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Following an exhaustive discussion on the treatment of the errors affecting zN-scattering 
experimental data, a new tabulation of forward scattering amplitudes and total cross sections 
is presented. 

Faz-se uma discussão exaustiva do tratamento dos erros que afetam os dados experimentais 
do espalhamento nN. Apresentam-se novas tabelas das amplitudes de espalhamento para 
a frente e das seções de choque totais. 

1. Introduction 

Forward pion-nucleon scattering amplitudes have become a to01 of primary 
importance in most theoretical calculations involving a phenomenological 
approach to strong interactions. One of the main reasons (if not the 
prominent one) is the extensive amount of accurate experimental infor- 
mation available about pion-nucleon total cross sections. From these data, 
through forward dispersion relations, a reliable determination of the for. 
ward real parts, and hence of the whole forward amplitude, can be accom- 
plished. Although collections of total cross-section data1 and Tables of 
the complete  amplitude^^,^ are already available, I think it useful to provide 
a new selection of the former, and a further calculation of the latter, based 
on a criterion of handling the data that is somewhat different from what 
has been so far customarily done in this field. With respect to the existing 
work on this subject, this paper presents a new feature insofar as it contains 
an exhaustive discussion on the treatment of the errors affecting the experi- 
mental data. Indeed, in too many theoretical papers such errors are handled 
superficially or, sometimes, even ignored. 

So far, the importance of an adequate error treatment has been emphasized 
in a few papers dealing with the fitting of finite-energy sum rules and 



high-energy total cross ~ e c t i o n s ~ - ~ ( * ) ;  however, to my knowledge, no list 
of pion-nucleon real parts carrying error indications has ever been issued. 
The necessity that a11 numerical outputs of theoretical investigations based 
on experimental data carry a meaningful set of errors is, in my opinion, 
hardly enough emphasized. This work may, in a sense, help people to 
orient their effort in such a direction, more by showing the guidelines of 
a correct reasoning than by supplying a ready-to-use set of numbers to 
be plugged acritically into a computer. 

Furthermore, in the course of this work, I devoted a particular attention 
to some problems of data consistency met in the very-low-energy range 
(at threshold, and immediately above). Indeed, the study of the threshold 
region is intimately tied with dispersion relations, which represent the 
only effective means of investigation in this energy range. I intend to perform 
a more thorough study of this problem in a forthcoming paper, where 
the data collected here will be used to carry out an investigation (based 
on an idea previously outlined by G. Violini and myself7) that exploits 
a (nonlinear) dispersion relation on the square of the forward scattering 
amplitude. The "preliminary" work made in this paper can, at the same 
time, outline the interesting features of the problem and serve as a basis 
for the proposed future developments. 

It is obvious that, in the course of the discussion, my analysis of the data 
will partially overlap the similar analyses already existing in this field. 
(In particular, I will often refer to the work by Hohler and collabora- 
tors3,s - fl ). I would emphasize that this work should not be considered 

as a review or a compilation on pion-nucleon forward scattering in the 
sense that is currently attributed to these words. This is indeed a particular, 
and, in a sense, personal selection and elaboration of data, intended to 
serve a specific purpose, namely, to put the theoreticians in the condition 
to evaluate the accuracy (in a way as exhaustive as possible) of the result 
of a calculation involving an integration of the real and/or imaginary 
parts of the forward nN scattering amplitudes over the whole energy range 
or a sizable part of it. Such a kind of calculation occurs frequently in high- 
energy phenomenology: the real parts themselves provide a relevant 
example, exhaustively discussed in this work. Other examples are provided. 
e.g., by the various types of sum rules. 

(*)The present work can be, in a sense, identified with the paper announced in Ref. 4. foot- 
note 14, which was never issued. However, the data reported here are someahat different 
from those used in Ref. 4 and in other similar calculations made at that time, because in the 
meantime our knowledge about total aN cross sections has improved. 



2. The Treatment of the Errors of the Experimental Data 

As I stated already, the crucial point of my analysis consists in the attempt 
to find a satisfactory treatment of the errors. It is well known that in prin- 
ciple each measurement carries errors of two kinds: statistical errors 
(which can have either sign, and are mainly generated by counting statistics) 
and systematic errors, which can be due to various causes and cannot 
be determined but only estimated. (The estimates reported in the experi- 
mental paper should have the meaning of maximum errors). A charac- 
teristic feature of systematic errors is that they are expected to have the 
same sign and, to a minor extent, the same magnitude, for different expe- 
rimental points measured in similar conditions. 

For most of the experimental data (total cross sections) used as input in 
this paper, usually a single experiment provides a rather large set of points 
covering a wide energy region, with a high point-to-point precision (small 
statistical errors) and with larger systematic errors; the latter generally 
account for the discrepancies occuring between sets of data coming from 
different experiments and covering overlapping energy regions. In such 
a situation, I think that the analysis should treat statistical and systematic 
errors separately. Statistical errors can be plugged into a propagation 
formula of the standard type; systematic errors should not, in order not 
to destroy the "constant-sign requirement" (at least over a sizable set of 
neighbouring experimental points) which represents their typical feature. 
[In order to keep separate the errors of different kind, I shall reconstruct 
them in the cases when the experimentalists instead report the quadratic 
combination of the statistical and systematic error (henceforth called 
combined error) in their papers]. Furthermore, systematic errors should 
be better given in pairs, because those on the positive side and those on 
the negative side might not be necessarily equal. I shall cal1 pòsitive and 
negative systematic errors those which must be added to or subtracted 
from the central value, respectively. 

Once the separation of errors has been accomplished for the input data, 
there is the problem of how to find the corresponding errors in the output 
data (in my case, on the real parts). From what has been stated above, 
it follows that the statistical errors on the output should be determined 
only by the statistical errors in the input (however small the latter can be) 
and the same should hold for the systematic effects. For the statistical errors, 
I shall use the standard propagation formula. For the evaluation of the 
systematic errors affecting the output, the solution is not so straightforward. 
In the case of a calculation where the cross sections are to be multiplied 



by a positive weight function (such as for certain finite-energy sum rules) 
a simple method, which stems from the interpretation of the systematic 
errors as maximum errors, consists in repeating the calculation with the 
input data varied by the amount of the positive and negative systematic 
errors respectively(*). The differences between the results of these calcul- 
ations and the original result can be assumed as reasonable estimates of 
the systematic errors affecting the latter, again interpretable as maximum 
errors. However, in the present case, the weight function changes sign, 
so that the application of the above method produces cancellations between 
contributions from the systematic errors in different energy regions, and 
the resulting positive or negative systematic errors may turn out to be very 
small, or even to have a minus sign (this means that, by increasing a11 
values of the input data, the output value decreases, and/or viceversa). 
Certainly, a systematic error obtained in this way cannot have the meaning 
of a maximum error. Nevertheless, in my opinion, this is still the procedure 
to be followed whenever the obtained real parts are to be inserted into an 
integral where also the input cross sections occur. Such is the case of a11 
the so-called "nonlinear dispersion relations" (NLDR), i.e., complicated 
integral relations linking real and imaginary parts of the scattering ampli- 
tudes: one example has been presented in Ref. 7, and other proposal can 
be found in the literature''. On the other hand, whenever the real parts 
are used by themselves, it will be necessary to estimate the magnitude of 
the maximum systematic uncertainty on the latter, compatibly with the 
constant-sign requirement for the systematic errors on a11 input data coming 
from the same experiment. A reasonable prescription for the evaluation 
of such maximum systematic errors is described in Appendix 111. 

The correlation to be kept in NLDR between the systematic errors on the 
imaginary and real parts is important because, for favourable combinations 
of these two quantities, further cancellations of the systematic effects can 
arise, leading to an improved accuracy of the resul(**). Other error cor- 
relations (e.g., between the statistical errors of the real parts at differerit 
energies) are of minor weight, and show difficulties for a correct handling. 

(*)I am indebted to G. Giacomelli for stressing this point to me. 
(**)In order to handle this correlation, I have stuck to the criterion of maximizing the syste- 
matic errors on the input cross section and by taking the errors on the real parts that come 
out from the calculation. However, one could "distribute" differently the signs of the syste- 
matic errors for the various experimental sets of input data and find a different correlated- 
error set. For most NLDR, I am convinced that when one takes imaginary and real parts 
together such different possible choices are equivalent, in the sense that the effective cancel- 
lation between the various error contributions should stay substantially unchaged, if one is 
not striving for a meaningless accuracy of the estimate of this effect. 



Therefore, the most reasonable thing to do is still to treat a11 errors as 
independent of each other, apart from the cases previously discussed. 

3. The Collection of Total Cross-Section Data 

In collecting the cross-section data that I used as input for the calculation 
of the real parts, I did not attempt a thorough comparative analysis of a 
large number of available experimental results (as can be found, e.g., in 
Ref. 1). I have rather followed the procedure usually adopted in a11 kinds 
of phenomenological analysis: namely, I have selected a particular set of 
accurate experiments, covering large, adjacent, energy regions. The choice 
of a particular set of data is, in this work, less arbitrary than it might seem 
at first sight: indeed, the data reported here are to be always considered tolje- 
ther with their errors, and, as a matter of fact, the results of the experiments 
I have not utilized are generally consistent with the values reported here 
within such errors. 

