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A critica1 analysis is developed of the role played by Mach's principle m the formulation 
of the general theory of relativity. It is suggested that Whitrow's relation for closed spaces 
represents mathematically the principle considered Lineanzed solutions of the field equations 
as regards cosmic rotation are analyzed for the three possible static cosmological models 
in order to test the possibility of Mach's principle. The non-empty deSitter and Einstein 
models satisfy the two fundamental requirements of Mach's principle, whereas the asymptotic 
Euclidian models do not. 

Desenvolve-se uma análise crítica do papel que representa o princípio de Mach na formu- 
lação da teoria da relatividade geral. Sugere-se que a relação de Whitrow para espaços fecha- 
dos possa representar matematicamente o princípio de Mach. Solu@es para as equações 
de campo linearizadas com respeito à rotação cósmica são analisadas para os três possíveis 
modelos cosmológicos estáticos a fim de se testar o princípio de Mach. Os modelos não- 
vazios de deSitter e Einstein satisfazem às duas exigências fundamentais do princípio de 
Mach, enquanto que não as satisfazem os modelos assintoticamente euclidianos. 

1. Mach's Principle, the Equivalente Principle, the Generalized 
Principle of Relativity and Space-Time Curvature 

The usual formulation of Mach's principle is actually due to Einstein's 
analysis' of the objection raised by Mach2 against Newton's concept of 
absolute space. This will be explained in the following considerations of 
the basis of the general principle of relativity and the importance of Mach's 
principle. 

The concept of an absolute reference system was exhibited by Newton3 

in his Principia as something that could explain the privileged character 
of non-inertial frames. The distinction between an accelerated frame and 
an inertial one could be accounted for through the existence of an absolute 
space independent of matter. Such a statement could bypass the difficulty 
exhibited by the principle of relativity which, in the domain of classical 
mechanics, is not suficient by itself to make the existence of accelerated 



reference systems meaningful in a privileged sense. Newton's bizarre 
concepts of absolute space and absolute time independent of matter was 
at variance with the physical status proper to space and time, which cannot 
be conceived of as entirely independent realities where another reality, 
matter, is imbedded. It was the merit of Mach to have pointed out the 
bizarre status of these fundamental concepts of classical mechanics. The 
notion of reference system connot be disconnected from the idea of a 
physical object, and so an absolute frame disconnnected from matter is 
an empty concept, at least in the domain of physics. To overcome the 
difficulty of the privileged character of accelerated frames, Mach subs- 
tituded the distribution of masses in the universe for Newton's absolute 
space. 

With the idea of a cosmic inertial reference system to which the accelerated 
frames are referred, the cosmic distribution of masses would permit the 
possibility of distinguishing between inertial and accelerated frames. 

Einstein, dealing with Mach's critique of Newton, added another objection 
against the notion of absolute space and time: accelerated frames, rotating 
objects, for instance, are the site of inertial forces. Since absolute empty 
space has the role of determining the diffkrence between these frames 
and the inertial ones, it comes about that absoiute empty space is a kind 
of cause to inertial forces. But such a situation violates the principle of 
causality. In physics, a cause devoid of matter is not meaninful. Therefore 
inertial forces should be viewed as an effect of an interaction between local 
accelerated objects and the distribution of cosmic distant masses. 

Einstein's insight into the problem is essentially centered on the idea of 
causality, which was not the case with Mach's critique. The usual formu- 
lation of Mach's principle is in effect derived from Einstein's analysis and 
i t  is only indirectly Mach's. Hence, two fundamental assumptions cons- 
titute Mach's principle as interpreted by Einstein: 

a. Accelerated frames are distinguished from inertial ones through a 
cosmic reference system defined by the distribution of the distant masses 
in the universe; 
b. Inertial forces appear in accelerated objects due to interaction of these 
with the distant cosmic masses. 1ne;tial effects are connected to gravi- 
tational interaction. 

A straightforward conclusion of Mach's principle is the non-existence of 
privileged reference systems. The systems of reference are defined through 



the existence of ponderable bodies and so no absolute reference frame 
independent of matter should be postulated. Sina  this must be the case 
in order to save the validity of the principle of causality, mechanical laws 
should be universally valid, i.e., valid for any reference system. This situa- 
tion does not appear in classical mechanics, where Newton's laws are 
applicable only with respect to inertial frames. The argument developed 
by Einstein poses the necessity for a generalization of the principle of 
relativity. namely: the laws of mechanics must be invariant for arbitrary 
coordinate transformatjons, 

It is worthwhile to note that Mach's principle in its original presentation 
has a philosophical status and no mathematical formulation. This should 
be kept in mind. For, as it will be discussed later, it is one of the difficulties 
of Mach's principle in the domain of the general theory of relativity. 

