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The qualitative problem of the splitting of a degenerate level under the action of a symmetry-, 
breaking Hamiltonian was solved many years ago by Bethe, with a simple and now classic 
group-theoretical method. By contrast, the quantitative problem of actually computing the 
size of the splitting is far more elaborate and correspondingly inelegant. We present in this 
paper a new method to solve this second problem, which, we feel, shares much of the direct- 
ness and economy of the Bethe solution to the first problem. 

O problema qualitativo do desmembramento de um nível degenerado sob a ação de um 
hamiltoniano de quebra de simetria foi resolvido por Bethe, muitos anos atrás, por um método 
simples de teoria de grupos que já se tornou clássico. Por outro lado, o problema quantitativo 
de calcular efetivamente a magnitude do desmembramento é muito mais complicado e, conse- 
quentemente, deselegante. Apresentamos neste artigo um novo método para resolver o se- 
gundo problema que, em nossa opinião, tem muito da economia e concisão da solução de 
Bethe para o primeiro problema. 

1. Motivating Physical Problem 

Among the many applications of symmetry techniques to atomic spec- 
troscopy, one may distinguish two types of problems, as exemplified 
below : 

a) Qualitative problem. Given an atomic level of specified symmetry 
under the rotation group (say, a level L = 3), into how many terms does 
the level split when the rotational symmetry is replaced by a lower sym- 
metry (say, a crystalline field of octohedral symmetry)? 
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b) Quantitative problem. Under the same circumstances, determine how 
much the energy levels split under a field (operator) invariant under the 
lower symmetry (crystal symmetry), but having specified transformation 
properties under the rotation group (for example, it is a L = 4 tensor 
operator). 

The fírst problem ("how many" levels) is elegantly solved by the use of 
character tables for the symmetry groups involved; this is well known 
from the classic work of Bethel. 

In contrast to the case with which the first problem is solved, the second 
problem ("how much" splitting) is surprisingly messy, and involves rela- 
tively complicated techniques and methods2. This has been expressed 
very well by Judd3 : "It is diffkult to avoid the feeling that a more direct 
method exists, especially since many of the roots of what appear to be 
complex determinantal equations turn out to be very simple". 

The purpose of the present paper is to present a method for solving problems 
of the second type (quantitative evaluation of level splitting) which has, 
we feel, much of the economy and directness with which the nonquanti- 
tative structural problem (problem a) is solved. 

In order that the method be grasped most easily, Section 2 discusses a 
typical example - the splitting of rotational levels by an octohedral sym- 
metry - in such a fashion as to induce the ideas and concepts of the new 
method. Section 3 abstracts and rephrases these concepts in the language 
of group theory and then presents a complete solution for speciíied groups. 
A concluding section discusses generalizations and open problems. 

2. An Example 

Let us consider the splitting of an atomic level (characterized by the angular 
momentum L under the rotation group R,) when placed in a crystalline 
field of octohedral symmetry. 

A), To solve problem a) one needs the character table of the octohedral 
group (Table I), and the character table of the group R,, given by the 
formula 

Then, by reducing (subducing) the representations of R, into the irreducible 



N." of group Representations -r r, r, r, r, r5 
elements in Classes 
each class 1 

Table I - Character table for the octohedral group O (isomorphic to the symmetric group S,). 

representations of í 9  by the standard procedure,. using the formula 

x, (Pi) = C a,Lxrk (Pih 
k 

(2) 

one immediately gets the solution, as shown in Table 11. For example, 
one immediately reads from the table that an L = 3 level splits into 3 
levels, two triply degenerate (representations T, and r,) and one non- 
degenerate (representation r,). 

Table I1 - Qualitative splitting of a level with angular momentum L in a field of octohedral 
symmetry. 



Before proceeding 
up exercise for our 
be obtained with 

to the second problem b), let us remark, as a warming 
. method, that an equivalent solution to problem a) could 
the following recursive procedure. 

Recall the Clebsch-Gordan series for the representations DL of R3 : 

DL x DL, = DL+,, + D L + L , - ,  + . . . + D I L - L * I ,  (3) 

and the corresponding results for the group O (Table 111). 