The data have been taken from the following sources: 

i) In the low-energy region (v I 490 MeV), I have used mainly the results 
from a rather recent experiment performed at CERN by a Cavendish - 
Rutherford collaboration13. For the energies below T = 70 MeV,(*) not 
covered by this experiment, I have referred to the CERN phase-shift 
analysis14, and also to some directly measured data reported in Ref. 1. 
For T below 21.5 MeV, where neither direct measurements nor phase 
shifts are available, I have derived the cross sections together with the 
real parts, as explained in Sec. 6. 

ii) In the energy region between v = 0.49 GeV and v = 6GeV, I have 
used the data by Carter et al.15 and by Citron et a1.16. 

iii) In the high-energy region (v > 6 GeV), I have essentially based my 
analysis on the Brookhaven17 and S e r p ~ k h o v ' ~ , ' ~  most recent measure- 
ments, supplemented with a few elementary theoretical considerations 
based on Regge-pole theory; in this way, I could also obtain a hint on how 
to estimate the cross-section behaviour in the region where no measurements 
are yet available (v > 65 GeV). 

(*)v indicates the pion lab. total energy, T the pion lab. kinetic energy. 
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The collected cross sections can be found in Tables 1 and 2. I have taken 
account of the fact that in most theoretical applications there are not the 
amplitudes for nf p scattering that are needed, but rather their sum and 
their difference which have a definite parity (even and odd respectively) 
under crossing. Therefore I have devoted a particular attention to these 
quantities and given separate Tables for them. 

Appendix I will display a few details about my cross-section collection. 
However, at this point, lef me add some remarks concerning the major 
problems that I have faced in the course of the above work. 

In a11 calculations involving a dispersion-relation-type approach, it is 
essential that the behaviour of the input data be smooth. Indeed, the 
principal-value integration contained in a dispersion relation enhances 
any discontinuity of the input trend and may give a completely distorted 
output unless a11 such "artificial" discontinuities are eliminated in some 
way. The customary solution to such a problem has been the assumption 
of a suitable smooth parametrization of the input data (for example, a 
Breit-Wigner formula for the cross section in an energy region dominated 
by a resonance). However, in this way it is difficult to achieve a satisfactory 
treatment of the errors. 

I have therefore retained my input under the form of a set of experimental 
points (each consisting of a "central value" and of the associated errors 
already introduced), which however have been "smoothed out" in order 
to make a11 artificial discontinuities disappear.(*) Details on the smoothing 
procedure are reported in Appendix I. Due to the good quality of the 
experimental points I have used, my sets of smoothed-out data reproduce 
the sets of the original data quite well, as far as both the central values 
and the errors are concerned. 

The above statement is only partly true in the high-energy region 
(6 GeV 5 v 5 65 GeV, covered by the experiments described in Ref. 17-19), 
where the experimental data are of poorer quality than those at the lower 
energies, and, as far as Ref. 17 is concerned, the errors are likely to have 
been underestimated. In practice, the problem of data handling in this 
energy region is entangled with that of "guessing" the cross-section beh- 
aviour beyond 65 GeV. Unfortunately, the theoretical pattern about the 

(*)I aimed at a criterion of smoothness, although in a much looser form, alço for the systematic 
errors, for which I assumed roughly interpolated values at the junctions between different 
experiments (cf. Appendix I). 
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asymptotic region is much more confusing today than it was a few years 
ago, when a few dominant Regge poles seemed to provide a satisfactory 
asymptotic description of a11 total cross sections. 

This point will be discussed in Appendix 11, where I shall explain how 
I have determined the parameters of the effective Regge trajectories needed 
in my case. 

Obviously, my choice has been an empirical one, which certainly cannot 
be expected to represent a satisfactory solution to the asymptotic problem, 
for which exhaustive analyses performed with that specific aim have failed 
to give a definite answer. 

I conclude this Section fixing the notation. By considering the total cross 
sections o for the moment, I shall denote 4 7 1  'p) by o+, and o(n-p) & 
f o(n+ p) by o(*) (without the factor 112 often introduced in the literature). 
A statistical error will be denoted by do and a positive or negative systematic 
error by A'o. 

The standard way of combining the errors on o+ and o- in order to obtain 
those on o(') is the following(*): 

2 112 do'+' = do'-' = [(do+)2 + (do-) ] (1) 

Instead one has 

These criteria hold only if the errors on the cross sections can be considered 
as independent of each other. 

An analogous notation will be used for the real parts, henceforth denoted 
by the simbol D. 

(*)Formulae analogous to (I), (2) and (3) (with extra factors of 1/2) can be used in those 
instances where the quantities relevant to d p  scattering are not the primitive ones, but 
must be deduced as linear combinations from the crossing-odd and -even quantities. This 
happens for the low-energy cross sections derived in Sect. 6 and for the real parts. 
(**)The criteria of combination of the systematic errors reflect the character of maximum 
errors which is attributed to them. 



4. The Calculation of the Real Parts 

As repeatedly stated, the real parts of the forward amplitudes will be 
calculated by means of forward dispersion relations. As is currently done 
for reasons of convenience, the amplitudes considered for the dispersive 
treatment will be those even and odd under crossing: therefore I shall 
obtain D(') as primary output, and then derive D, as linear combinations. 
I shall use the data collected in Table 2 as input and build up the errors 
of the real parts from the corresponding errors on the cross sections, as 
previously explained (see also Appendix 111). 

It is common knowledge that the dispersion relation for the crossing- 
symmetric amplitude requires one subtraction, which is customarily made 
at threshold (v = p, p = pion mas)(*). Instead, the dispersion relation 
for the antisymmetric amplitude can be written without subtractions. 
The relevant formulae are (the hyphen on the integration symbol indicates 
principal-value integration) : 

4f2v 2;2 fwm dv' p' c(-) (v') 
D'-'(v) = 7 + -- 

v -v; v'2 - v2 - 

Here v, = p2/2M (M = nucleon mass), f 2  is the pion-nucleon renor- 
malized coupling constant, and the threshold value D'+)(p) is to be sup- 
plied as an input parameter. The integral appearing in Eq. (4) can be conve- 
niently rewritten in terms of the variable p' : 

I shall denote the part proportional to f 2  in an unsubtructed dispersion 
relation by B(v), since this expression is currently known as the Born term(**). 

(*)Let me recall that v (= laboratory pion energy) is the most convenient variable in which 
forward dispersion relations can be written. Other symbols I shall use are: p = (v2 -p2)112, 
the incident momentum; T= v-,u, the incident kinetic energy. I shall use t2 =c= I throughout 
(**)From Eq. (5) it is apparent that B(-'(v) = 4 f v(v2 - vi)-' In Eq. (4), instead, the t e m  
containing f is actually B(+)(v) - B ( + ) ( p ) ;  it is easy to see that B(+)(v) = - 4 f v,(v2 -vi)-'. 



In many applications, it is convenient or even necessary to consider ampli- 
tudes where the Born term has been subtracted out(*). Let me cal1 DF 
the real parts after subtraction of the Bom term (DF = D - B; the subscript 
F means "finite", i.e., without the singular pole term). With this notation, 
Eqs. (4) and (5) can be rewritten as follows [I shall also make the subs- 
titution (6)]  : 

It is immediately seen that DF-) (v) and DF+,'(v) = DF'(v)-DF'(p) [the 
subscript S means "subtracted" (at threshold)] are the quantities most 
directly related to the experimental input, because they do not require 
the knowledge of the extra parameters f and ~(" (p ) .  For these quantities, 
a tabulation complete with errors can be obtained straightforwardly. In 
view of the interest presented by the Born-term-subtracted real parts, 
Table 3 contains a list of DF'(v)/v and DF+,)(v) in the full energy range, 
including also the so-called "unphysical region" (O I v < p) where these 
quantities are perfectly defined(**). It is well known1° that at the point 
V = p, which separates the unphysical from the physical region, 4, exhibits 
a characteristic cusp-like behaviour, which will be "scanned" in the Tables 
and discussed again in Sec. 6. Of course, such a behaviour will be found 
also in the complete real parts D. 

As far as the calculation of D(" (and D,) is concerned, one has to consider 
also the extra parameters f a n d ~ ( + ) T ~ ) ,  and to discuss the meaning of 
their assumed values and their errors. Indeed, these parameters cannot 
be determined directly from experiment, but a certain amount of theore- 
tical analysis is needed for their evaluation; as a matter of fact, the main 
ingredients of such an analysis are the dispersion relations themselves. 
Thus consistency problems arise; they involve also the energy region 
immediately above threshold (which is again practically unaccessible to 

(*)The interest of such "Born term-subtracted amplitudes" has been emphasized in severa1 
works of the Karlsruhe group [see, e.g., Ref. (lO)], and also in Ref. (7). 
(**)For the tabulation, I found it convenient to divide out Eq. (8) by v, since the quantity 
D',-)/v is finite for a11 values of v and its nonvanishing value at v = O might be of interest in 
certain theoretical applications. A similar convenient factor by which to divide out Eq. (7) 
does not exist. 



experiment). The discussion of this subject is rather complex and cannot 
be carried out extensively in this work. In Sections 5 and 6, I will give a 
preliminary treatment of this matter, by postponing a deeper study to 
a forthcoming paper. Thus I will be able to produce the set of the complete 
real parts D'", D ,  which will be listed (with their errors) in Tables 4 to 7, 
together with the corresponding imaginary parts straightforwardly deduced 
from the cross sections. These Tables will cover the physical region only 
(v > p); indeed, in the unphysical region, the Bom t e m  exhibits a pole 
at v = v,, which causes very strong variations on D (whereas DF behaves 
as a smooth function, apart from the cusp at v = p). 