Einstein reinforced his argument for a general principle of relativity appea- 
ling to the principle of equivalence: inertial and gravitational forces are 
interchangeable through suitable coordinate transformations. 

This pnnciple has an.expenmenta1 basis in Roland von Eotvos work4. 
where it is verified, with an accuracy of the order of 5 x 10-', that inertial 
and gravitational effects are independent of the nature of ponderable 
bodies. Most recently, Robert Dickes repeated von Eotv6s experiment. 
with a higher accuracy (of the order of 10-"), confirming the previous 
results. Dicke has pointed out that the principle of equivalence based 
on the highly accurate Eotvos experiment can be viewed as the fundamental 
argument for geometnzation of inertia and gravitation, i.e., as the basis 
f6r the'general theory of relativity. This is indeed good for the theory, 
since the classical experimental tests are very poor due to their low accuracy. 
Furthermore, the classical tests verify consequences which can be inter- 
preted in terms of theories other than Einstein's. Following Dicke, we 
put forward an argument in modified terms as follows. 

According to Etítvos' experiment, inertial and gravitational effects are 
independent of nuclear, electromagnetic and weak coupling, i.e., inde- 
pendent of the nature of the bodies. This fact suggests a generalization 
of the principle of inertia: the path of a body under inertia and gravitation 
1s uniquely deterrnined by the space-time geometry. The principle of 
equivalence gives to inertia and gravitation a sweeping universality of 
the same leve1 as that of space-time, since both orders of physical facts 
are independent of the nature of the bodies. Therefore, space-time and 
gravitation should be connected, and the path of a body solely under 



inertia and gravitation should be uniquely determined by the metrical 
field of space-time. This conclusion cannot be formalized in terms of 
Euclidean geometry, which can afford universal laws only for inertial 
reference frames. A Riemannian manifold, in which the metric field gpv  
takes on inertial and gravitational meanings, seems to be the most reaso- 
nable consequence. The generalized principle of inertia could be expressed 
in terms of geodesics in a Riemannian 4-space. 

The generalized principle of relativity, i.e., the equivalence of a11 inertial 
and accelerated frames, is expressed through the invariance of Riemann's 
space-time metric form, 

ds2 = gpv dx
p 
dxv . (1) 

The generalized principle of inertia is given by 

which gives the geodesic equations 

The geodesic equations (3) present a generalized equivalence between 
inertial and gravitational forces. 

The connection of space-time with gravitation, that is, of geometry with 
matter, is made explicit through Einstein's field equations: 

where T,, is the matter energy-tensor and R the space-time Ricci tensor. 
p: 

It is interesting to point out that the Einsteinian outlook on space-time 
restates ancient philosophical concepts of the Greeks: for Plato6 and 
Aristotle7, space and time are inseparable from matter and a pure space 
void is unthinkable. 

Mach's principle, important as it is for the origin of Einstein's general 
theory of relativity, is nonetheless not completely manifested in the solu- 
tions of Einstein's field equations. The Gadel cosmological modela, for 
instance, exhibits a constant rotation everywhere and no inertial frame 
to which is related such a rotation. Furthermore, the energy-momentum 



tensor for this model is the same as that for Einsteins's model universe, 
which means that the field equations do not determine uniquely the inertial 
properties of a test body9. Another similar example is that of de Sitter's 
empty static universe. An inertial field can be obtained for this model, 
notwithstanding the fact that no cosmic inertial frame can be defined, 
since there is no matter. Certain ideas have been put forward to clear up 
this weak point of the theory, for example, Brans and Dicke's modified 
field equations1° and Wheeler's boundary conditions" . 

In Wheeler's theory, the boundary conditions restrict the solutions of the 
field equations to those which define spaces with positive curvature, that 
is, closed universes. This result reinforces Einstein's suspicion" that only 
closed spaces satisfy Mach's principle. We may arrive at this result perhaps 
by a more direct reasoning as follows. 

