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A semiclassical study of surface inelastic scattering of light is presented here. The relation
between calculated and experimental cross sections, i.e., the derivation o the Fresnel cor-
rection factors, is given. The fluctuation-dissipation theorem is used to relate the fluctuation
of the dielectric constant, and therefore the scattering cross section, to the imaginary part
of a generalized susceptibility.

Apresenta-se um estudo semi-cléssico do espalhamento inelastico da luz numa superficie.
Obtém-se a relagdo entre a segdo de choque calculada e a experimental, isto ¢ obtém-se os
fatores corretivos de Fresnel. Emprega-se 0 teorema de ilutuagdo-dissipac@o para relacionar
a flutuacdo da constante dielétrica, e portanto da segdo de choque de espalhamento, & parte
imagindria da suscetibilidade generalizada.

1. Introduction

Surface scattering of light in condensed media has long been under consi-
deration and use?. This appliesto narrow gap semiconductors, semimetals
and metals. The technique of scattering from semiconductor surfaces
seems to have been used first by Russell?. Feldman et al.® were the first
to report first order Raman scattering o light by optical vibrations of
metals. The theory was given by D. L. Mills et al.*. Study of the energy
gap in superconductors in photoluminiscence experiments has recently
been done®. Theoretical studies of light scattering by a superconducting
surface were made by Abrikosov and Falkovskii®.

However, dueto experimental difficultiesthis technigue has not been widdy
employed and this kind of study is only beginning. Basically, the scattering
intensity is greatly reduced if the scattering volume is restricted to the
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skin depth. Although this generally implies that the scattering efficiency
is near the threshold of detectahility, it can be expected that improvements
in experimental techniques will produce a reviva o this aspect of Raman
spectroscopy. Furthermore, interest in this and related problems will
certainly increase as a result of the growing use o thin films in physica
experiments and devices.

We consider in this paper a semiclassical treatment o light scattering from
the surfaceof an opague material. We remark that microscopic calculations
of scattering cross sections consistently use the effective fidld inside the
material whereas the ones measured are those outside it. To connect the
calculated cross section to the experimental cross section, one solves the
usual boundary value problem at the material surface. This will be the
subject of next section, where we also solve the inhomogeneous wave
eguation for the vector potential o the electromagnetic field. The source
o inhomogeneities can be fluctuations associated whith elementary exci-
tations in the materia (phonons, magnons, quasiparticle excitations,
plasmons, etc.) which are responsible for the scattering process’®°. The
Green function tensor that connects the flutuations with the scattered
field for arbitrary experimental geometry is obtained.

In Section 3, the scattering cross section is derived and related through
the fluctuation-dissipation theorem to the imaginary part of the generalized
susceptibility associated with the "current™ which is the source o the
inhomogeneous term in the wave equation for the vector potential.

2. The Scattered Field

Let us consider a semi-infinitecrystal filling the haf space z < 0 as shown
in Fig. 1. One can think o an extended slab of width L much larger than
the skin depth 4, so that reflectionsfrom the back surface can be neglected.
Eletromagnetic radiation incident on this material will be scartered within
the skin depth. One can describethe processas the absorption of one photon
(0,, k,, u,) by the system and simultaneous emission of another photon
(w5, k;, 1t,); 0, k and p stand for frequency, wavevector and polarization
o the photons. The frequency o, can begreater or smaller than o, ,giving
rise to the so-called Stokes and antiStokes bands, respectively. The dif-
ference 0 = o, - 0, is the so-called Raman frequency shift.

Fom a macroscopic point of- view, scattering results from fluctuations
of the optical properties of the media, characterized by the deviation
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RYSTAL

Fig. 1 - Schematic of a typical crystal situation, whose surfaceis in the (x, y)-plane, withthe
reference frame and the wave vectors k° of the incident field, k, of the reflected field and k,
of the transmitted field.