The problem of smoothness should be in principle solved for the real parts 
by the smoothness of the input data. However, one should be wary that 
the numerical handling of the input data does not introduce sizable dis- 
torsions of the output values. (This worry cannot be got rid of when dealing 
with a principal-value integration). I have tried to ensure that my output 
data be not biased by such effects: in Appendix'lII, I shall discuss this 
aspect of the calculation, which is not so apparent, but nonetheless 
important. 

This work contains also a Section (Sec. 7) dealing with the comparison 
of the calculated real parts with experiment. In line of principle, such a 
check should test the validity of the causality principle on which the dis- 
persion relations are based. Alternatively, by accepting the causality 
principle and therefore the validity of dispersion .relations, one could (as 
extensively discussed in Ref. 20) get interesting infarmation about the 
asymptotic behaviour of the amplitudes. Unfortunately, it will be seen 
that the experimental accuracy needed for such tests is beyond the leve1 
presently available. However, the discussion made in Sec. 7 can cast light 
on what should be the further experimental work necessary in order to 
clarify this matter. 

5. The Low-Energy Parameters and the Energy Region Imtnediately Aho~e 
Threshold 

As explained in Appendix I, experimental data (either measured directly 
or expressed through a set of phase shifts) are not available below a certain 
energy (of the order of T - 20MeV), where experimental difficulties 
become increasingly large and, furthermore, the problem of deducing 
the "true" strong-interaction amplitude presents difficulties of a fundamental 



character(*). Indeed, the very concepts (such as charge independence) 
underlying strong-interaction physics and, in particular, phase-shift analy- 
sis, break down completely at incident kinetic energies comparable with 
the mass differences within the isotopic multiplets. Therefore the values 
of the cross sections to be inserted in the dispersive integrals for energies 
immediately above threshold should be considered quantities to be deter- 
mined through theoretical analysis rather than experimental work. And, 
for this analysis, the dispersion relations themselves provide the most 
effective tool. 

So far the theoreticians' attention in this respect has been focused only 
on the threshold value of the energy, where both real parts and total cross 
sections are described in terms of a single real parameter for each amplitude 
- the scattering length a. As a matter of fact, a number of scattering- length 
determinations, based either directly on dispersion r e l a t i ~ n s ~ , ' ~  or on 
some extrapolation technique from the data at higher e n e r g i e ~ ~ ~  can be 
found in the literature of the last ten years. The dispersive approach yields 
also the value of the coupling constant f '. 

However, because of the structure of dispersion relations and the poor 
quality of the data available at low energies, only a (more or less restricted) 
range of values where f and the scattering lengths lie has been determined 
with a high confidente level; within this range, instead, the various deter- 
mination disagree with each other (even though some of them are given 
with very small errors), so that the task of further improving the accuracy 
of these data seems to delude even the most serious attempts. 

By taking the scattering Iengths even and odd under crossing, a(+)  and 
a ( - ) ,  as independent quantities(**), the larger uncertainty occurs for a(+', 
which is known to be small and consistent with zero, but of which even 
the sign is unknown although the measurements performed on mesic 
atoms seem to favour a small negative ~alue~~(***) .  Instead, a(-) can be 
given a more reliable evaluation because the unsubtracted dispersion 

(*)As a matter of fact, the analysis by Hohler and Strauss
g 

indicates that the Coulomb-correc- 
tion evaluation is likely to need a refinement also in the energy range spanned in Ref. 13 
(T 70 MeV), although the experimentalists have devoted particular care to this problem. 
(**)In terms of the isospin scattering lengths a, and a,, one has a(+)  = $(ai + 2a3), a(-) = 
= $(a, -a,) showing again an extra factor of 2 with respect to the notation used in most 
análysk on the matter. 
(***)Mesic atoms can also give the possibility of a direct scattering-length measurement, 
for which experiments are being performed (T. Ericson, A. Zavattini, private communications). 



relation {5), calculated at threshold, expresses directly a(-)  as a function 
of f 2  and of the total cross sections measured at a11 energies. Strictly 
speaking, also a(-'(v'), at threshold and immediately above it, should be 
considered as a function of a( - ' ;  however, the portion of the integral co- 
vering the region where the cross sections are not known experimentally 
has little weight on the final result, and the uncertainty on a(-' comes 
essentially from the uncertainty on f 2 .  On the contrary, Eq. (4) cannot 
provide a similar constraint for a(+) because the subtraction procedure 
requires the introduction of one more input parameter, which is most con- 
veniently identified with a(+) itself. 

The a(-)  - f correlation provided by dispersion relations has been already 
discussed by Hohler and Strauss9 (henceforth referred to as HS). In the 
present paper, I will consider this problem again, by trying to improve 
the error treatment and by taking account also of the scattering-length de- 
pendente of the very-low-energy cross sections to be inserted in the disper- 
sive integral, although, as will be seen, this additional correlation is going 
to produce an almost negligible effect on the pattern already known. 
However, there is the possiblity that a treatment of this kind, extended 
to the case of nonlinear dispersion relations, turns out to be much more 
fruitful; this problem will be dealt with in a forthcoming paper. 

Since no specific value among the various determinations of the low-energy 
parameters a(+ and f recommends itself particularly, I will choose their 
values according to my preference, and I will attribute them an error 
covering the range where such quantities are likely to be found(*); the 
values I shall assume are the following: 

Whereas the above value for f is the traditional one, I assumed a slightly 

(*)The magnitude of the errors reported in (9) has been estimated from the spectrum provided 
by the various existing analyses [Refs. 3,8, 21,221; however, the error in a'+' does not cover a 
few isolated values markedly different from the average. I have considersd such errors as 
statistical ones, since they refer to quantities neither measured experimentally. nor directly 
obtained from experimental data. This treatment of the above errors is certainly correct, e.g., 
in the calculation of the threshold cross sections performed in the next Section. However for 
the calculation of the dispersion relations (4) and (5) the treatment of the errors on f' and 
a"' may create some ambiguity: this point will be further discussed in Sect. 8. 



negative value for a(+) because of the indications from mesic-atom ana- 
lysisZ3. My value for a(+) coincides with the one given (with a smaller 
error) by Hohler and collaborators in Ref. 8(*). 

For the treatment of the cross sections in the low-energy region, I assumed 
that above a certain kinetic energy E the total cross sections can be consi- 
dered as given reliably by the experiment. I took E = 21.5 MeV (the lowest 
energy in ' the CERN phase-shift analysis: see Appendix I). Actually, the 
data between this energy and about 70 MeV are not accurate at all; wai- 
ting for more precise measurements, I can still consider them as "reliable" 
as long as their errors are not underestimated. Below E ,  the only assump- 
tion I made is that any total cross section can be safely parametrized as 
a second-order polynomial in the kinetic energy T:(**) 

A parametrization of the energy behaviour of the individual partial waves 
is not necessary(***). By inserting Eq. (10) into the dispersive integrals 
up to T = E, and by putting in the experimental data only above E, the 
expression, e.g., for D F ) / v  will look as follows (of course, the parameters 
entering Eq. (10) have been properly labelled): 

Here the g's are known functions of energy(****) and [DF)/v],, ,  is just 
the dispersive integral cut down to T = E, which will carry the usual errors 
brought in by the experimental input data. 

As a matter of fact, representation (11) is of interest if v is taken at values 
very close (on both sides) to threshold. The next Section will discuss an 
application of the above method. 

(*)The choice made by HS in Ref. 3 is f = 0.081; a(+) = O in the early version, -0.034 p-' 
in the latest version. 
(**)This is equivalent to a second-order polynomial parametrization also in variables p2 

(square of the lab. momentum) or q2 (square of the centre-of-mass momentum). 
(***)In terms of partial waves, the validity of (10) follows if (for T e) the s-wave effective 
ranges contain at most a linear term in q2 and the p-waves can be represented by their lowest- 
order term a q4.  Below 20 MeV both such assumptions seem to be fairly reasonable: see 
also Ref. 24 on the subject. 
(****)The expression of the g's is reported in Appendix 111, both for Eq. (11) and for the ana- 
logous formula valid for DJ;r,)(v). 



