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A semiclassical study of surface inelastic scattering of light is presented here. The relation 
between calculated and experimental cross sections, i.e., the derivation of the Fresnel cor- 
rection factors, is given. The fluctuation-dissipation theorem is used to relate the fluctuation 
of the dielectric constant, and therefore the scattering cross section, to the imaginas. part 
of a generalized susceptibility. 

Apresenta-se um estudo semi-clássico do espalhamento inelástico da luz numa superfície. 
Obtém-se a relação entre a seção de choque calculada e a experimental, isto é, obtém-se os 
fatores corretivos de Fresnel. Emprega-se o teorema de ilutuação-dissipação para relacionar 
a flutuação da constante dielétrica, e portanto da seção de choque de espalhamento, à parte 
imaginária da suscetibilidade generalizada. 

1. Introduction 

Surface scattering of light in condensed media has long been under consi- 
deration and use1. This applies to narrow gap semiconductors, semimetals 
and metals. The technique of scattering from serniconductor surfaces 
seems to have been used first by Russellz. Feldman et aL3 were the fírst 
to report first order Raman scattering of light by optical vibrations of 
metals. The theory was given by D. L. Mills et aL4. Study of the energy 
gap in superconductors in photoluminiscence experiments has recently 
been done5. Theoretical studies of light scattering by a superconducting 
surface were made by Abrikosov and Falkovskii6. 

However, due to experimental difficulties this technique has not been widely 
employed and this kind of study is only beginning. Basically, the scattering 
intensity is greatly reduced if the scattering volume is restricted to the 
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skin depth. Although this generally implies that the scattering efficiency 
is near the threshold of detectability, it can be expected that improvements 
in experimental techniques will produce a revival of this aspect of Raman 
spectroscopy. Furthermore, interest in this and related problems will 
certainly increase as a result of the growing use of thin fílms in physical 
experiments and devices. 

We consider in this paper a semiclassical treatment of light scattering from 
the surface of an opaque material. We remark that microscopic calculations 
of scattering cross sections consistently use the effective field inside the 
material whereas the ones measured are those outside it. To connect the 
calculated cross section to the experimental cross section, one solves the 
usual boundary value problem at the material surface. This will be the 
subject of next section, where we also solve the inhomogeneous wave 
equation for the vector potential of the electromagnetic field. The source 
of inhomogeneities can be fluctuations associated whith elementary exci- 
tations in the material (phonons, magnons, quasiparticle excitations, 
plasmons, etc.) which are responsible for the scattering p r o c e ~ s ' ~ ~ . ~ .  The 
Green function tensor that connects the flutuations with the scattered 
field for arbitrary experimental geometry is obtained. 

In Section 3, the scattering cross section is derived and related through 
the fluctuation-dissipation theorem to the imaginary part of the generalized 
susceptibility associated with the "current" which is the source of the 
inhomogeneous term in the wave equation for the vector potential. 

2. The Scattered Field 

Let us consider a semi-infinite crystal filling the half space z cc O as shown 
in Fig. 1. One can think of an extended slab of width L much larger than 
the skin depth 6, so that reflections from the back surface can be neglected. 
Eletromagnetic radiation incident on this material will be scartered within 
the skin depth. One can describe the process as the absorption of one photon 
(o , ,  k,, pl) by the system and simultaneous emission of another photon 
(o,, k,, p2) ; o ,  k and p stand for frequency, wavevector and polarization 
of the photons. The frequency o, can be greater or smaller than o,, giving 
rise to the so-called Stokes and antistokes bands, respectively. The dif- 
ference o = o, - o, is the so-called Raman frequency shift. 

Fom a macroscopic point of. view, scattering results from fluctuations 
of the optical properties of the media, characterized by the deviation 



Fig. 1 - Schematic of a typical crystal situation, whose surface is in the (x, y)-plane, withthe 
reference frame and the wave vectors k0 of the incident field, k, of the reflected field and k, 
of the transmitted field. 

BE of the local instantaneous value of the dielectric tensor with respect 
to its averaged value7. We write 

~ ~ ~ ( r ,  t)  = E' (r, t)6ij + t )  (2-1) 

for the dielectric constant of the material (z < O). In fact, 68, can be consi- 
dered as an effect of modulation of the dielectric tensor by periodic motions 
in the system. If {Q,eiWpt) denotes a set of coordinates which describe 
the motion that causes the scattering, one can write, in first approximation, 

a&, 
6.5.. = - Qp eiowt = 

ZJ C a , ,  Q, e'"*' 
aQ, Ic 

where aij,, is the (third rank) polarizability t e n ~ o r ~ . ~ .  