ée of the loca instantaneous value o the dielectric tensor with respect
to its averaged value’. We write

g,;(r,t) = &°(r, 9d,; T de,(r, 1) 2-1)

for the didlectric constant d the material (z < 0\ In fact, d¢, can be consi-
dered asan effect of modulation of the dielectric tensor by periodic motions
in the system. If {Q, ¢~} denotes a set of coordinates which describe
the motion that causes the scattering, one can write, in first approximation,

68i~ io,
Sesy = 2 3 iQe uI=Za’,Q’eimut (2-2)
m

where «;; , is the (third rank) polarizability tensor®°.

ij,n

In order to find the scattered intensity, we must find the scattered field.
To do so, we proceed to solve the Maxwell equation for the vector poten-
tial A(r,t):

oA (r t)

VXxVxAlt)- =0, (2-3)

02 6t r.1)
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where the dielectric tensor ¢ is

. ) = 1 for z> 0,
0= £(r,t) 66, 1) for z< 0, 2-4)

which properly includes the modulation effect responsible for the scat-
tering phenomena. Furthermore, we will assume that the exciting laser
radiation is in the optical region and therefore it is safe to replace £%(r, 1)
by a constant background dielectric tensor €°, i.e. e5, (r,t) = £°4,4 (for z<O0).
For simplicity we have considered a cubic material.

Equation (2-3) can be rewritten:

1
ZDW y(r t) = _—"f (l‘ t) (2'5)
Y
where [ is the D’Alembertian operator
2\ 02
oy = gcurla,, curl,, t 6(-2)é,, (c ) YT (2-6)
and
curl Ye d 2-7)
ap = 5 afp 6‘% ’
where ¢,4, are the Levi-Civita symbols'®!'. Finally, -.# is the "current"
s =22 2105 [ o, 0 220 ’)] 2-8)

In order to solve Eq. (2-5), we will find the matrix Green function G which
satisfies
Y ey Gy (1,1 t=1) = 6,56(t - 1) —17). (2-9)
?

As is well known, the complete solution to Eq. (2-5) is of the form

A60= AP+ Y [@raee,er; a6, @10
B

where A® is the solution o the homogeneous equation, i.e. with de =0
(Ref. 11). The second term in Eq. (2-10) is the scattered field which we
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will designate as A*(r,t). The first order approximation in the fluctuation
d¢ is obtained by replacing £, (r", t') on the right hand side of Eq. (2.10)by

.. Bz) a QAP (', 1)
IPE 1) =~ ) at [5é(r’,t’)”T(t,*] @-11)
The scattered field is then given by
Ei(r,t) = 1L 4ey 1 Y (d3r’dt’ﬁ—[GaB(r,r’; t-)] AP, 1).
c ot c G ot
(2-12)

At this point, it is convenient to introduce the Fourier transforms defined
by the equations

. W o dPkydo ] , ) , .
Gulr,r'; t~t) = ——”—(2“)3 Gk, 05 z,2)exp {i[ky r-r)-oi-1]},
| (2-13a)
E®x,r)= &, exp(ilk, .r-o,t]} (2-13b)
and
Gt (1,1) = 2. 6e,5 (@) €xpi (A°T - O,1)]. (2-13¢)

Here, k, and q; are the components o the wavevector parallel to the
sample surface. Since the plane (x,y) contains the sample surface, trans-
lational invariance implies that G depends only on the diferences x — X’
and y-y'. The fluctuation é¢ is assumed to be produced by excitations
o wavevector g and frequency o, . After replacement d Egs. (2-13a),
{2-13b) and (2-13¢) into Eq. (2-12), one gets

° .
(D (Ds ’ s . ’
Ei(l’, t) = 22 Z J dZ ﬂzgaﬂ(k”a COS s Z,Z)‘
q — b4 ’

be,(q) &, exp {i[z(k,, + ¢,) + 1 K —w, 1]}, 2-14)

where ki =Kkj +q (2.15a)

W, = Wy + g, (2-15b)

which are the laws d parallel momentum and energy conservation. (Let
us observe that kjj = k).

Next we have to obtain the relationship between the unperturbed field
E® in the medium and the incident field E,, i.e., the Fresnel coefficients.
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Let E,, E®” and E, be incident, transmitted and reflected fields respec-
tively. We shall consider separately the cases:

i) incident wave polarized with E(E{-) normal to the plane o incidence

(x, 2).
ii) incident wave polarized with E(EJ") in the plane o incidence (x, z).

Fig. 2 - Case.of incident wave with electric field normal to the plane of incidence (x, 2).

(i) In the conditions of Fig. 2, the continuity d the tangential components
d the eletric and the magnetic fields implies'?