6. The Calculation of Real Parts and Cross Sections in the Very Low 
Energy Region 

At this point, the problem is how to determine the coefficients of Eq. (10). 
One can think of various methods; in this paper, however, only the simplest 
approach will be chosen. Two of the three parameters will be fixed by 
the requirement of continuity at T = E, and the residual parameter fsubs- 
tantially, A) will be determined by exploiting the constraint, rigorously 
valid at threshold, that the interaction is purely in an s-wave. Such a cons- 
traint is expressed by the following threshold relations: 

where the threshold values are indicated by the subscript zero, and 
F ,  = 1 + ,u/M is the threshold value of the centre-of-mass to lab. conver- 
sion factor, in the sense that one has 

It is therefore convenient to rewrite Eq. (10) by a redefinition of the para- 
meters, so that they a11 have the same dimensions, and the continuity 
requirements at T = E are automatically satisfied: 

where x = T/E,  o, = o(T = E) and 6, = E- 
dT do I T = &  One obviously has 

I will consider the parameters o, and 6, as experimentally given so that 
only ao remains to be determined. The quantity o, (with its errors) can 
be taken directly from Table 2; 6, is estimated (with its errors) from the 
behaviour of the data above E. This evaluation is necessarily rough, because 
the data in question are poor: as a consequence, the assumed values for 
6;') (which are reported in Appendix 111) show errors of the order of 50% 
or larger. However, the contribution of the 6, term to the real parts turns 



out to be of littie weight, so that the large uncertainty associated to it increa- 
ses the errors on the real parts only moderately.(*) 

After inserting Eq. (15) into the dispersion relation (5) and introducing 
the values of f and a(+)  (Eq. (9)), Eq. (12) can be solved for o g )  (it becomes 
a quadratic equation in this quantity). The errors on o r ) ,  statistical and 
systematic, can also be obtained straightforwardly by the standard methods 
previously outlined. 

Once oK) is known, one can deduce o c '  and its errors from Eq. (13) and 
thus, reverting again to the dispersion relations (4) and ( 5 )  (where now ali 
the parameters are known), one can calculate the real parts D'" around 
threshold, complete with the errors, in addition to the cross sections obtained 
directly from formula (15). AI1 cross sections and real parts below T = E 

(where in Eq. (11) the integral as well as the g's diverge logarithmically, 
have been deduced by the above procedure. The real parts turn out to 
be identical to the values obtained through a complete integration over 
the cross sections reported in Table 2, by treating the values calculated 
from (15) and reported there as if they were true experimental data.(**) 

A few by-products can be obtained from the above analysis. First of all, 
it can be seen that the cusp structure occuring at threshold is contained 
only in the functions gjd) (cf. Eq. (ll)), for the even and odd case respec- 
tively. Although the magnitude of the errors is larger than the "height" 
of the cusp, especially in the crossing-odd amplitude(***), however the 
point-to-point trend is dictated only by the functions g y ) ,  irrespectively 
of the value of 4(* ', and thus of the size of its error. The knowledge of this 
behaviour, obtainable through the expressions of the g's listed in Appendix 
111, can be useful for those nonlinear dispersion relations where a prin- 
cipal value has to be taken also through the cusp. 

(*)One might object that this way of dealing with the cross-section parameters gives too 
much importante to the experimental data at the particular energy T = e. Actually, this 
is disturbing only because the low-energy data at and above e are poor: however, the physical 
content of the output will not be altered provided that the errors on the data at T = e be 
estimated correctly, or, at  least, be not underestimated. However, for more ambitious appli- 
cations of the procedure it will be convenient to treat either h,, or both o, and S,, as para- 
meters, like a,, to be determined by the analysis. 
(**)This is to be expected on the basis of the conclusions reached in Appendix 111. 
(***)For the crossing-even case, the very definition of DG', which is rigorously zero at thres- 
hold, makes a11 errors vanish proportionally to pZ, so that the cusp structure, although of 
small size, emerges clearly in a plot of the above quantity. 



One can also study the dependence of the low-energy data on the input 
3 ( - 1  parameters f and a(+ ) .  Fig. 1 shows the dependence of a, - a,(= ~a . ) 

on f (Hohler-Strauss piotg) for two different choices of a, + 2a3 (= $a(+)). 
As was anticipated, the refined method I used does not alter the conclusions 
already found in Ref. 9: only the error has been underestimated in the 
latter work (see later). It may be interesting to notice that the dependence 
of a(-) on a(+)  is very weak(*). The same situation can be visualized from 
another angle, through the diagram shown in Fig. 2, where the constant 
J introduced by HS (and equal to $ ~ $ - ) ( b )  in my notation) is plotted 
against the same variables as in Fig. I(**). This quantity has been evaluateú 
directly from Eq. (ll), with the values of A'-' corresponding to the parti- 
cular choices of f

2  and a(+) .  

Fin. 1 - Plot of a, - a, (in natural units) versus f Z, for two typicai values of a, + 2a,. The 
dashed lines represent the systematic errors referred to the case a, + 212, = -0.021. The Iine 
denoted by HS reports the result found by Hohler and Strauss (Ref. 9) with its error. 

(*)A slight dependence of comparable size is obtained by changing the asymptotic Regge- 
pole fít for a'-' within reasonable limits. 
(**)Strictly speaking, J is not a constant; however, one can see that its dependence on the 
input parameters is extremely weak. 



Fig. 2 - Plot of the Hohler-Strauss constant J = $h;&) versus f 2 ,  for two choices of a ,  + 2a,. 
The meaning of the curves is the same as in Fig. 1. 

Let me remark that, in addition to the direct evaluation (that they use as 
a check), HS calculate J via a more complicated method, involving high- 
energy charge-exchange experimental cross sections. However, this method 
is equivalent to the simpler one, once it is checked (as done in the next 
Section) that the charge-exchange data do not show a violent disagre- 
ement with the dispersion-relation predictions. Indeed, by inspection of 
formula (2.1) of Ref. 9, it can be easily seen that, at high energies, the contri- 
bution from the experimental real parts to the determination of J is small 
(-7%); and that, by properly taking into account also the systematic errors 
on the total cross sections, one does not get the high accuracy claimed in 
Ref. 9, but rather find a situation Iike the one shown in Fig. 2 of the present 
paper. 

Finally, Fig. 3 reports the threshold values of the cross sections o") and 
a(-), again for fixed f and a ( + ) .  Let me point out that the errors shown 
in this plot are only those with an experimental origin (they include the 
uncertainties on o, and 6,). This diagram is interesting, insofar as it shows 



Fig. 3 - Plot of the threshold cross section CIO) as a function of f 2 ,  for the same two choices 
of a,  + 2a, as in Figures 1 and 2. %e error flags represent the statistical errors; the dashed 
lines, the systematic errors. For õ,"', the plots corresponding to the two choices of a, + 2a, 
overlap; for o,'-), the upper plot corresponds to a, + 2a, = 0. 



that the dependence of both d s  on f and of a(-) on a(+) is strong enough 
as to permit a fair resolution, provided a further relation between the 
various low-energy parameters can be found. 

7. Comparison with Experiment 

The calculations performed in the previous Sections allow different ways 
of comparison with the experiment. Knowing the imaginary parts A, of 
the n' p scattering amplitudes through the optical theorem, one can predict 
the values of the differential cross sections at zero degrees: 

(%)_ = D: + A : .  

If we are interested in making the comparison in the laboratory system(*), 
A, = (p/4n)o,, whereas D, = 1/2(D(+) f D(-)), where D(') are to be 
taken from Eqs. (4) and (5). 

Through the principle of charge independence, one can also directly pre- 
dict the forward differential cross section for charge-exchange scattering 
(n-p + nOn): 

When using relations (16) or (17), one must always be wary about the 
proper choice of the units. 

Another type of comparison can be made with the experimental real parts 
directly measured from the interference between nuclear and Coulomb 
interactions.The best data obtained in this way can be found at high 
energyZ5. A collection of forward differential cross-section data can be 
found in Ref. 1. 

It is easily seen that the direct comparison with the interference data 

(*)The amplitude in the centre-of-mass (c.m.) system is obtained from the lab. amplitude by 
dividing the latter by the factor F =  VIM) + 1 + ( p / ~ ) 2 ] ' 1 2 .  Obviously, the same factor 
relates the magnitudes of the incident momenta in the two systems. At threshold, F reduces 
to the value F ,  occurring in Eq. (14). 



provides a source of information that is more complete, because it involves 
also the sign of D, whereas in Eqs. (16) and (17) only the magnitude of D 
is requested. 

I shall examine the whole amount of experimental information available 
to me. 

Fig. 4 (b) 



Fig. 4 c) 

Fig. 4 - Experimental forward charge-exchange cross sections compared with dispersion- 
relation predictions: a) up to v = 1.2 GeV; b) between 1.2 and 3.9 GeV; c) above 3.9 GeV. 
The predicted values are reported together with their maximum errors (combined quadra- 
tically). For the experimental references, see text. In Part c) also the Hohler-Strauss prediction 
from Ref. 3 (dash-dotted line) and the curves obtained by using the correlated systematic 
errors instead of the maximum ones (dotted lines) are shown for comparison. 