In order to find the scattered intensity, we must find the scattered field. 
To do so, we proceed to solve the Maxwell equation for the vector poten- 
tia1 A(r, t): 



where the dielectric tensor 2 is 

for z > 0, 
Ê(r, t) = 

Ê0 (r, t) + @(r, t) for z c 0, 

which properly includes the modulation effect responsible for the scat- 
tering phenomena. Furthermore, we will assume that the exciting laser 
radiation is in the optical region and therefore it is safe to replace EO(r, t )  

by a constant background dielectric tensor êO, i.e. e0 (r, t) = e0 Óap (for z < 0). 
a! 

For simplicity we have considered a cubic material. 

Equation (2-3) can be rewritten: 

1 C Oa,Ay(r, t) = -T9.(r, L )  (2-5) 
Y 

where O is the D'Alembertian operator 

na, = C curl,, curl,, + 6(- z)óay 
P 

and 

d 
curl,, = C Eap, -- , 

B 8% 
(2-7) 

where eapp are the Levi-Civita ~ y r n b o l s ~ ~ , ~ ~ .  Finally, .a is the "current" 

In order to solve Eq. (2-5), we will find the matrix Green function G which 
satisfies 

1 O,, Gyp (r, r'; t - t') = óap 6(t - tf)O(r -rf). (2-9) 
Y 

As is well known, the complete solution to Eq. (2-5) is of the form 

Aa(r, t )  = ~ : ~ ' ( r ,  t) + - C d3 rtdt'GaB(r, r' ; t - tf)Yp(r', t'), (2-10) 
C B S 

where Aah) is the solution of the homogeneous equation, i.e. with O E  = O 
(Ref. 11). The second term in Eq. (2-10) is the scattered field which we 



will designate as A y r ,  t). The first order approximation in the fluctuation 
OE is obtained by replacing f B(r' ,  t') on the right hand side of Eq. (2.10) by 

e(- 2') a 
&h) r ' ,  t') = - aag) (r' , r')]  

B ( c atl r ' ,  0 at, A (2-1 1 )  

The scattered field is then given by 

At this point, it is convenient to introduce the Fourier transforms defined 
by the equations 

E$)(,, t )  = 8, exp (i [k, . r - o, t ] )  

and 

ÓE,~ (r, t )  = OE,~ (q) exp [ i  (q - r - o, t)]  . (2-13c) 
9 

Here, k,, and qll  are the components of the wavevector parallel to the 
sample surface. Since the plane (x, y) contains the sample surface, trans- 
lational invariance implies that G depends only on the diferences x - x' 
and y - y'. The fluctuation ÓE is assumed to be produced by excitations 
of wavevector q and frequency o,. After replacement of Eqs. (2-13a), 
(2-13b) and (2-13c) into Eq. (2-12), one gets 

ÓzBy ( q ) g y  exp ( i [ z ( k 2 ,  + 4,) + r - kf( - w s t ] ) ,  (2-14) 

where krl = k i  + 911 , ( 2 . 1 5 ~ )  

o s=o0  +oq, (2- 15b) 

which are the laws of parallel momentum and energy conservation. (Let 
us observe that k i  = k,$. 

Next we have to obtain the relationship between the unperturbed field 
E(h) in the medium and the incident iield E,, i.e., the Fresnel coefficients. 



Let E,, E(h' and E, be incident, transmitted and reflected fields respec- 
tively. We shall consider separately the cases: 

i) incident wave polarized with E(E',I)) normal to the plane of incidence 
(x, 4. 
ii) incident wave polarized with ~ ( ~ 1 1 ) )  in the plane of incidence (x,z). 

Fig. 2 - Case.of incident wave with electric field normal to the plane of incidence (x, z). 