Whitrow had suggested that a relation of the form 

defines Mach's principle. In this relation, M is the mass contained within 
the observable radius of the universe, r. This relation was deduced in a 
straightforward way by Whitrow from the equivalence of inertia with 
gravitation for cosmic masses: 

An objection against equation (5) is that variations in M due to clumpiness 
in the distribution of galaxies, for instance, may violate the relation. To 
overcome this diffículty, Dickel' has proposed a variable G. Another 
objection may be raised, however, as follows: relation (5)  is not a deter- 
mined law, for it is based on the concept of a fiat space, i.e., an infinite 
universe, in which boundary conditions are not well defined. Relation (5)  
is established only by disregarding the non-observable infinite mass. This 
objection can be bypassed through a finite world model, i.e., a closed 
universe. If R is the "radius" of curvature of the closed space and M the 
total mass of the universe, the total gravitational energy of the universe 
rnay be defined as 

GM2/aR, (7) 

where a is a constant which depends on the model. 

Using Whitrow's argument, Mach's principle may then be stated as follows: 

G M / C ~ R  = a :  - i. (8) 



This relation is verified in two cosmological models, the Einstein modei 
and the de Sitter non-empty static universe. The non-empty de Sitter model 
has the particular feature of exhibiting a negative pressure. This non-clas- 
sical concept, which led de Sitter to reject the non-empty model, is none- 
theless capable of an interpretation in the domain of general relativity, 
according to McCreaY:s. analysis14 of the energy-momentum tensor in his 
reformulation of Hoyle's model universe. 

Note that in the aforementioned world models, relation (8) comes from 
the field equations. With the usual expanding models this is not so. Thus, 
if Mach's principle is to be built into the field equations of the expanding 
models, new physical concepts must be introduced. For example, Jordan15, 
in order to keep relation (8) valid for expanding models, made M and G 
functions of the cosmic time. 

Another possibility wsuld be M only as a function of cosmic time, a hypo- 
thesis which we have considered recently in a finite expanding model 
universe with matter injection16. 

2. Cosmic Rotation for the Three Possible Static Homogeneous Models 
The Solutions Compaaible with Mach's Principle 

There are three possible homogeneous static universes: Euclidean, Einstein's 
and de Sitter's". The last two obey Mach's principle as presented in 
relation (8). In this seetion we analyse the behavior of solutions of cosmic 
rotation for the three niodels. The procedure is equivalent to that developed 
by Lausberg18, i.e., it is assumed that the rotation is suficiently small, 
such that the diagonal Einstein equations for the three models are not 
perturbed, that is, they are kept linear, giving the known solutions of the 
three non perturbed rnodels. Thus, the perturbed metric should be: 

where Q(0, r)  is the rotational perturbation. 

For the Euclidean, Einstein and de Sitter universes we have, respec- 
tively, 



2.1. Rotation and Mach's Principie for the Euclidean Model 

The covariant and contravariant components of the metric tensor for 
this case are: 

The survivíng Christoffel symbols for the three models are : 

We assume rQ/c 4 1 such that the diagonal equations are kept unaltered, 
as it was pointed out before: in other terms, we are linearizing the problem. 
To find solutions for O(0, r) in the present context is to solve the non- 
diagonal equation : 

Since in the present analysis the diagonal equations are maintained unal- 
tered through the assumption of the very small perturbation considered 
before, then for the Euclidean model the following relations are yet 
valid : 



and it follows: 

= -(PIc2)g03 

Therefore, 

R,, = O 

Bearing in mind that 

we have: 

The first term on the right hand side of (19) is 

while the two last terms are 

Developing (20) and (21) according to (14), the following differential equa- 
tion is obtained: 

Putting (22) 

= 4(r) *(Q (23) 
we get two differential equations with r as the constant of separation: 



The second equation is an associated Legendre differential equation if 
we put 

Relation (25) is highly convenient since it affords solutions with no singu- 
larities in the whole domain of values for 0. Solutions for this equation 
are of the type 

y = cos e. 

It is important to note that we have arrived at equations (24) by neglecting 
non linear terms. 

The first equation is of the Cauchy type, which gives the general solution 

The light postulate demands the condition 

Cornparing (28) with (25), it follows that 

Inspection of (29) shows that for small values of r, the linear approxima- 
tion breaks down. Non linear equations involving exp v, expÂ and R 
are required. The solution can no longer be a flat space-time. We infer 
from this that cosmic rotation is possible in so far as the model universe 
is asymptotically Euclidean. It is clear that, for r -* oo, !2 -, O and this. 
means that the Machian reference frame is given by masses at infinity. 
Notwithstanding the validity of the first item for Mach's prínciple, the 
second, gravitational interaction, cannot be verified for this universe. 
On t'he other hand, if a universe everywhere Euclidean is assumed, only 
the following trivial solution could be possible: 

which means that for a completely flat space-time, inertial forces could 
not exist. Such a universe cannot be Machian either. 