Let me start with the charge-exchange cross section, which is particularly 
interesting because it involves only one of the "primary" input real parts. 
I shall take most of the experimental data from the compilation 
of Ref. 1 and consider also the results from a few additional experimental 

which either add new data, or provide a later modification 
of some of the results collected in Ref. 1. The theoretical prediction is 
directly evaluated by using Table 4 as input. As far as the error treat- 
ment is concerned, I have combined quadratically the given statistical 
and systematic errors for a11 experimental points (and therefore also 
for my theoretical points). Indeed, the experimental data are taken from 
many different sources, whose ranges often overlap; in such a situation 
a separate treatment of the systematic errors is not appropriate. On 
the other hand, on the theoretical side there is no reason of introducing 
a correlation between the errors on D(-) and A(-)  at the same energy: 
thus, I have used the maximum systematic errors on D ( - f .  Fig. 4 displays 
the results of this analysis. It should be pointed out that there is no 





intrinsic meaning in the "structures" shown by the theoretical curves 
taking account of the errors; see Appendix I11 for further discussion on 
this point, 

I shall postpone the discussion to the end of this Section and pass to an 
analogous comparison for the forward ~ ' p  cross sections separately. 
However, in this case, unlike charge-exchange, the bulk of the cross section 
is given by the imaginary part; thus a plot like that of Fig. 4 is inadequate 
to study the real-part contribution. Furthermore, some of the experimental 
data reported in Ref. 1 have bem extrapolated to zero degrees by just 
neglecting the real part. Fortunately, one can refer to a recent paper by 
~ u m b r a i s ~ ~ ,  who has accurately re-examined the existing data, made 
the extrapolation to the forward direction, and deduced the magnitude 
of the real part (with its error) on a purely experimental basis, without 
extra hypotheses. Therefore, direct comparison with Dumbrais' values is 
the most appropriate one: it is carried out in Figures 5 (for 71' p) and 6 
(for n- p). The errors (in the experimental points as well as in the theore- 
tical predictions) are again quadratic combinations of the statistical and 

Fig. 6 - The same as in Fig. 5 for s - p  scattering. 

(*)In a11 Figures of this Section the systematic error attached to the theoretical values are 
obviously the maximum ones (cf. the preceding discussion). 
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the systematic ones(*). The curves stop at about 2 GeV because the ratio 
between real and imaginary parts becomes smaller and smaller as energy 
increases beyond this value, and thus to obtain signiíicant real-part deter- 
minations from the forward cross sections becomes more and more dif- 
ficult. 

Instead, above 2 GeV one begins to find real-part measurements made 
through the Coulomb-interference method. Indeed, at high energy this 
method is more accurate than the bare cross-section extrapolation to 
zero angle, and provides also the sign of the real part. Most of the available 
data have been obtained in a single experiment2', performed in the energy 
range from 7 to 30 GeV; however, there exist also some additional TC-p 
values at lower energies (see Ref. 29). Figure 7 shows the comparison of 
the measured values with the values predicted from dispersion relations 
(DR). Fig. 8 exploits the result of an analysis already performed in Ref. 25, 
where the experimentalists have "combined" their data in such a way 
as to construct "experimental" points for the crossing-even and odd real 
parts, D"', which can be compared directly with the predictions from 
the DR (4) and (5). Since one deals with a single experiment, I have plotted 
in Fig. 8 the statistical and systematic errors separately. Notice that, as 
stated in Ref. 25, the crossing-even real part D(+) can be considered as 
unaffected by systematic errors, whereas D(-' carries a systematic error 
only on the positive side(*). In Fig. 8 (as well as in Fig. 4c) I have reported 
also the curves obtained from the Hohler-Strauss (HS) real parts3 ; also 
for the other Figures their curves are always consistent with mine within 
the error strip. 

Coming to the discussion of the above comparison, let me first point out 
that, generally speaking, the experimental data reported are of rather poor 
quality (as can be seen, e.g., from the discrepancies between different expe- 
riments). Thus the disagreement between the predictions and some of the 
experimental points can be better attributed to inadequacies of the latter 
rather than to a violation of the causality principle. This applies particularly 
to the low-energy region (less than 1.5 GeV), where the uncertainties of 
the theoretical curves are very small. Taking this fact into account, one 
can say that the general agreement of the experiment with the DR preclic- 

(*)As a matter of fact, since a partia1 combination of statistical and systematic errors has 
been made in Ref. (25), in Fig. 8 I have reported the errors as given in Ref. (20), where the 
two effects are kept separate. 



Fig. 7 - Plot of the experimental n'p real parts measured from Coulomb interference and 
compared with dispersion-relation predictions (shown with their maximum combined errors). 
The data have been taken from Dumbrais' compilation

zg. Black circles: n - p  data. Black 
squares: x - p  data from forward differential cross sections, for which only the magnitude 
has been measured. Blank circles: x - p  data. 

tions is fair, thus giving a confirmation (although a loose one) to the basic 
postulates involved. However, further experimental study of the most 
controversial situations should be anyway necessary. 

For charge-exchange (Fig. 4), an analysis like mine has been already made 
by HS in Ref. 9; there is little to add to their conclusions as far as the low- 
energy region is concerned (Figures 4a and b)(*). For the high-energy 
region (Fig. 4c), the large uncertainty on the DR predictions (due to insuf- 
ficient knowledge about the asymptotic region, as well as to the rather 
poor quality of high-energy total-cross-section data) seems to indicate 

(*)Among the various discrepancies discussed in Ref. 9, the most serious is perhaps the one 
occuring between 2.8 and 4 GeV, where the data come from only two experiments: indeed, 
the agreement with the DR prediction cannot be restored via an over-aU systematic effect. 
This is, in my opinion, one of the points where further experimental investigation would 
be useful. 



Fig. 8 - Centre-of-mass dispersion-relation predicted real parts: a) for the crossing-even 
amplitude; b) for the crossing-odd one, together with the experimental points from Ref. 25. 
Shaded region: calculated statistical error. Other full lines: calculated maximum systematic 
errors. Dot-dashed Iíne: Hohler-Strauss prediction3. In Part b), the dashed broken line con- 
nects the experimental points shifted by the experimental systematic error. 



that the comparasison between the experiment and a purticulur DR 
curve cannot be expected to be very significant. True. one would get a 
better agreement (as HS did) by choosing a lower value of the Regge p-pole 
intercept (of Appendix 11); however, I intentionally avoided to link the 
Regge analysis uniquely to the charge-exchange data, and rather preferred 
to consider a wider spectrum of possibilities suggested by different sources 
(like direct total-cross-section fitting and finite-energy sum rules; see 
Appendix I1 for details). 

Coming to Figures 5 and 6, the poor quality of the experimental data 
becomes here most evident (especially for .nu p scattering)(*). This is hardly 
surprising, because of the diffículty of extracting the real parts from the 
forward ?I-p differential cross sections. Again, the general agreement is 
fair, although several discrepancies still occur. As for the charge-exchange 
case, the interpretation of the latter is doubtful(**). 

Let me finally come to the discussion of the Coulomb-interference inea- 
sured real parts (Figures 7 and 8). This comparison is perhaps the most 
interesting, because, as discussed in Ref. 20, the analysis might in principie 
cast light about the most proper continuation of the amplitude into the 
asymptotic region. However, the present experimental accuracy of the data 
(including high-energy total cross sections, whose uncertainty reflects 
into the uncertainty on the DR predictions) is not sufficient to carry out 
a programme of this kind. (For example, without the experimental syste-. 
matic error, one could infer from Fig. 8b that the Regge p-pole intercept 
should be even lower than the HS value). In Fig. 7 the agreement is good, 
except for the high-energy tail of the n- p data, for which an independent 
experimental check is needed. Let me remark that recently Hohler and 
Krubasik30 have criticized the way how the real-part values have been 
derived in Ref. 25. They correctly point out that such values depend on 

(*)Let me recall that Dumbrais' analysisZ9 shows that several experimental forward cross 
sections (particulary for n- p) would provide a negative D2 within the errors if inserted in 
Eq. (16). Such data are obviously neither taken into account in Ref. 29 nor here In Figures 
5 and 6, I have omitted a few data from Ref. 29 carrying errors comparable with the size of 
the Figure. 
(**)The same can be said about the comparison between DR predictions and forward real 
parts calculated from the available phase-shift sets (e.g., those from Ref. 14), which is not 
presented here. Generally, such values follow the trend of the DR curve closely, but show 
local discrepancies. One can hardly judge about the meaning of the latter, because of the 
difiiculty of evaluating the true errors affecting the phase-shift-reconstructed experimental 
points. 



the way how the nuclear differential cross section is parametrized away 
from the forward direction, and that the parametrization chosen in Ref. 25 
is likely not to be the right one. However, their alternative solution gives 
too much weight to the forward real parts obtained through DR, which, 
as previously shown, at these energies are affected by large uncertainties. 

8. Tables 

This Section is intended to introduce the reader to the use of the Tables 
that are found at the end of the present work, although the notation used 
there is largely self-explanatory. 

Table 1 contains the experimental input data (including errors) for o- 
and o + ,  deduced according to the prescriptions of Appendix I; Table 2 
contains the same data for the combinations o(+) and o(- ) .  

For easy referencing, a11 the current energy values in the lab. system (pion 
momentum, p; pion kinetic energy, T, and total energy, v) are listed sepa- 
rately for each point. In the following Tables, instead, only v will be reported 
as reference variable. 

Three decimal digits have been kept for the cross sections, even when 
some of them are not significant. The errors have two or three decimal 
digits, according to the experimental accuracy. 

The Regge formulae for the extension of o(" into the asymptotic region 
can be found in Appendix 11. 