(i) In the conditions of Fig. 2, the continuity of the tangential components 
of the eletric and the magnetic fields implies12 

Ebl' + E,. = &,, (2- 164  

H,'cos O, - H,. cos Oi = H ' ~ '  cos O,, (2-16b) 

or 

(1: y2 8, cos d, , (Ef) + E,) cos di = -- 

since H = (.q#I2E. Solving this system of equations, one obtains the well 
known Fresnel equation12 

~ ( E ~ / , U ~ ) ' ~ ~  COS ei 
8, = ~'1 '  

( E ~ / , U ~ ) " ~  COS 0, + ( E ~ / , U ~ ) ~ ' ~  COS Oi o 



On the other hand, the dispersion relation 

c2 (kgx + k;,) = o; E', 

sin 6 ,  112 
together with Snells' law - = (+) , with E ,  = 1 and E ,  = E', 

sin 8, 

allows us to obtain the relationship 

ck2= = - k2 cos Or = mo (E' - sin2 
O i ) l I 2 ,  

and finally 

~ ( o , / c )  Cos e, 
6, = 

( o o / c )  cos 8,- k2,  
E f  ' 

(ii) In the conditions of Fig. 3, the continuity relations read: 

H , -  H ,  = H(h) ,  (2- 19a) 

6,  = ( E ~ I )  + E,) cos O , ,  (2-19b) 

(Do - D,) sin O ,  = DF', (2- 1 9c) 

Fig. 3 - Case of incident wave with electric field parallel to the plane of incidence (x, z). 
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and 

k2:E, + k2,E, = 0, 

since div E(h) = 0. 

This gives a system of four equations for the four quantities E,, 6,, H, 
and H(h'. Straightforward but tedious algebra, whose details we omit here, 
permits us to obtain the solutions 

2(oo/c) sin 8, cos Oi 
E, = 

COS ei - k,, 
E p  

2 cos Oi kz, 
8, = k,, - (o, &'/C) cos 8, 

E$) 

In short notation, Equations (2-18), (2-20) and (2-21) can be written, using 
equation (2-13b), as 

where Â. = 11 (parallel), i (perpendicular). 

We proceed now to obtain the Fourier transform of the matrix Green 
function. To simplify the mathematical handling of Eq. (2-9) we will choose 
kll along the x-direction. Later on we will remove this restriction by perfor- 
ming a rotation in the (x, y) plane. Using Eq. (2-13u) and the integral 
representation of the 6-function, we have 

Therefore, the system of equations (2-9) becomes 

a o2 
ikll ã; B,, - [g, + EO (z) Bxx = ;(z - zl), I (2-224 



m2 a2 
[ki - &O (41 byx - 7@ 3, = O, 

2 

ikll d; " C ]  9- + k i  - , c0 (r) sZx = O, 

a2 m2 + ,c0 (z) axy = O, 
az c I 

ikll ã; a gXz + [ C ]  ki - , c0 (z) gZz = U(Z - z'). 

The components 9,,, 9,, 9, and 9, are zero in the chosen system of 
cartesian axes. To solve this system of differential equations we must 
establish the boundary conditions. Eq. (2-10) tells us that Ge8 satisfies the 
same boundary conditions at the sample surface (z = O) as the field compo- 
nents A,, for any p. This is so because of the arbitrariness of the "source" 
.9 which depends on the material and the exciting radiation; therefore 

and 

&"a: = 32,  &Os,<, = 9' xz (2-23b) 

are the continuity laws for the tangential component of E and transverse 
component of D, respectively. The signs < and > stand for values of 9 at 
the interface, in the material medium and in the vacuum, respectively. These 
sets of conditions allow us to determine the two integration coefficients of 
the system of Equations (2-22a) and (2-22c) and the system of Equations 
(2-229) and (2-22i). 



The component gYy satisfies by itself a second order differential equation. 
The boundary conditions for it are 

9; = 9y>y (2-24a) 

(continuity of tangential component of E) 

and 

which involves the continuity of the tangential component of the magnetic 

field related to 9 through the Maxwell equation (V x E), = 
(17 j 

and Eq. (2-10). 

Appendix I contains the calculations involved in the solution of system 
(2-22). 

In matrix form, we can write 

where 

Let us recall the fact that this result corresponds to the particular geometry 
in which kl l  is in x-direction. Generalization to arbitrary orientation of 
kll  can be done simply by performing a rotation of angle in the (x, y)  
plane, the transformation matrix being 

with tan = ky/k, .  
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The matrix r of Eq. (2-26) in the new reference frame, i.e., after performing 
the similarity transformation RTR-', becomes 

whose matrix elements are 

The condition of transversality of the scattered electromagnetic field is 
contained in matrix r since it has the property 

which implies (cf. Eq. 2-14) 