E T E. =6, (2-16a)
H,'cos 0, - H,.cos 8; = H" cos O, (2-16b)
or
1/2
(B§” * E,)cos 6, = (2“——1 &,cos 6, (2-16¢)
€1l

since H = (ew)*/* E. Solving this system of equations, one obtains the well
known Fresnel equation’?

z(gl/ﬂl)l/z cosb;

(ea/)"7 cos 6, F (e,/us)7” cos 6, EF 2-17)

&, =
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On the other hand, the dispersion relation

(k3. + k3,) = 03¢,
together with Snells’ law 200 — <i0>”2, with &, = 1 and &, = €°,
sing, £

alows us to obtain the relationship

cky, = —k, 080, = wy(e® —sin? 0,2,

and finaly
_ 2Awefc)cos€,
6y = (wo/c)cos 8;,—k,, Eo
or
&, = FVE® (2-18)
(i) In the conditions o Fig. 3, the continuity relations read:
Hy-H,=H®", (2-194)
€. =(EYP + E)cos0,, (2-19b)
(Dy-D,)sing, = DH, (2-19¢)

Fig. 3 - Case o incident wave with electric field parallel to the plane o incidence (x, 2).
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and

kb T k8, =0, (2-19)
since divE® = Q.
This gives a system d four equations for the four quantities E,, &,, H,

and H®. Straightforward but tedious algebra, whose details we omit here,
permits us to obtain the solutions

_ 2(we/c) SiNB; cos B, ED
(woe®/c)cos 0, —k,,

or

&, =FIEP, (2-20)
and
. 2cos 0,k,, an
8x = K, —(wye%/c)cos 6, E4
or

&, = FWED, (2-21)

In short notation, Equations (2-18), (2-20) and (2-21) can be written, using
equation (2-13b), as

Su=)Y FLE
A
where A = || (paralel), i (perpendicular).
We proceed now to obtain the Fourier transform of the matrix Green
function. To smplify the mathematical handling d Eq. (2-9) we will choose
ky, along the x-direction. Later on we will remove this restriction by perfor-

ming a rotation in the (x,y) plane. Usng EqQ. (2-134) and the integra
representation of the 6-function, we have

NSOF Y — 1 3 ; . ey _ ¢
Sr—r)o(t—t) = o Jd- kl[dco exp {i[k - (t-r)-w(-1)]}.
Therefore, the system of equations (2-9) becomes

2
ik Eg - [62 t w_28° (Z)| Gx = 0(z-12), (2-22a)
aZ zx I

%
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62
[ f——2 € (Z)] vx_gz—féyx =0, (2-22b)

a 2 2 O
iky Jz g F [iﬁ B gﬂ 9,.=0, (2-22¢)
L, 0 0% 2
ik, E%r[az + f—zs" | ¢., = (2-224)
82 o
[ W™ a2 80 (Z):‘ yy Wgyy = 6(z - 7)), (2-22¢)
a 2
ik Gy + [k —~—80 (z)] =0, (2-221)
. 6 02
k) 55 Y= [a r+ = 3 e (Z)] =0, (2-229)
62
l: I —_-80 (Z)] yz a_zgyz =0, (2-22h)
a £
iky 52‘54 = °i§3 4., =d(z-7). (2-22i)

The components 4,,, 4,., 9,, and 9, are zero in the chosen system o
cartesian axes. To solve this system of differential equations we must
establish the boundary conditions. Eq. (2-10) tells us that G,, satisfies the
same boundary conditions at the sample surface(z = 0) asthefield compo-
nents A,, for any B. Thisis so because o the arbitrariness o the " source”
# which depends on the material and the exciting radiation; therefore

Yo=%%, 92=9. (2-23a)
and
Y5 =9, L95=9x (2-23p)
are the continuity laws for the tangential component of E and transverse
component of D, respectively. Thesigns < and > stand for values of ¢ at
theinterface, in the material medium and in the vacuum, respectively. These
sets of conditions alow us to determine the two integration coefficients of
the system o Equations (2-22a) and (2-22¢) and the system of Equations
(2-22g) and (2-22i).
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The component ¢, satisfies by itself a second order differential equation.
The boundary conditions for it are

49,=9, (2-24a)
(continuity of tangential component of E)
and

afzw = % (2-24b)

which involves the continuity of the tangential component of the magnetic

field related to ¢ through the Maxwell equation (V x E), = ((E‘ = (mﬂ\ H,
and Eg. (2-10).

