on the gauge functions A, and A,, since under gauge transfor-
mations

* _ D% I
hE =h%, Y =k,

and thus A¥ and pf; automatically commute with the generators o the
gauge transformations:

[A*,J] =0, [Bf, J =0
and also trivially we have,
[A*’ G] =Q [B:‘, G] =0.

Since [A*, J] =[A, J]*, with the same property for the other commu-
tators, we have that in the Dirac bracket algebra all eight constraints
H,, #., A and B, become o the first class. This indeed was the basic
idea underlining this new commutation algebra. What was proven is
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that this new commutation algebra is just the commutation algebra of
the transverse-transverse field functionals o the type used in the so called
N-decomposition of the A-D-M formalism.

Since in the A-D-M theory a process is suggested for generalizing this
for the full non-linear gravitational field equations o genera relativity,
in the so called C-decomposition, we may hope that similarly it may also
apply for the starred field functionals underlined in the Dirac commutation
algebra. Since no closed and simpleform is known for g* and p*¥ in general
relativity, it may happen that this analogy turns out to be useful in this
case.
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