Inserting Equations (2-25), (2-18), (2-20) and (2-21) into Eq. (2-14), we 
obtain 

where we used 

dz' exp (iz' (y, + K: + k,,)} = - i(qz + lc; + k2,)- l . 
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We recall the fact that in Eq. (2-30) the conservation laws of Eqs. (2-15a) 
and (2-15b) are implicit. The latter contains a dependence, through w,, 
on the z-component of the wavenumber of the crystal excitation. Sina  
for most cases, o, can be neglected in comparison with the frequency 
of the exciting radiation, we can write Ik$l = lki1. Using this fact and 
considering Fig. 4 one easily íínds the angle 6, between the propagation 

Fig. 4 - The scattering geometry. The relation between the angle of incidence and the angle 
of emergence of the scattered radiation is given in Eq. (2-31). 

direction of the scattered radiation and the normal to the material surface 
in terms of the parallel components of q, which results in 

3. The Scattering Cross Section 

We shall now calculate the scattering cross section, i.e., the ratio of energy 
scattered per unit time, per solid angle (in direction ks), per unit frequency 
and unit area, to the flux of incident energy, 



Using Eqs. (2-30) and (2-Z), one obtains 

We have used the fact that, for radiation scattered in the k-irection, 
within a solid angle dSZ, qll remains constant. The number of modes for 
fixed q, is ( d 2  y , , / ( 2 7 ~ ) ~ ) A ,  with A the area of the laser beam incident on 
the sample. Considering the conservation law for the parallel components 
of momentum and transforming to spherical coordinates we have 

d2 q, (+) cos O, da. 

In Eq. (3-2), the wavevector IC, in the media have real and imaginary parts 
K ;  + ixy . The integral 

1 1% [(K: + k;, + yz)2 + (K:-  + k: , )2 ]  

is the so called scattering coherence length. 

Let us stress the fact that we have been considering rnaterials with finite 
skin depth much smaller than the sample thickness. That implies that 
k!, is not zero and that coherence length of Eq. (3-4) is finite. In case of 
Raman scattering by transparent materials, conservation of the normal 
component of the wavevector removes the singularity at y, = K: + k2,. 

Futhermore, when 6 G L, i.e., k!, % ko and / e  1 % 1, an analysis of Fresnel 
coeffícients shows that, for any orientation of the incident field, the trans- 
mitted field is nearly parallel to the surface and, consequently, the same 
happens to the scattered field. This is important to take into account 
when considering the experimental set up. 



Finally, we will make some considerations regarding the quantity (Q* Q ) ,  
in Eq. (3-2) by means of the approach of Landau and Lifshitz13. This 
quantity is the Fourier transform (in space and time) of the time dependent 
correlation function 4 ( t  - t') = (Q" (t)Q(tl))  (Ref. 14). In fact, since Q* ( t )  
and Q(t) are quantum mechanical operators defined at different times, 
they do not commute generally. Thus, it is more convenient to write 

the average refers to a particular stationary state. 

Let us assume that the system is in the presence of a harmonic externa1 
perturbation, the interaction energy being 

V ( t )  = - (1/2)[F, Q* ( t )  exp {- i o t )  + Fg Q(t)  exp { i o t ) ] .  (3-6) 

Under the action of this pertubation, the transition probability per unit 
time from state I  n) to state I m), at T = O" K, is 

W,, = - " I  F0 I 2  / Qnm I 2  { Ó ( o  + O,,) + ;(O + o,,)), 
2 (3- 7) 

where o,, = E, - Em (h = 1). 

The mean energy dissipation A per unit time is 

where a ( o )  is the so called absorption coefficient and z" is the imaginary 
part of the generalized susceptibility: 

At finite temperatures T # 0, the previous derivations continue to be 
valid except for the fact that, because the system is no longer in a pure 
quantum mechanical state but in mixed states, the average values in Eq. 
(3-5) must be replaced by the statistical average 

(. . .) = Tr (. . . p) ,  (3-1Ou) 

where p is the density matrix 



with 2, the partition function 

2, = Tr {e-BH0). 

A straightfonvard calculation lead us to the relationship 

where 

Similarly, one easily finds that 

Comparing Eqs. (3-11) and (3-12), we can write 

(Q* Q), = (lb){(1/2) + [ea" - 11 -'I X" (4. (3-13) 

This important formula (the jluctuation-dissipation theorem) connects the 
fluctuation of physical quantities with dissipative properties of the 
s y ~ t e m ' ~ " ~ .  

Introducing Eq. (3-13) into Eq. (3-2), we obtain a formula for the Raman 
scattering cross section (RSCS): 

where n(o) = [e'" - 11 - ' and o = o, - o,. 