Table 3 shows the subtracted real parts D F ) / v  and DF+,) (see Sec. 4), cal- 
culated directly via Eqs. (7) and (8)(*). As outlined previously, two sets 
of systematic errors are given; the correlated ones (to be used in NLDR 
or similar relations having the form of the integral over both real and 
imaginary parts), and the maximum ones. As emphasized in Appendiu 111. 
the latter show apparent "structures" at the transition energies between 
different experimental input sets; such structures merely reflect the larger 

(*)For the operational details of the oalculation, see Appendix 111. 
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uncertainty of the input data in these energy regions and should not be 
taken too literally. As far as units are concerned, I preferred to maintain 
mb and mb .GeV instead of the currently used "natural units" (p  = 1). 

Table 3 includes also the unphysical region (v < p), which is not covered 
by the other Tables. A11 real-part lists include part of the asymptotic region, 
where the Regge expansion has been used for the input cross section. 
Obviously, in such region the given real-part values depend strongly on 
the assumed behaviour of the input data, and are expected to undergo 
sizable changes as long as our knowledge about the asymptotic region 
progresses. Wherever they occur, the unphysical-region data and the 
asymptotic data are separated from the bulk of the Tables by breaks. 

Finally, Tables 4 to 7 list the complete amplitudes for E* p scattering and 
their crossing-even and-odd combinations, in the customary natural units. 
A word of caution is needed for the interpretation of the errors attached 
to the real parts. Indeed, both the experimental errors on the input cross 
section and the uncertainty on the theoretical input parameters f and 
a(+) (Eq. (9)) contribute to the uncertainty on the real parts. I took the 
errors on f2 and a(+) as statistical, and kept as systematic errors on D 
only those originating from the systematic errors on a. However, this 
procedure is questionable, because it can be argued that the uncertainties 
on f and a(+), whatever they are, act always in the same direction over 
the entire energy range. On the other hand, if such uncertanties were treated 
as systematic, there would arise the question of how to combine them 
with the corresponding experimental effects. In my opinion, such a problem 
lacks an unambiguous solution unless: a) a11 the errors are combined 
quidratica~ly (as made in Sect. 7); b) the uncertanties on f and a(+) pro- 
duce a negligible effect (as happens at energies > 6 GeV); c) the elaboration 
to make is such that the parts containing f 2 and a") can be worked 
out separately, and one is left to operate only with the quantities 
listed in Table 3, for which the separation between statistical and 
systematic effects is clear-cut (such is the NLDR discussed in Ref. 
7). From the above arguments, it follows that the errors attributed 
to the real 'parts in Tables 4 to 7 provide an estimate of the mag- 
nitude of the various effects, but they are generally not suited for 
detailed theoretical handling, apart from the cases discussed above. 
Furthermore, the very concept of "correlated systematic errors breaks 
down for D,, because the errors on D(+) and D(-) are mutually indepen- 
dent. Therefore, in Tables 6 and 7, I reported only the maximum systematic 
errors. 



As far as the rounding-off of the data in Tables 3 to 7 is concerned, I did not 
stick to rigid criteria, but rather preferred to maintain a certain uniformity 
in the presentation of the data. Generally speaking, I dropped a decimal 
digit only when definitely redundant. 

This work has been partly performed during a stay at CERN (Geneva), with a grant from the 
Fondazione Francesco Somaini, Como, Italy. I thank the Foundation Francesco Somaini for 
having awarded the grant to me, and Prof. B. Zumino, Director of the CERN theoretical group, 
for the hospitality. I thank Professors T. Ericson, M. Fidecaro, M. Jacob, L. Van Hove, A. 

Wetherell and B. Zumino for interesting discussions and fruitful criticism about most of the 
topics contained in this paper. I acknowledge also useful suggestions by Professors G. Giaco- 
melli and G. Violini. 

Appendix I 

In this Appendix I shall give a few details about how I have obtained the 
Tables of the input data (Tables 1 and 2). Further details can be made 
available on reguest. 

As stated in Sec. 3, I took the data from a selected set of experiments showing 
a good point-to-point precision and practically covering the full energy 
range up to 65 GeV. However, I could not simply report the raw data 
because, both for the uniformity of the Tables and for the calculation of the 
combinations a''), I needed the values of the cross sections at the same 
energies for n'p and n-p scattering. This coincidence does not occur for the 
data from Refs. 13,15,17-19; thus I had to use an interpolation procedure, in 
order to reduce the experimental values to common energies, with a spacing 
more regular than the original one. (I was not rigid in enforcing a regular 
spacing to my chosen energy values, but I varied it according to the experi- 
mental point density and to the requirement of a satisfactory description of 
the various cross-section structures). I found empirically that the best inter- 
polation was obtained through a polinomial of 3rd degree, using the two 
nearest points on both sides of the chosen energy(*). The same formula 

(*)The interpolation formula for a function f (x)  of a variable x, known at the points xi(i = 1 to 4) 
can be easily written in the Lagrange form: 

where j, k, 1 are the other three indices different from i. As a rule I took x ,  < x,  < x <x, i x, ; 
however, near the first or the last point of an experiment, x may occasionally fall between 
x, and x, or between x3 and x,. Formula (18) can be straightforwardly generalized to the 
case of any number of points. 



was used to interpolate the errors, also the statistical ones. Indeed, I found 
that this procedure, on the average, gives a larger statistical error than 
other methods of interpolation (e.g., quadratic); and, when facing a choice, 
I generally preferred to allow for an overestimate of the errors rather than 
for an underestimate. 

However, even in the accurate experiments considered, there are a few 
scattered points patently off the trend of the neighbouring ones. In a data 
parametrization, such points would anyway lie away from the best-fit 
curve; and also in my collection, as explained in the text, I had to look 
for a way to "smooth out" them consistently. In order to f í  the ideas, let 
me refer to the ideal case shown in Fig. 9a. Here, by considering the middle 
point alone, the probability of the true value being at the position of the 
cross (interpolated value) would be small; however, it is obvious that, 
due to the presence of the other points, the above probability is actually 
much larger than that of finding the true value at the position indicated 
by the measurement. A reasonable conclusion to draw is that the actual 
statistical fluctuation at that point is larger than the declared one. As a 
consequence, a picture like the one shown in Fig. 9 is likely to represent 

Fig. 9 - Schematic example of smoothing-out of an off-trend point (see text). 

the true situation better. This is the criterion I followed in order to "smooth 
out" the off-trend points. For the "extended" statistical error (cf. Fig. 9b), 
I took the quadratic combination of the original statistical error and of 
the discrepancy between the measured and the interpolated value. In this 
way, the presence in Table 1 and 2 of a few points with a larger statistical 
error is explained. From inspection, one can see that the above procedure 
has been used only occasionally. As emphasized in the text, the aim was 



to avoid unphysical humps of the real-parts at these particular points, 
where instead the real-part error turns out to be increased. 

Another ticklish problem is provided by the junctions between different 
experiments, whenever the trends do not match properly. It is difficult 
to lay down a general rule for such cases: I shall discuss them separately 
below, by recalling how I treated the data in each of the various energy 
regions. 

In  the low-energy region [apart for the near-threshold region 
(T < 21.5 MeV), which has been handled theoretically in Sec. 61. the 
main problem is to determine an acceptable behaviour of the cross sections 
at the energies below those covered by Ref. 13 @e., for T < 70 MeV). 
In this region, the direct experimental measurements are scanty (espe- 
cially for 71- p) and the main source of information is provided by the set 
of phase shifts worked out at CERN14, that start just at 21.5 MeV. The 
successive elaborations listed under Ref. 14 have produced two sets of 
phase shifts (carrying statistical errors): I shall call them "experimental 
phase shifts (EPS) I and IIM(*)(**). Together with the earlier set of data, 
the Authors have produced a parallel set of smoothed-out values (without 
error), based on dispersion relations; I shall call it "dispersion relation 
phase shifts (DRPS)". The available data (including phase-shift-recons- 
tructed total cross sections) are shown in the plots of Fig. 10. One sees 
that for a+ the DRPS curve mediates the various existing data quite well, 
and furthermore it connects directly with the beginning of the data set 
from Ref. 13. Thus I could safely assume this curve as the most suitable 
smooth representation of the data in the very-low-energy region. As far 
as the errors are concerned, I assumed a "blanket" error of 0.5 mb (statistical 
as well as systematic)(***), which ensured a complete covering of the exis- 
ting data (cf. Fig. 10a). I think that such a kind of rough, but generous 
evaluation of the errors be the best procedure to follow in a situation of 
experimental uncertainty. For o- there is the additional difficulty that 
the DRPS curve does not fit well the (although scanty) existing data, and 

(*)I thank Drs. F. Wagner and C. Michael for having made the EPS I1 data available to me. 
(**)After completion of this work, I became aware of a third version of the CERN phase 
shifts (S. Almehed and C. Lovelace, CERN report TH 1408 (1971)). It can be easily checked 
that the total cross sections provided by this analysis in the low-energy region are consistent 
with the previous determinations and do not alter the conclusions reached in the present 
paper. 
(***)The statistical error has been doubled around 60 MeV, where the data spread is larger. 





does not connect at 70 MeV with the points from Ref. 13. Thus I referred 
to the Hohler-Strauss parametrization3, to which I attached a larger 
"blanket" error (0.8 mb) in order to ensure an adequate covering of the 
data (cf. Fig. 10b). 