Table 111 - Multiplication table for the irreducible representations of the group 8 

Assume known that the representations Do,  D,  of R,  reduce as follows 
under the group O :  

D o = r l ;  D l = r 4 .  (4) 

Then from 

and 

r, x r, = r ,  + r, + r, + r , ,  
one immediately gets 

D2 = T 2  + r,. 
From 

D2 x D1 = D1 + D2 + D3 

and 

322 



one immediately gets 

and so on. 

B) Let us now go over to problem b) and consider the quantitative effects 
of a symmetry-breaking Hamiltonian, invariant under 0, and transforming 
as a tensor Vk under R,. By working out explicitly the perturbation equa- 
tions (see Ref. 2 for details), one can write the results as in Table IV. The 

Table IV - Quantitative splitting of a leve1 with angular momentum L in a field of octohedral 
symmetry. 

rows labelled Vo(0), Vo(l), Vo(2), etc. are the same as in Table 11, and give 
the "qualitative" splitting. The rows labelled V,(O), Vk(l), Vk(2), etc. (k # O) 
give the "quantitative"splitting for the corresponding field. For example, 
from Table IV one can read off immediately that the energy of the three 
levels resulting from an L = 3 state are given by: 

E, = a - b + 9 c  corresponding to r,, 
E, = a + 3b-5c corresponding to r,, 
E, = a-6b-12c corresponding to r,, 



where a, b, c, are the strengths of the perturbing fields transforming as 
Vo, V4, v6, respectively. 

It is the computation of this part of the table, that is, the rows Vk(L) with 
k # O - which current methods can obtain only through a lengthy and 
indirect procedure - which is the purpose of the present paper to improve. 

We begin by remarking that the rows Vk(L) for k # O differ in two essential 
ways from the rows Vo(L): the rows Vo(L) have positive integral coef- 
ficients, and a significant normalization, both features being inherited 
from the fact that Vo(L) denotes a (generally reducible) character of O. 
By contrast, the rows Vk(L) involve negative coefficients and an arbitrary 
normalization (the strength of the perturbing field) - both aspects denying 
that a significant interpretation of Vk(L) as a character exists. 

Nonetheless, Table IV strongly suggests that one seek to interpret the 
rows as a generalized character. We accomplish this by considering the 
Ti as basis elements for an algebra and the Vk(L) as the associated linear 
combinations over this basis. For example, the element 9, (3) = - f ,  + 
+ 3f4-  6 f  ,, with Si denoting basis elements (operators) in the algebra. 
For the algebra to be associated with the basis elements f i  there is a natural 
choice: the algebra of representations4. This is the algebra defined by the 
reduction of the Kronecker product of representations; that is, 

Ti x Tj = { i j k )  r, (the Clesbsch-Gordan series) 
k 

with 

There are two natural ways to realize this algebra in terms of matrices: 

(1) Either associate the basis element f j  with a diagonal matrix whose 
diagonal elements are the entries in the character of the representation 
rj, Or, 

(2) Take the matrix f j  to be the matrix: (rj), = { i jk ) .  (These two reali- 
zations are equivalent and transform into each other using the character 
table itself as the transformation matrix4.) The multiplication table for 
the algebra of representations of the octohedral group is the one already 
given in Table 111. 



It is an immediate consequence of this definition of Vk(L) (as an element 
of the algebra of representations - which we denote henceforth by a circum- 
flex) that there are severa1 operations that are well defined. Let 

V  LI^^ C a," Pi . 
i 

(a) Inner product: 

(b) Outer product: 

V, (L) x V,. (L') (x o F P  ,) x (i, a,*"' Pj) 

There is one further operation to be defined, which is not quite so obvious. 
Let us define the trace of the element fk(L) to be: 

tr (Vk (L)) % a,*' (dim Ti). (14) 
I 

(This differs from what one might expect from the algebra of representations 
where one type of trace would already be defined over a matrix realization 
of the Si .  This alternative trace would lead to unacceptable results.) 