It is important to notice that in writing Eq. (3-14), we have replaced the 
term (112) in Eq. (3-13) by 1. This is so because Stokes and antiStokes 
processes do not get lumped together and the thermal factor in the fluc- 



tuation-dissipation theorem is [n(o)  + 11 (Ref. 16). This factor correctly 
appears when the Raman spectra is obtained us in~  the Green's function 
formalism' . 

4. Conclusions 

Eq. (3-14) directly connects the RSCS with a correlation function or imagi- 
nary part of a generalized susceptibility. This correlation function, in 
fact the line-shape function, contains practically a11 the information on 
the Raman scattering spectra of materials. This, once again, shows the 
irnportance and inevitability of the use of correlation functions to describe 
physical measurements14.-This formulation is also very convenient since 
it allows for immediate connection with field theoretical methods. This 
is not always necessary, but very often convenient, mainly in cases of a 
system of strongly interacting particles, so that relaxation effects, collective 
excitation, final state interactions, etc., can be dealt with more easily. 

To end thispresentation, we would like to emphasize that surface inelastic 
scattering of light could be in a near future an important to01 in the study 
of a number of interesting problems like electronic excitation in normal 
and non-normal metals, semiconductor-semimetal transitions, thin film 
superconductors, etc. . 
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Appendix: Solution of the system (2-23) 

The matrix elements Q,, and 9, are coupled together by Eqs. (2-22a) and (2-22c). The boundary 
conditions are given by Eqs. (2-23a) and (2-236). Using Eq. (2-22c), one may write Eq. (2-22a) 
as an equation for 9, alone, i.e., 

and 

Defining 



and 

one can write 

for z < O. For z > 0, the equation is 

which has the simple solution 

9,, = A exp {izk,] 

when using outgoing-wave boundary condition. 

The solution to Eq. (A-3) is a superposition of the solution of the homogeneous equation, i.e., 

9% = B exp (~zK,) ('4-6) 

and a particular solution, /e$. To find this we introduce the Fourier transforms 

+a 

gg = 5 gn (k) exp {ik(z - zr)i 

and 

Substituting these expressions into Eq. (A-3), we obtain 

which after integration (recalling that for an absorptive media Im K, c: O) gives 

(A- 7) 

Substituting Eqs. (A-5), (A-6) and (A-8) into Eq. (A-I), one obtains 

- A 1 exp {izk,) , { r (z '> O) 

gzx = (A-9) 
'11 exp (- i(z - z~)x,). (r c O). - B exp {iz~,)  - i -- 

K* 2 0 2  &O 

The boundary conditions of Eqs. (2-23a) and (2-23b) allow us to determine the parameters 
A and B. In fact, since we are interested in the scattered wave (for z > O), we only need to 



determine A. Straight-forward algebra produces 

icZ k, K ,  

gXx = - exp { ~ ( z ' K ,  + zk,)} , 
w2 ( K ,  - &O kJ 

ic2 kl l  K' 
4,, = -- exp { ~ ( z ' K ,  + zk,)} . 

w Z ( ~ ,  - &O k,) 

Next, we consider the element 4,,, which satisfies 

Using the same method as before and the boundary conditions, Eqs. (2-244 and (2-24b), 
we obtain 

4,, = 2 exp {i(zk, - z'K,)} . (A-10) 
kí - K ,  

Finally, we need to calculate the terms 4,, and Y,,,Fourier transforrningEqs. (2-22i) and 
(2-229) one obtains 

k l l k g z ,  + lc:gZ, = - 1  (A- 1 1 a) 

and 

By substitution, we find 

whose inverse transformation is 

ic2 k 
qz) = - ---V exp {i(z - ZOK,} ; 

2wZe0 

therefore, 

E exp {izk,} for z > 0,  
4x2 = 

c2k 
F exp { ~ z K , ]  - i --L exp {i(z - z') K,} for z < 0, 

2w2z0 

and 

(A-1 lb)  

( A -  12) 

for z =. 0, 

Q,, = 
C' k Z 

i ~ K , W  ;I E exp {- i(z - z')K,J for z < O. 



With the help of boundary conditions Eqs. (2-22a) and.(2-22b), the coefficient E can be found: 

hence, 

k2 exp {i(zl K ,  + zk,)) gzz = - i 3  
wZ K ,  - E O ~ ,  

and 

(A- 13) 

which completes the determination of the matrix elements of Eq. (2-25). 
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