Fig. 10 (b) 

Fig. 10 - Low-energy total cross sections as functions of the incident kinetic energy T : a) for 
z + p ;  b) for z - p  scattering. Full lines: assumed trends and errors. Black and blank circles: 
experimental values calculated from the CERN phase shifts EPS I and I1 respectively. Black 
triangles: direct measurements reported in Ref. 1. Blanck squares: fírst points from Ref. 13. 
In part b) the dottrd line indicates the DRPS curve (see text). The DRPS curve for o+ coincides 
with the assumed reference curve. 



The data from Ref. 13 (ranging from T = 70 to T = 290 MeV) need almost 
no comment. I undid the combined errors reported in the paper, and deduced 
the corresponding systematic errors. I increased the latter by the amount 
of 0.1% of the measured cross section, in order to account for the uncer- 
tainty of the mean value of the beam momentum (D. V. Bugg, private 
comunication). The junction between the data from Refs. 13 and 15 is 
easy, since the trends of the two experiments "go into" each other very 
nicely, both for nf p and n-p. For the error size in this transition region, 
a previous 71- p experiment3' suggests a value of 0.6 mb for the statistical 
error: the systematic errors, being of the same size on both sides, have 
been straightforwardly connected by interpolation. 

Also the data from Ref. 15 need only a few words of clarification, since 
most of the necessary information is straightforwardly obtained from the 
experimental paper. In the latter, the Tables of data exhibit the systematic 
errors only, the statistical error being always not larger than 0.1% of the 
measured cross section. Thus I assumed the above value for do, throughout 
(with the exception of the few "of-trend" points recalculated by interpo- 
lation, for which the error is obviously larger). It must also be remarked 
that some of the systematic-error sources act in the same direction for 
71- p and n+ p scattering, thus producing a partia1 cancellation of the effect 
in the difference o'-). According to a private communication by J. D. 
Dowell, the systematic errors on o, should be considered as independent 
until a minimum is reached (this occurs at p - 1 GeV/c); then, the syste- 
matic error on o'-' should be kept equal to this minimum (= 0.35 mb) 
as energy increases. 

A more serious problem is raised by the junction of the data from Refs. 
15 and 16. Indeed, whereas the n + p  data match well at p - 2.10 GeV/c, 
the z -p  data from Ref. 15 above 2.45 GeV/c are systematically lower 
than the corresponding ones from Ref. 16(*). In order to avoid an abrupt 
discontinuity, I used a chain of interpolated values between 2.40 and 
2.72 GeV/c, with large errors (statistical as well as systematic), evaluated 

(*)A high-accuracy H-p  experiment by Giordenescu et aL3' seems actually to indicate that 
a negative systematic error should be applied to the n - p  data from Ref. 16. However, the 
data from Ref. 32 cannot be used in the present elaboration, because they consist of only 
four values between 3.8 and 6 GeV/c, without nf p counterpart. 



from the discrepancies between measured and interpolated values. In this 
transition region, a discontinuity requiring a smooth connection of the 
same type occurs also for the systematic errors on the quantities o"). 

For the data from Ref. 16 up to 6 GeV, I did not use the published values, 
but (as now currently accepted) the corresponding ones reported in Ref. 1, 
which include a correction coming from an improved extrapolation to 
zero angle. I had to smooth out a few n' p values slightly off the trend in 
order to avoid discontinuities in the difference o(-), which, in this region, 
is very sensitive to small changes of trend in o,, and can be used to spot 
what points is best to "amend". Notice that also in this experiment there 
is a partia1 compensation of the systematic effects for o'-'; the appropriate 
systematic errors (not given by Eqs. (2) and (3)) have been taken from the 
experimental paper. 

.In the energy region above 6 GeV, one first meets the problem of the bad 
junction between the nf p data sets from Refs. 16 and 17. In order to obtain 
a satisfactory connection, I had to use interpolated values over a sizable 
range of energies, with large errors associated to the points that do not 
"match" well. The connection of the n - p  data, instead, does not create 
difficulties. The combined errors reported for the points from Ref. 17 have 
been undone by assuming a statistical error equal to 0.1% of the measured 
cross section, as indicated in the experimental paper. However, the quoted 
errors seem to have been underestimated, in view of the not too good 
point-to-point precision shown by the data in question, especially around 
20 GeV. As a consequence of this, also in this region there are some "smo- 
othed-out" points with a larger statistical error. 

Coming finally to the data from the Serpukhov e ~ ~ e r i m e n t s ~ ~ , ' ~ ,  they 
have a poor point-to-point precision and a zigzagging trend, which makes 
it impossible to extract a smooth reference behaviour from the data them- 
selves. Therefore, I used them in order to derive the Regge asymptotic 
behaviour of the cross sections (to be also used as reference trend above 
30 GeV) through a best-fit procedure. The statistical errors on my points, 
lying on the reference Regge curve, have been evaluated again according 
to the criterion of Fig. 9; the systematic errors have been taken directly 
from the experiment. Details on the Regge-pole fitting procedure can be 
found in Appendix 11. 

Notice that the Tables for o") stop at 35 GeV because, above this energy, 
the crossing-even and -odd cross sections are completely represented by 
the asymptotic formula. For o', on the contrary, the presence of experi- 



mental measurements calls for an independent evaluation of the errors. 
This fact créates a slight difficulty in Tables 6 and 7, where, for the sake 
of completeness, the values of A ,  have been calculated also above 70 GeV 
by combining the Regge expression assumed for A"'. In this way, at 70 GeV 
there would occur a strong discontinuity in the errors, which, however, 
has been "amended by interpolation. It is perhaps superfluous to recall 
that, in this region, the higher the energy, the more dependent the ampli- 
tudes on the details of the assumed Regge behaviour, and the less reliable 
the indications of the Tables. However, a remarkable feature of the ampli- 
tudes, namely the marked difference in value and trend of D+ and D- 
above 100 GeV, is shown also by the data listed in Ref. 3, which have 
been obtained under different assumptions about the asymptotic behaviour 
of the total cross sections. 

Appendix I1 

As mentioned previously, the treatment of the high-energy data is strictly 
connected with the problem of finding an extrapolation of the scattering 
amplitude into the asymptotic region not yet experimentally reached. 
Before the data at today's highest energies became available, the situation 
looked rather simple and clear-cut, because the asymptotic trend could 
be easily parametrized in terms of a few leading Regge poles. In particular, 
the crossing-odd amplitude (to which only Regge poles with the quantum 
numbers of the p meson can contribute) was well represented by a single 
pole t e m  (the p pole), yielding the following formula for the total cross 
section : 

(where the factor of 2 has been inserted in order to conform to the current 
notation). Instead, the crossing-even amplitude (built up from the poles 
with the quantum numbers of the vacuum) required one leading singularity 
(P) with the maximum value possible for the intercept (a, = I), that ensured 
a constant limit for a11 cross sections at infinite energy(*), plus one or two 
additional poles with lower intercepts (P', P"). For example, a two-pole 
fit for o(+) reads: 

o"' = 2(pp + pp pUp,-l). (20) 

(*)The possibility of having c(, slightly lower than 1 was also investigated, but no conclusive 
evidence was obtained on this point. 
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The recent Serpukhov and the indication, which seems to come 
from the colliding-beam experiments performed at CERN, that the total 
proton-proton cross section at 1500 GeV may be larger than at 50 GeV 
(Ref. 33), have failed to confirm the simple picture implied by the validity 
of equations like (19) or (20) and have shown the likely presence of other 
Regge singularities together with (or instead of) the poles. In spite of the 
large effort spent in order to clarify this matter, the situation is still quite 
confused today. Until further experimental information becomes available, 
a paper like the present one, or another one of similar kiiid (e.g Ref. 3), 
cannot venture into a discussion of this problem and must be content 
with some heuristic assumptions about the high-energy behaviour of the 
cross sections, allowing one to calculate the dispersion integrals. 

For this purpose, I have retained the simple expressions (19) and (20), 
even if they are clearly inadequate; indeed as long as one manages to fit 
the data below 60 GeV reasonably, this choice should not have a strong 
influence on the real parts at low and intermediate energies. (Instead, the 
values given for the real parts at high energies are likely to change as soon 
as a reliable asymptotic theory becomes available). The choice of the 
parameters appearing in these expressions is to be obtained from some 
sort of fitting of today's high-energy experimental data, and the observed, 
unavoidable discrepancies should be accounted for by a proper choice 
of the errors. 