The thread of the reasoning has been interrupted by this listing of defi- 
nitions. Let us return to the problem by posing the question: how do these 
concepts help us understand the structure of Table IV? 

Recall first that a11 po(L) are readily calculated. Hence we look at the 
first row, V4(2), having k # O. There are two significant features of p4(2): 
(a) tr V4 (2) = O and (b) tr (vo (2) . V4 (2)) = O. Conversely, if we assume 
these features, v4(2) is determined (to within an overall constant). 

Thus, we implement the rules for our algebra by a&uming: 

(a) tr (vk(~)) = (2L + 1) 6: 
(b) tr (V,(L). Vk, (L)) = O, k # k' 



These two rules are insufficient to determine a11 the entries for L = 3. 
We can remedy this by using the outer product. 

Consider the outer product: fo (1) x c ( 2 ) .  Using Table IV, we find that: 

f o ( l )  x f4(2) = r 2 - 2 S 3  + r , -2f , .  (17) 

To interpret this result we note that the right hand side is just the linear 
combination : 

A rule that will accord with this is to assume that: 

V, (L) x fk (L') = linear combination of (L"), 

where 

L" = \L -L ' \ ,  /L-L'j  + 1, ..., L + L'. (19) 

Assuming this heuristic rule one can now complete the table for L = 3, 
since f6(3) is defined (to within normalization) by the two equations: 

The procedure is now clear. Find f6(4) from 

Find f4(4) from 

In the last case, one needs an extra equation, which is found by orthogon- 
alizing V4(4) with (the already obtained) (4). V8 (4) can now be obtained 
by orthogonalizing it with v,,(4) and f, (4). In this way we have completed 
the table for L = 4. 

The careful reader will have noticed that the heuristic rules given above 
do indeed suffice to determine Table IV completely (to within normali- 
zations for Y,(L) for k # 0) but that the labelling itself, Vk(~) ,  is not deter- 
mined by this procedure. This gap can be remedied by another heuristic 



rule for inner multiplication: 

V,  (L) . (L) = linear combination of Vk,, (L), 

where 

k" = Ik-k' l ,  k - k '  + 1 . k + k'. (24) 

(Note that this rule has a nice analogy to the rule assumed for outer 
products.) 

Let us now summarize. By a study of the solution of the quantitative split- 
ting problem for R, restricted to O, as given in the solution Table IV, we 
have been led to several heuristic rules that give a meaning to an algebra which 
extends the concept of character. 

We will show in the following sections how this heuristic process can be 
given a precise meaning. Before leaving our motivating example, R, 3 O, 
several remarks are in order. Firstly, the induction process really did 
occur this way and is not a contrived example; it is, in fact, a natural 
generalization of the recursive process used at the end of part A) of this 
section. The second remark is cautionary: if the table for R, 3 O is extended 
beyond L = 4, multiple entries appear in the rows for fo(L). As always, 
multiplicities present additional complications, which are in a sense extra- 
neous to the method. (We discuss this further in the concluding section.) 

One further remark. It should be clearly noted that the construction of 
Table I - using the heuristic rules given above - is very considerably 
easier than the complicated construction in the literature. And it is quite 
general. As an exercise, the reader is suggested to rederive the Gell-Mann- 
-0kubo formula for the octet and the decuplet, reducing SU(3) to 
[U(l) x SU(2)]/Z(3), with a symmetry breaking Hamiltonian transforming 
as an octet under SU(3) (and, of course, invariant under [U(1) x SU(2)]/Z(3).) 

3. Group Theoretic Re-Interpretation 

Let us now re-phrase the problem considered in Section 2 in a more 
abstract, group theoretic, way. We are given a group, G, (in the example 
R,) and a subgroup, H, (in the example O), and we wish to consider a given 
irreducible representation (abbreviated irrep) of G. This irrep of G is to 
be split by a set of operators {P), classified as having irreducible trans- 
formation properties under G but transforming invariantly under H. 



The problem is then: what is the precise nature (spectrum, eigenvectors, 
eigenvalues) of this splitting? 

