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A model for dominant Regge trajectories is discussed, both on theoretical and on experimental 
grounds. It is based on analyticity and unitarity and gives trajectories that are almost linear. 
The intercept is related to the asymptotic behavior and, as the trajectory approaches a straight- 
line, the intercept approaches 112. 

Discute-se um modelo de trajetórias de Regge tanto do ponto de vista teórico quanto do 
experimental. As bases do modelo são a analiticidade da trajetória e as consequências da 
unitariedade. As trajetórias obtidas são aproximadamente lineares e o valor u(0) está rela- 
cionado com o comportamento assintótico de maneira que, ao aproximar-se a trajetória 
de uma reta, u(0) aproxima-se de 112. 

1. Physicists from my generation grew under the impact of the beautiful 
ideas of Regge theory concerning the use of complex angular momentum 
in particle physics. Displaying a remarkable skill for survival in a time of 
so drastic changes, the ideas of Regge theory continue to provide a rea- 
sonably stable ground on which a theory of strong interactions may even- 
tually be erected. Duality ideas recently gave new momentum to this 
line of research by introducing the infinitely rising Regge trajectories 
departing, in this way, from the traditional background of potential theory. 
The Veneziano model then summed up many of these features in an asto- 
nishingly simple meromorphic amplitude1 and gave much status to straight- 
line trajectories. From the aesthetic viewpoint, the Veneziano picture of 
hadronic scattering is hardly to be surpassed. 

Nature, alas, has been tough. .A11 too often, experimental data have been 
ready to disprove the most beautiful theories, throwing out what, for 
a moment, seemed to us to be the perfect choice for the description of 
the world fabric. It is, however, a lesson from the past that, in the end, 
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harmony imperates again, provided we look the things from a better- 
vantage point. 

In the meantime, we do that we can. We know that trajectories cannot 
be straight forever. What then would be the next simplest choice? 

In this note, we look for a somewhat more realistic description of Regge 
trajectories while trying to keep aloof from the trees of uncorrelated details 
that prevent one from seeing the forest. We present a simple model of 
mesonic trajectories or, to be precise, revisit one which was introduced 
some time ago by Predazzi and Fleming2, examined now under the light 
of some recent discoveries3 which, in our opinion, contributed to make 
that model a reasonable candidate for describing "true-life" trajectories. 

We base our discussions on analyticity and some bounds. As is traditional 
in talking about complex angular momentum, we omit many assumptions 
made: in fact, everyone knows that even the basic continuation of the 
partial-wave amplitudes to an analytic function of the (complex) angular 
momentum relies upon the existence of some as yet unproved dispersion 
relations. We assume the whole folklore of Regge pole theory, which owes 
its success to a reasonable description of two-body processes as well as 
to its flexibility, which allows it to accomodate in the same room such 
gruesome fiends as crossing and unitarity. 

In Section 2, we review very briefly this folklore, just to fix notation, dis- 
cussing, wherever it may seem useful, the present state of affairs. We will 
be mainly interested in justifying the analyticity we will use. Other category 
of assumptions to be made concerns the rate of growth of the trajectories 
with the energy along an arbitrary direction of the complex s plane. These 
are still more difiicult to argue for, and one must concede that it is the 
ultimate success of the results that justifies the assumptions. We draw, 
in this part, heavily upon potential theory. The diligent reader is referred 
to Ref. (4) which, to my taste, is by far the best exposition of Regge theory 
fundamentals, to be supplemented by Ref (5). 

In Section 3, the model is introduced and we discuss how plausible are 
our assumptions and to what degree are we really free to choose, in some 
choices we are compelled to make. We find a class of solutions of the 
model and dicuss their general properties. It is shown that the very few 
properties of the trajectories which have some universality are shared 
by our trajectories. This is obtained by comparing their threshold behavior 
to the general one predicted by Barut and Zwanziger6 severa1 years ago. 



Finally, in Sectíon 4, we describe a different way to deal with threshold 
behaviors which gives further support to our model. 

2. How shouid one introduce complex angular momentum in order to obtain 
physically interesting results? Let F(s, t)  be the scattering amplitude for 
some two-body process. The partial-wave expansion reads 

dJ 

F(s, t) s (21 i- 1) F, (s) P, (cos 0) 
1-0 

in an obvious notation. Our intention is defining a function F(s, A) which 
provida an jnterpolation for the (physical) partial-wave amplitudes, that 
is, such that F(s, I )  = F,(s) for integer I. The interpolation F(s, 1) must be 
unique, so as to characterize the physical system to which it refers. The 
rnathematical to01 that allows one to prove the uníqueness is a theorem 
due to Carlson7 which says that, if a function F(s, A) exists such that 

F(s, I )  = Fl(s )  for 1 Y N, 

analytic for Re 1 ;. N, with 

where a n - E, E r O and b are all real constants, then F(s, 2) is uniquely 
determined. 