Appendix | contains the calculations involved in the solution of system
(2-22).

In matrix form, we can write
_exp {i(zk, + Z'x,)}

2
T (V¢ : . -
g(Z,Z N Xk”,w) = <w> F(Xk”,kz,Kz ,CU) Kz—gokz (2 25)
where
ik, K, 0 ik k,
- o\, -2k
(- - = —_q1 = _z -z -
Tixky, k,, k.5 0) 0 z<c> Py (2-26)
— ik, 0 ~ ik}

Let usrecall the fact that this result corresponds to the particular geometry
in which k;; is in x-direction. Generalization to arbitrary orientation of
k;, can be done simply by performing a rotation of angle @ in the (x, )
plane, the transformation matrix being

k k,
B 5 0
ki ki
k k
R(®) =| =2 X 0/, (2-27)
ki ki
0 0 1

with tan @ = k/k.
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The matrix T of Eq. (2-26)in the new reference frame, i.e., after performing
the similarity transformation RT'R™!, becomes

F(kn,kz, Kz; U)) = RFR-I, (2"28)
whose matrix elements are

I Rekaks k ki [k, %%,
e k k”C Kz'—kz ’

=F21,

.;c'kzkx{cbr i<a))2k_x1& x, -0k,

c) ki K.~k

i, k, ki 2 —e%%k .
rzz _ 1 Zzl_z(ft_)) _I_{l K,—¢ z, r23 = lkykz;

s s 12
[y =ik, T3 =-ikx,, Ti;=-ikj

The condition of transversality o the scattered electromagnetic field is
contained in matrix T since it has the property

Y kD=0, (2-29)

which implies (cf. Eq. 2-14)
Y kE5 = 0.

Inserting Equations (2-25), (2-18), (2-20) and (2-21) into Eg. (2-14), we
obtain

Es(r t) = (a’o/c)zz Z Z(C/(D )2 aﬁ(k”’k;’K;; (Ds).

exp {ilr " k* - w, 1)}
k) (g, + x5 + ki)’

ogﬁy(q)'q;y oi ( s _ (2'30)

where we used
0
J dz exp (i, + x5 t k) =-i(g. T i+ ky) 7t
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We recall the fact that in Eq. (2-30) the conservation laws o Egs. (2-15a)
and (2-15b) are implicit. The latter contains a dependence, through w,,
on the z-component of the wavenumber o the crystal excitation. Since
for most cases, o, can be neglected in comparison with the frequency
of the exciting radiation, we can write |kj;| ~ |kf}|. Using this fact and
considering Fig. 4 one easily finds the angle 6, between the propagation

,
[
L
4
5
|
1

Fig. 4 - The scattering geometry. The relation between the angle of incidence and the angle
of emergence of the scattered radiation is given in Eq. (2-31).

direction of the scattered radiation and the normal to the materia surface
in terms o the paralel components of g, which results in

2 2
sin? 0, ~ (CQ-Y> + <sin 0, + c-‘k> (2-31)
Wy Wy

3. The Scattering Cross Section

We shall now calculate the scattering cross section, i.e., the ratio of energy
scattered per unit time, per solid angle (in direction k®), per unit frequency
and unit area, to the flux of incident energy,
V|E*|*/4n
B .
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Using Egs. (2-30) and (2-2}, one obtains
d*c V2 [ \* 1
aQdw ~ 2a) (T) 8Os LR, P Jd‘b;

(cwofwrs)
Tk kx5 16Bo/0s).
% ; atﬂ(k” s Nz KL 3 ws) aﬁyu (K; _ 80 k;)

FAEA 2
(ﬁ% (QF (@) 0u@))o- (3-2)

We have used the fact that, for radiation scattered in the k® direction,
within a solid angle 4, ¢, remains constant. The number o modes for
fixed ¢, is (dzq”/(2n)z)A, with A the area o the laser beam incident on
the sample. Considering the conservation law for the paralel components
o momentum and transforming to spherical coordinates we have

2oy ~{ X0 2
q={~—, | cos 6,dQ. (3-3)

In Eq. (3-2), the wavevector «, in the media have real and imaginary parts
k. + ix!. The integral

4. ! 3-4
on [ F R, F g F ( F k] G-
is the so called scattering coherence length.