2.2. Rotation and Mach's Principle for the Non-Empty de Sitter 
Static Model 

Making 
r/R = sin X, (3 1) 

the perturbed metric for this model is 

ds2 = - [dx2 + sin2 x sin2 O(@ - SZCI~)~ + sin2 do2] + c2 e"dt2, 

e" =os X. (32) 

The covariant and contravariant components of the metric tensor are 

911 = -R2,  g" = -R-2, 

g22 = - R ~  sin2 X, g22 = - ( R s i n ~ ) - ~  (33) 

g,, = - R2 sin2 X sin2 O, 

Developing the surviving symbols-by use of .(33) and neglecting non-linear 
terms, we obtain 

1 - [2 sin x cos x sin2 0 + - sin2 x tan x sin2 6 
2 

3 aSZ - - cos O sin O - + [2 sinz x sin2 O - cos2 x sin2 O ]  Q + + sin2 8. 
2 ae 

(34) 
For the de Sitter model, 

Combining (35) with (34) and using separation of variables as in (23), we 
get the two differential equations 



The last equation is the same as (24). Again we assume relation (25). 

The first equation can be put in the form 

$ 4  d4 
x 2 ( i  - x 2 ) -  + 4 ~ ( 1  - x 2 ) -  + r& = o, 

with x  = sin X. dx2 dx 

This equatioa can be solved readily for 1 =. 1, which gives, as we shall 
see, a solution that obeys Mach's principle. The solution considered is: 

d = A  + B x - ~ .  
In this case, 

$ = const = 1 .  

For x  -, 0, the linear approximation is no longer valid and it is necessary 
to treat the problem in terms of non linear equations. 

Using the boundary condition 

A = - B ,  

it can be seen that for the event horizon ( x  = 1) we have R = O and this 
defines an inertial region. Such regions represent Mach's cosmic inertial 
reference system, to which accelerations are referred. 

Since 

p = M(27c2 R3)-I, 

making A = O in (35) yields 

R = A [ 1 -  ( I c M / ~ R ~ ) ~  r-  3]. 

The constant A  depends on the cosmic angular momentum L and cosmic 
mass M, as 

The integral is finite and it can be shown that 

A = (18n4 L)/(rc2 M ~ ) .  



It is apparent from the above relation that cosmic inertial forces depend 
on the total mass of the universe through the gravitational constant K .  

This consequence expresses the second item of Mach's principle, namely, 
that inertial forces arise as a result of the gravitational interaction. This is 
not the case when an asymptotic Euclidean universe is considered, as 
can be seen by the preceding analysis. Therefore, it seems that curvature 
plays an essential role for the possibility of Mach's principle, and Whitrow's 
relation (8) should be considered seriously. 

23. Rotation and Mach's Principie for the Einstein Model 

For the Einstein model, we have recourse to relations (31), (32) and (33) 
with the condition exp Â. = 1. 

Following a similar development, the next differential equations obtained 
are 

The second equation is again equal to those of the two former cases. Equa- 
tions (42) were already given by Lausberg18 in dealing with the Lense- 
Thirring effect in the Einstein universe. 

For 1 = 1, the general solution for the first equation is 

For the solution of the Lense-Thirring problem, ~ a u s b e r g ' ~  gave the 
boundary condition 

Using (M), the Machian inertial region would be given by the relation 



For the Einstein model, the following relations 

IC 
f/R2 = [ P  + (p /c2) l ,  

K 
A = [p  + 3(ple2)]. 

hold: 

Making the pressure zero and using relation (40), it follows that 

R = rcM/4n2. (47) 

This relation can be substituted into (43) and, as in the former case, it 
is clear that the inertial effect is intimately related to the total mass of the 
universe. The two items which define Mach's principle appears to be 
verified for the Einstein model also. 

3. Conclusion 

If we are to accept Mach's principle as formulated in Whitrow's modified 
relation (8), the two possible static closed homogeneous world models 
realize its fundamental properties, at least in the domain of the special 
solutions for very small cosmic rotations. The Euclidean static model 
and the asymptotic Euclidean model are not Machian universes in this 
sense. 
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