The analytic continuation that satisfies (2) was discovered by Froissart 
and Gribov8 and is obtained through the use of a fixed s dispersion relation 
for F(s, t). One has 

where A, and A, are the absorptive parts of F(s, t) in tbe t and u channeis 
respectively, including eventually some pies disguised as delta functions. 
The amplitude for the 1-th partia1 wave is defined by 



Putting (3) into (4), it is easily seen that, for 1 > N, the polynomial in r, 
as well as the terms that come from the subtractions made, do not con- 
tribute to the final expression which reads: 

where use was made of 

Q l e  4 = - 6 v Q l ( 4  

and v, < min (to, u,). 

Expression (5) is convergent for I > N but fails to meet the requirements 
about behavior at infinity of Carlson's theorem, on account of the factor 
(- 1)'. The way out is the following: two functions are introduced, 

where 

For 1 > N, then, F ,  (s, À = I )  = F,(s) according to 1 being even or odd. 
It is possible to show that the existence of a unique F(s, L) that interpolates 
both even and odd partia1 waves implies that A, = 0, namely, that no 
exchange forces exist. This situation is known as exchange degeneracy 
and seems to be, in fact, favored by natureg. It is our special interest to 
study the singularities of F, (s, L) in the s-plane. A careful study af expres- 
sion (6) shows that F, (s, L), like F,(s),  has two cuts, one for s > 4uZ, the 
other for s < - 8u2, u being the mass of the externa1 particles. They come 
from the cuts of A,(s,  v )  at 

4u4 
s > 4u2 i - 

4u4 
and s < -o-- 

u - 4u2 v - 4u2 

Let us assume F ,  (s, L) to have a pole for some value of J., 
If A is not a negative integer, it is called a Regge pole and 

(8) 

say Â = c&). 
the function 



cr(s) is the Regge trajectorylO. Our goal is the determination of the singu- 
larities of the function a@). Writing (6) in the form 

and E ,  defined by the corresponding integral from v, to a2, it is easily 
seen that E, (s, A) is meromorphic in the I-plane, its poles being located 
at negative integral values of I. A11 other singularities are singularities 
of D,. Since a2 is arbitrary, we may take it as large as we wish, so that 
the singularities of D, depend only on the asymptotic behavior of A, (s, v) 
as v -+ x ,  that is, on the high energy behavior of the t- and u-channel 
absorptive parts. The position of the poles may be obtained by solving the 
equation 

(from now on we will omit the & sign). If D-'(s, A) is regular in a neigh- 
borhood of (s, I = a(s)) and r-;? A)] O, 

i. = als)  

the implicit function theorem tells us that (1 1) defines a function a(s) which 
is regular in the same neighborhood. So, singularities of a@) are expected 
to appear at those points where either D-'(s ,  1) is singular or (12) is not 
true. Using (10) and (8) it is apparent that D(s, A) has a cut for s > 4u2 

and that the nearest left-hand cuts start at 

As a2 may be taken arbitrarily large, the branch points may be sent 
to - x, so that we may as weil ignore them. Therefore, the Regge trajec- 
tories do not inherit the left-hand branch points and have, as only singu- 
larity, a branch point at 4u2. 



There is, however, another mechanism for generating singularities: the 
derivative at (12) may vanish somewhere. Now, when (11) is true and (12) 
is not, a zero of higher multiplicity of D-' is present. This means that two 
trajectories intersect at that point. It became usual to cal1 this phenomenon 
a "collision of singularities". It may give rise to new branch points for both 
"colliding" trajectories. Such trajectories are called "complex" and have 
recently deserved some attention". In this paper we deal with trajectories 
that are not complex. They are, therefore, analytic functions of s in the 
plane cut from threshold to t x along the real axis. According to the 
reflection principle, a(s*) = a* (s), the so-called reality condition. 

As for bounds for a@), we assume that there is some number k such that 

with c 1 uniformiy in the upper half s-plane and that 

lim cr(s)/sk = C ,  , 
s+ k m 

the limits being taken along the real axis. The notation used in (13) is that 
of Titchmarsh (see Ref. (7)). We can then apply the Phragmén-Lindelof 
theorem12 to the function a(s)/s" in the upper half-plane to conclude that 
C, = C-.  

We could be more precise and correlate these assumptions to the behavior 
of a(s) below threshold. We think, however, to meet the reader's interest 
by refraining to do that and sending him instead to Ref. (13), where a11 
these questions are dealt with exhaustively. Sufiice it to say that the same 
results would obtain for a function like cr(s)/sk (ln s)'(ln ln s)". 

3. We may start to prepare the ground for our model. First, a further conse- 
quence of the Phragmén-Lindelofs theorem is that a(s)/sk is bounded along 
any direction, so that it is possible to write a dispersion relation for a(s), 
provided enough subtractions are made. We are interested in infinitely 
rising trajectories that approach a linear function of s, so we will subtract 
the dispersion relation once, namely, 

S-So I." Im a(s') 
a(s) = a(so) + - 

Ir (SI - s0)(sf - s) 

The essential input will be the width function. When the real part of the 
trajectory is rising and, for a real s above threshold, takes an integral 



value of correct parity, the partial-wave amplitude has a Breit-Wigner 
form with a width given by 

Im a(s) 
r(s) = 

Re cc' (s) 

It is assumed that this function interpolates smoothly the widths of the 
severa1 resonances that lie on the trajectory. By studying the variation 
of these widths with s one can then, i? principle, determine T(s). In the 
present situation, there is no definite experimental knowledge about 
T(s), though many functional dependences are clearly ruled out14. We 
can, however, show that, under the hypotheses made, some conclusions 
about the behavior of T(s) for large s follow. 