Consider now the special features of the group G taken in the example 
of Section 2, (G = R,). For an irrep {L) of R, we know in complete gene- 
rality a11 of the operators that take the space { L) into itself: these are the 
diagonal Wigner operators (unit tensor operators having A J  = 0) denoted 
by S, = {Sf), for which the matrix elements are the Wigner coefficients: 
C&$,&.. . Expressed differently, these canonical operators S, are polynomials 
over the generators J. 

The feature which underlies the simplicity of the calculations given in 
Section 2 is the fact that in the restriction R, -+ 0, the irreps L = 1,2,3,4 
contained no irrep of 0 more than once. Expressed conventionally one 
says that the restriction R, -+ O is multiplicity-free for L < 5. The property 
of being multiplicity-free is a very basic one, and much of the success in 
applying group theory to physics hinges on the fact that in these applica- 
tions the multiplicity-free property holds. (For example, the construction 
of tensor operators in R, is relatively easy since R, x R, (with group 
elements g, g,) restricted to the diagonal subgroup R, O R, (with group 
elements g, = g2) is multiplicity-free.) 

Hence, to simplify the analysis - and to understand the essentials of 
the problem - let us assume that restriction of irreps of G to the subgroup 
H will always be multiplicity-free. For G = R,, there are two sub-groups 
H which satisfy. this requirement : 

a. the Abelian group R,, 
b. the non-Abelian dihedral group D,. 

We will carry out the analysis in detail for both these cases. It is fortunate 
that one of these cases is non-Abelian, since case (a) by itself is a bit too 
simple. 

(a) R,  3 R, : 

The operators which carry the irrep space {L) of R, into itself are, as 
mentioned, the tensor operators (VI:) whose matrix elements are: 

(LMf I vKMI LM~) = (constant) CL,K,h,. (25) 

The requirement that this set of operators transform invariantly under R, 
[whose group elements are g(P) = exp(iPL,)] can easily be seen to be the con- 
dition that M=O. Thus the set {Vf(L)) is restricted to the sub-set {v~(L)). 



The irreps of R, are a11 one-dimensional and have the character: XM(B) = 

= exp (iMP). The restriction of {L) to R, (as is very familiar) involves 
the quantities: 

M = - L  , - L + l , . . . ,  L. 

The algebra of representations of R, is equally elementary, since for Abelian 
groups this is just the dual group: 

iiM X rM' = r M f M ' .  (26) 

We can now write out explicitly and precisely the algebraic generalization 
guessed at in Section 2. For the irrep (L) we have the algebraic elements: 

It should be recognized that for the case R, 1 R,,'the fact that we know 
at once the matrix elements of e ( L )  suffices to determine completely 
the analogue to Table IV. The point of the algebraic generalization given 
above is that we can now verify in detail the precise form of the algebraic 
rules assumed heuristically in Section 2. 

Consider first the trace operation. Using tr ( rM) = dim TM = 1 we find5 : 

Next consider the inner product operation: 

Vk (L)  ' fk! (L) = cL$h chE'L f 
M 

(The W(. . .) in eq. (29) denotes a Racah coefficient5 .) 

We see at once from Eq. (29) that the inner product involves a linear combi- 
nation over k" whose values range from ( k  - k'l to (k + k'). This verifies 
the heuristic rule assumed in Section 2, (cf. Eq. 24). 

Note also that if we take the trace in Eq. (29) we obtain: 

tr (Vk (L) . Vk, (L)) = [(2L + 1)/(2k + I)] 6:'. (30) 

This verijies the orthogonality rule of Section 2, Eq. (16). 



The outer product can be treated equally easily (see Appendix). For this 
one finds the result: 

Y(L) x f k T ( ~ )  = [(ZL 1)(2c 1)(2L" 1)(2kf + 1)"' ' CKK' 
L"k" 

( ~ h e  ( j  1 !) symbol in Eq. (31) denotes a 9j ('Tano") coefficient. ) 
Once again we see that the conjectured role given in Section 2 is verified 
completely, that is, the outer product gives a linear combination limited 
by the angular momentum rules for k x k' and L x L'. 