Let us stress the fact that we have been considering materials with finite
skin depth much smaller than the sample thickness. That implies that
k5, is not zero and that coherence length of Eq. (3-4) is finite. In case of
Raman scattering by transparent materials, conservation of the normal
component of the wavevector removes the singularity at ¢, = x5’ + k.

Futhermore, when 6 < 4, i.e., k3, » k° and le] » 1, an analysis o Fresnel
coefficients shows that, for any orientation o the incident fidd, the trans-
mitted field is nearly parallel to the surface and, consequently, the same
happens to the scattered field. This is important to take into account
when considering the experimental st up.
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Finally, we will make some considerations regarding the quantity (Q* Q),

in Eq. (3-2) by means o the approach of Landau and Lifshitz!3. This
quantity is the Fourier transform (in space and time) d the time dependent
correlation function ¢(t - t') = {Q* () Q(t")) (Ref. 14). In fact, since Q* (t)
and Q(f) are quantum mechanical operators defined at different times,
they do not commute generally. Thus, it is more convenient to write

ot—1) = (1/2K[Q@), Q)] )+ (3-5)

the average refers to a particular stationary state.

Let us assume that the system is in the presence d a harmonic external
perturbation, the interaction energy being

V() = - (1/2)[F, Q* (Nexp {~iot) T Ffo@exp{iot)].  (3-6)
Under the action o this pertubation, the transition probability per unit
time from state |n) to state |m), at T =O'K, is

W = nILZ"PIQ,.miZ {60t 0. T 80 + o, (3-7

nm

where 0,, = E, - E, (h=1).

The mean energy dissipation A per unit time is

A= o0, Wan = E2L ) = 1L ), 69

where a{w) is the so cdled absorption coefficient and y” is the imaginary
part of the generalized susceptibility:

2 1
0 =Ll st oo w09

At finite temperatures T # 0, the previous derivations continue to be
valid except for the fact that, because the system is no longer in a pure
quantum mechanical state but in mixed states, the average vaues in Eq.
(3-5) must be replaced by the statistical average

(..)=Tr(...p), (3-10a)
where p is the density matrix

(3-10b)
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with Z, the partition function
Zy = Tr {e Fo}, (3-10¢)

A straightfonvard calculation lead us to the relationship

X (@) = al[1-e 2T w,|Qun[? 6@ + w,), (3-11)
mn
where
e Fin
w, = Zo

Similarly, one easily finds that
(Q*Qu = (1/2[1 + e7P] 3 Wy | Qum|* 60 + 0p). (3-12)

Comparing Egs. (3-11) and (3-12), we can write
(Q*Q), = (/m{(1/2) + [ 1]} (). (3-13)

This important formula (the fluctuation-dissipation theorem) connects the
fluctuation o physical quantities with dissipative properties o the
system!# 13,

Introducing Eg. (3-13) into Eq. (3-2), we obtain a formula for the Raman
scattering cross section (RSCS):

d*c V2 [ wy\* 1
— | cosf,—=—3 [nlw) + 1].
(22 cose g oio) + 1

dQdo ~ CnP\ ¢
dqz S IS 4.8 cw »
T 2 I | E L Tal ks 0) 5
G T 2
7 Lo Imyg(@q),  G-19

Orn (i kg, + K+ kyy)

where n(w) = [¢#°-1]7" and w = 0, - w,.

It is important to notice that in writing Eq. (3-14), we have replaced the
term (1/2) in Eqg. (3-13) by 1 This is so because Stokes and antiStokes
processes do not get lumped together and the thermal factor in the fluc-
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tuation-dissipation theorem is [n(w) + 1] (Ref. 16). This factor correctly
appears when the Raman spectra is obtained using the Green's function
formalism'”.

4. Conclusons

Eq. (3-14) directly connects the RSCS with a correlation function or imagi-
nary part of a generalized susceptibility. This correlation function, in
fact the line-shape function, contains practicaly all the information on
the Raman scattering spectra of materials. This, once again, shows the
importance and inevitability of the use o correlation functionsto describe
physica measurements!4.-This formulation is also very convenient since
it alows for immediate connection with field theoretical methods. This
is not aways necessary, but very often convenient, mainly in cases o a
system o strongly interacting particles, so that relaxation effects, collective
excitation, final state interactions, etc., can be dealt with more easily.