As we are considering infinitely rising trajectories, we write 

4s) lim - - - A .  
s--w (-slk - 

The Phragmén-Lindelof s 
for s -, + x. It follows. 

theorem asserts that the same value is the limit 
then, that 

that is, 

Re a(s) - - A cos (nk) 8, 
S'+ w 

Ima(s) - A sin (nk)?. 
s + + m  

The. requirement that Im a(s) > O, which, in potential theory, is a conse- 
quence of unitarity, gives 

O < k < l ,  (20) 

or other intervals which are not of interest to our model. 

A prediction for the asymptotic behavior of the width function follows 
at once from the use of (16) and (19). A simple computation gives 

r@),+ - tg (nk) (21) 



which is the asymptotic behavior we looked for. Observe that the requi- 
rement that T(s) > O gives us a further restriction on k, namely, 

We reached therefore the conclusion that, whatever the functional depen- 
dente of T(s) is, it must behave, for large s, as a square root. This is a very 
useful result, as these asymptotic regions are, obviously, outside of the 
range of the experiments, so that (21) is needed at least to supplement 
experimental data. Remark that (21) is true independently of the positivity 
requirements which gave origin to (20) and (22) as well as from the par- 
ticular assumption (14), in the sense that logarithmic factors may be intro- 
duced in the asymptotic behavior15 of a(s). 

Now, once we know T(s) we can use (16) to transform (15) into an integro- 
differential equation. Let us rewrite (15) as follows: 

Im cx(s') 
Re a(s) = a(so) + -- 

(s' - s0)(sf - s) ' 

where the integral is now a principal value. 

It is convenient to introduce the function 

g(4 = Js  w ,  

which allows us to get, from (23), 
00 

s - s0 g(sf) R e a' (s) 

An equivalent equation, obtained by first differentiating (23) and then 
using (24) is 

We make now an explicit assumption as to the form of g(s), namely, 

= Y(S - s,), (27) 
where y is a constant. This has, of course, the correct asymptotic behavior 
and is compatible with the experiments in the accessible region16. Using 



a Hilbert transform table17 it is not difhult to find the solution 

Y A  Ima(s) =-(s-s0y, E (28) 

for s > s,, giving 

A 
Re a(s) = E2 (S - sO)E + a(s,). (29) 

For s < s,, eq. (26) gives 

A 
a(s) = - (s, - s)E + c+,). 

E2 COS 71E 
(30) 

Consistency of (28) with (26) requires that 

As the width must be positive, a further condition obtains: 

E C 0  t (71~) < O, (32) 

that is, 

112 < E < 1, (33) 

which is precisely condition (22). 

We would like to have resonances with a well defined spin. This means 
that, at an energy in which the partial-wave amplitude resonates, the 
trajectory has a value 

the imaginary pari y being small compared to the real part. It is easy to 
see that this is equivalent to requiring E to be near 1. This is, of course, 
what is strongly suggested by experiments: trajectories that are very nearly 
straight lines. 

Another free parameter we have is the quantity a(s,). To get some 
information about it, let us compare our trajectory, near threshold, 
to the threshold behavior found, on general grounds, by Barut and 
Zwanziger18, 

Im a(s) 2 (s - s,p(S0)+112 sin n[a(s,) + 1/21. (35) 





We see, in this way, that our choice of g(s) is favored by theoretical argu- 
ments, also near threshold. The quantity a(~,)  is restricted to an interval 
that makes sense, on the light of experimental data, and, of course, tends 
to 112 if the trajectory is assumed to be approximately linear. 

Let us sum up everything. In the search of the "next simplest choice" for 
a Regge trajectory to replace the unrealistic straight-lines suggested by 
dual bootstraps and the Veneziano model we, after insisting in keeping 
the relevant analyticity and unitarity, ended up with a trajectory which 
can approximate arbitrarily well the linear ones, yet interpolate finite- 
width resonances. As an extra prize we got a correlation between the asymp- 
totic behavior of the trajectory and its intercept: as the trajectory gets 
closer and closer to a straight-line, the intercept approaches the value 112, 
characteristic of the dominant non-strange mesonic trajectones. In face 
of these features we think, and propose, that a trajectory of thís kind be 
given a try in the construction of dual amplitudes with non-linear trajec- 
tories, such as those by Baker and Coon2'. 

We wish to acknowledge the very strong influente Enrico Predazzi had upon this work, 
as well as upon this whole line of research started and developed by him Once more it is 
my pleasure to thank my friend and teacher. 
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