(b) R 3  2 D, : 

In a sense, case (a) treated above, is too easy, in that the relevant operators 
have been tailored in advance to the subgroup R,. The D, sub-group 
provides a bit more structure. 

Let us recall some details on the group D,. There is a single infinitesimal 
generator, L,, and one fínite generator, an involution (reflection) which 
may be taken to be R = exp(inL,). The defining group relations are: 

where g($) = exp (i$L,), (O I $ < 271). The group elements are: g($), 
R .g($). The group volume is 471. 

There are two one-dimensional irreps r+ and T- ; the remaining irreps 
are two-dimensional: r,, M = 1, 2, . . . co. The character table is: 

1 1 2 cos M $  

(R*) 1 - 1 o 



The algebra of representations of D, is given by the table: 

There are two details to be carried out before the operator algebra {V) 
can be set up. First, we must determine how the irreps {L} of R,  split 
under restrictions to D,. This is elegantly solved using the character 
tables and one finds: 

(L) = r(+ -t rl + r2 + . . . + rL. (33) 

The second necessary detail- is to identify the D, invariant operators in 
the set {Sk

q
(L)). Invariance under L, forces the quantum number q to 

be zero. Invariance under R forces k to be even. Thus the sei is: {Szk
O(L)). 

Hence for the operators in our algebra we have explicitly: 

With the explicit definition given in Eq. 34, one may establish the fol- 
lowing properties: 

Orthogonality Properties of ,the Trace : 

(a) tr (V2,(L)) = (2L + l)dkO, 

(b) tr(vzk(L).V,,,(~))= [(2L+ 1)/(4k+ 1)]6:'. 

Inner Product Rule 

It is clear that these results once again verify the conjectures of Section 2. 
More interesting is the outer product law which explicitly involves the 



non-Abelian nature of the D, group. Despite the very great difference 
in detail (the reduction of f, x i?,, using the D, algebra of representations) 
the result for the outer product law involves precisely the same formal 
result as for the R, 3 R2 case (with k restricted to be even however). One 
finds : 

Outer Product Rule : 

L L 2k 
. V*,,, (L"). (37) 

It is clear, once again, that the conjectures made in Section 2 are valid 
for the system R, 3 D, .  

4. Discussion 

The essential content of the previous sections is to demonstrate, by explicit 
examples, that the quantitative problem of leve1 splitting may, in favorable 
cases, have an equally elegant solution as the qualitative problem. The 
key element which assures this favorable situation is the assumption 
that the reduction G -+ H be multiplicity-free. Under this assumption, 
the restriction G 3 H will have an inner and an outer multiplication as 
conjectured in Section 2 and exemplified in Section 3. 

Viewed more generally, our constructions and examples sufíice to show 
that there does indeed exist a well-defined generalization of the concept 
of a character, a generalization which leads to an algebra over the basis 
elements f .  

A more formal approach to this problem would recognize that our results 
are, in fact, simply a general form of a commutative normed ring6 defined 
by the restriction G -+ H. 

It would be interesting to pursue this more formal, but more powerful, 
algebraic approach, but in the absence of any effective way to deal with 
multiplicity (which in practice nearly always occurs) it seems a bit pre- 
mature to discuss such formalizations here. 



Appendix 

The derivation of the inner and outer products for the R, 3 R, and R, 3 D ,  cases involves 
manipulations familiar in the quantum theory of angular momentum5. Thus, for example, 
the derivation of the inner product involves the standard re-coupling of Wigner coeficients 
using the Racah functions. By contrast, the manipulations leading to the outer product rules 
is not so immediate, hence we will sketch the detaiis here. The essential step is to replace the 
Wigner operator appearing in v k ( ~ )  by the substitution: 

Once this step is made, the standard operations may be applied. That is, one next re-couples 
the C&&. (from V,.&')) and the coeffícient C?,:?, appearing in Eq. (A-1) above. After 
a further re-coupling, one finds the sum over I leads to a 9j symbol. Carrying out the required 
operator product - using the algebra of representations (for R, 3 R, or R, i, D,) - one 
finally obtains the explicit formulas given in the text (Eqs. 31 and 37, respectively). 
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