To end this presentation, we would like to emphasize that surface inelastic
scattering of light could be in a near future an important tool in the study
o a number o interesting problems like electronic excitation in normal
and non-normal metals, semiconductor-semimetal transitions, thin film
superconductors, etc..

One of us (F. G. R.) would like to express his acknowledgments to the Fundagdo de Amparo
a Pesyuisa do Estado de S&o Paulo (FAPESP) for financial support.

Appendix: Solution of the system (2-23)

Thematrix elements %, and %, are coupled together by Egs. (2-22a)and (2-22¢). The boundary
conditions are given by Egs. (2-234) and (2-236). Using Eq. (2-22¢), one may write Eq. (2-224)
as an equation for ¢, alone, ie.,

ky —;—z%,
Gow = - iW (A1)
and
EE P B R B
Defining
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and

2
LA TP
<C) k” kz’

one can write

& P
[6—; + xf] g, = —So—z% Sz-z (A-3)
for z< 0. For z> 0, the equation is
62
[a—zf " kg] G =0, (a4
which has the simple solution
9.x = Aexpizk;) (A-5)

when using outgoing-wave boundary condition.

The solution to Eq. (A-3) is a superposition of the solution df the homogeneous equation, i.e.,
o® = B exp {izx,} (A-6)

and a particular solution, #4%. To find this we introduce the Fourier transforms

+w
@ = j & G k) exp (- )

and
+w
o(z—2) = J‘—ao ‘21—; exp {ik(z - ')}
Substituting these expressions into Eq. (A-3), we obtain
2.2 : ’
» _ x5 [ dk exp {ik(z - 2} AT
wi w?e® J‘Zn kK:-x2 (a-1

which after integration (recalling that for an absorptive media Imx, < Q gives

@ = i o ik (-2 A8

Substituting Egs. (A-5), (A-6) and (A-8) into Eq. (A-1), one obtains

- At exp {izk,}, (z > 0)
e = (A-9)

2
k
- Bx-”exp{iz;c,}—icz—”— exp{-iz-z)x,}. (z CO).

@? &0

The boundary conditions of Egs. (2-234) and (2-23b) allow us to determine the parameters
A and B. In fact, since we are interested in the scattered wave (for z > O), we only need to
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determine A. Straight-forward algebra produces

itk K, ./
4, = TR exp {i(z'x, + zk.)}, (A-9a)
ic?k, x, oy
G, =—— = el x, + zk,)} (A-9b)

T, - e%k,)

Next, we consider the element ¢,,, which satisfies
? o?
[k,z, - e°] Gy 579y = 6z-2).

Using the same method as before and the boundary conditions, Eqgs. (2-24a) and (2-24b),
we obtain
1

g, = exp {i(zk, - 2 1,)}. (A-10)

” Tk _x

z —

Finaly, we need to calculate the terms ¢,, and ¥,,,Fourier transforming Egs. (2-22i) and
(2-22g) one obtains

kikG,. + k29, =- 1 (A-l1a)
and
. w? .
k”kgzz + _Tso_kz gxz =0 (A-llb)
C
By substitution, we find
L. L
xz w?e® (k2 -x2)’
whose inverse transformation is
ic?k
90 = — b explilz-2)x.}; (A-12)
2w?e
therefore,
Eexp{izk,} for z> 0,
xz = 2
F exp{izx,}-1i ;ngaexp{i(z -Zx,} forz<Q,
and

~E <%‘1) exp {izk,} for z> 0,
k

/ |x\ P N . Cz kz
L \;“ } exp {izi.} —i 2, wlleg exp {~ iz - 2)x,}  for z<O.
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With the help of boundary conditions Egs. (2-22a) and.(2-22b), the coefficient E can be found:

ctkyk, exp {iz'x,}
ST Kk, -0k, : A13)

hence,

_ icz k2 explilz'x, + zk,)}
= 2

) K, — &%k,

4., (A-140)

and

g - iy k, exp {ilZ x, + zk)}
w =T x,— ek,

, (A-14b)
which completes the determination o the matrix elements of Eq. (2-25).
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