I performed a best fit on the experimental values of a(-' above 6 GeV 
(Refs. 16 to 19), by using expression (19) and statistical errors only, and I 
obtained the values of a, and P, presented in Table A1 below under the 
heading "set BF3'(*). Instead, Hohler and S t r a u ~ s ~ , ~  noticed that a lower 
value of a, is required in order to fit the high-energy charge-exchange 
cross ~ e c t i o n s ~ ~ , ~ *  ; they suggested the parameters presented in Table A1 
under the heading "set HS". In this work, I compromised with an inter- 
mediate solution, giving halfway values for o(-) in the range 6-60 GeV/c, 
and I attached a statistical error to both P, and a,, such that the values 
of the other two sets fall within them(**). I attributed also a pair of syste- 

(*)It should be noticed that a fit based on finite-energy sum rules (Ref. (4)) yields a larger value 
for a, (- 0.6). 
(**)The errors on a, and p, are treated as independent, although they are obviously correlated. 
By neglecting such a correlation, the final error on the real parts is increased: however, I am 
not going to be worried by such an overestimate, in view of the uncertain shape in which the 
asymptotic theory is. 



matic errors to p,, in order to get a rough reproduction of the systematic 
errors in the high-energy o(-) values listed in Table 2, and to match them 
at the highest energy considered there (35 GeV). The final set of values is 
reported in Table A1 under the heading "set F .  

For the crossing-even amplitude, the situation is even less favourable. 
Indeed, the change of trend between the data below and above 20 GeV/c 
is so sharp that a best-fit procedure with a formula of the type (20) is bound 
to give unsatisfactory results(*); neither there is additional information 
(like 71-p charge-exchange for the antisymmetric amplitude) giving a 
further hint for the choice of the parametem(**). I shall then proceed by 
an indirect way, namely: i) by considering o(-) as given by Eq. (19), with 
the parameters taken from set F; ii) by fitting the n- p and n+ p data above 
30 GeV simultaneously, using linear combinations of Eqs. (19) and (20). 
In such a fit, the only free parameters are those of the vacuum poles; howe- 
ver, a three-parameter fit is inconclusive, in the sense that severa1 combi- 
nations of a,,, /?,, /?,, allow a fit with a reasonable XZ value. However, in 
a11 such fits a,, turns out to be small (of the order of 0.1); a discussion on 
this point can be found in Ref. 6. Thus, I fixed a,, = 0.1 and found the 
parameters /?, and listed in Table A2 below. As far as the errors are 
concerned, in the present situation it is meaningless to attribute a separate 
error to each parameter; I introduced a set of overall scale errors (also 
reported in Table A2), which roughly reproduces the errors on o(+ ), obtained 
by combining the errors on o+ and o- in the standard way. 

Set Bo ~ y s t .  errors in jP 

Table Al.  Values of the parameters for the asymptotic expression of o(- ) ,  Eq. (19). [The units 
for the p s  are chosen in such a way that, when p is expressed in GeV/c in Eqs. (19) and (20), 
o comes out in mb]. 

(*)In order to cope with this diffículty, Hohler and Strauss in Ref. 3 (latest version) used a 
different parametrization for a(+), namely, a constant plus an exponential. I am reluctant 
to adopt this choice because it is extraneous to most current theoretical models. See anyway 
Ref. 3 and the papers quoted there for a discussion about the influente of the asymptotic 
parametrization on the high-energy real parts. 
(**)There would be one if nOp elastic scattering could be performed experimentally. 



-- 

"P, PP' PP Scale errors 

O. 1 17.51 23.29 Stat. = + 0.006 
(fíxed) Syst. = + 0.005 

- 
Table A2. Values of the parameters for the asymptotic expression of o'+', Eq. (20). [For the 
units used for the Ps, see caption of Table A I]. 

Appendix 111 

This 4ppendix will be devoted to the discussion of the computational 
problems arising in the calculation of the real parts and their errors. Since 
the primary output of the DR calculations are the subtracted real parts 
listed in Table 3, 1 will, in this Appendix, refer to such quantities only. 

First of all, in the physical region, in order not to waste part of the infor- 
mation supplied by the input data, I did not calculate Eqs. (7) and (8) 
directly at the energies where also the input cross sections are given; instead, 
I calculated the above relations (together with the corresponding errors) 
at the mid-points between two consecutive energy values and then I inter- 
polated a11 the results at the required energies through formula (18)(*). 
Of course in the unphysical region and in the Regge region the evaluation 
of the dispersive integrals (7) and (8) has been directly performed at the 
energies of interest. 

Coming to the evaluation of the errors, of course I cannot agree with what 
has been written on this subject in the latest version of the compilation 
by Hohler and Strauss3, namely: "To our knowledge, a convincing method 
for calculating errors on Re f' does not exist, since principal-value integrals 
are involved. It is clear that one has to smooth the experimental G, data, 
but in general one does not know whether a small structure shoild be 
taken seriously or ignored as an experimental error". In my opinion. the 
above dilemma does not exist, because, by the mere fact of smoothing 
out the data, one assumes (and could not do otherwise) that there are no 
relevant structures of the input cross sections over energy intervals of the 

(*)See the remark made in Appendix I about the use of this formula for the interpolation 
of the errors. 



order of the present experimental resolution. This hypothesis is not made 
just for the sake of convenience, in order that the results obtained be mea- 
ningful, but it stems from our present knowledge about the experimental 
situation and the theoretical pattern on which we believe it is based. Thus 
the use of the propagation formula for the calculation of the statistical 
errors is certainly correct, at least as far as the size of the effect is concerned(*). 

In order to judge about the reliability of such an estimate in more detail, 
the question to raise should rather be of the following kind: even by admit- 
ting the smoothness of the input data, there are many ways to perform a 
smooth connection within a given set of points. How does the choice of 
the interpolating function influence the final result and its calculated 
error? 

A further question is whether the numerical calculation, usually carried 
out by means of a computer, may introduce unpredictable errors in the 
delicate process of principal-value integration. 

I tried to give an answer to these questions by choosing different alterna- 
tives and by comparing their results. The reference values reported in 
Table 3 have been obtained by integration of a function built by connecting 
any two consecutive a vahes by means of the same cubic interpolation 
formula, Eq. (18), used for the rearrangement of the cross sections. The 
interpolation was made in the variable v.  Alternatively, I tried also a linear 
connection between pairs of consecutive o values, and interpolated also 
in the variable p for both cases. A11 such interpolations have the advantage 
that the integrals can be performed analytically, thus cancelling the pos- 
sible source of error coming from the numerical approximations of the 
computer routines. Comparison of the results has shown that the inter- 
polations in v and p are substantially equivalent, even at low energies. 

Instead, substituion of the linear in place of the cubic interpolation changes 
the real parts by an amount which is generally small with respect to the 
corresponding calculated statistical error, but for certain points can be 
of its size; the situation is a little less favourable in the case of DF:), for 
which occasionally the discrepancy can amount to about twice the calcul- 
ated statistical error. However, above 1.2-1.4 GeV, such discrepancies 

(*)Let me also add that the smoothing criterion adopted in this work (cf. Fig. 9) takes partly 
account of the presence of the mentioned "small structures". 



become negligible. It can be safely concluded that the operation of folding 
quadratically this additional discrepancy into the obtained error would 
be more than adequately represented by multiplying the latter by a factor 
of 4. 
An additional remark is that the error from a propagation formula depends 
on the number N of points used, and decreases like 1/fi for increasing 
N. Now, in order to obtain a regular energy spacing and to bring the data 
to common energies, I have increased the number of experimental points 
reported in Tables 1 and 2 with respect to the original raw data by about 
a factor of 2. Taking a further factor of $ on the error to account for this 
effect, I can conclude that the calculated statistical errors listed in Table 3 
are reliable, loosely speaking, within a factor of 2. In any case, they are 
generally smaller than the systematic errors, on which the choice of the 
interpolation procedure causes a negligible variation. 

At this point, I have only to explain how I obtained the sets of systematic 
errors presented in the Tables. The criterion for the calculation of the 
correlated systematic errors has been already outlined in the text (Sec. 2). 
I increased (decreased) the input cross sections by their maximum positive 
(negative) systematic errors; I repeated the real-part calculation with such 
sets and I deduced the positive and negative systematic errors affecting 
the central values by taking the difference with the latter. For the maximum 
systematic errors, I used the same difference criterion; however, the input 
values were partly increased, partly decreased, with the aim of maximizing 
the discrepancy on either side of the obtained real parts. However, I sub- 
jected this procedure to the constraint that systematic errors should be 
taken with a constant sign within each energy range spanned by a single 
experiment. Considering positive errors for definiteness, it is clear that the 
maximum effect at a given energy v would be obtained by matching the 
sign of the assumed input systematic errors with that of the weight func- 
tion: namely, by assuming negative systematic errors on o(vf) for v' < v 
and positive ones for v' > v(*). If v falls in a transition region between 
two experiments, this is just the choice I made. Instead, if v falls into the 
"body" of an experimental set, I applied the above criterion only to the 
points not belonging to that set; within the set, for each energy, I tried 
both signs (kept constant) and retained the one giving the larger discre- 
pancy. Thus the oscillating behaviour of such maximum errors, increasing 

(*)I am grateful to G. Violini for pointing out this procedure to me. 



from the centre to the ends of the experimental sets, and showing marked 
humps in the transition regions (cf. the plots of Sec. 7) is explained. However, 
such "structures" merely reflect the fact that the input data at the transition 
regions are affected by a larger uncertainty than elsewhere; they should 
not be taken too literally. For pratica1 reasons, I had to introduce some 
oversimplifications in the above analysis: in particular, I (improperly) 
treated the points in the very-low-energy region and in the Regge region 
as experimental sets (in the sense previously explained); moreover, I neglec- 
ted possible variations of the systematic error size within each set. As a 
consequence, in the above computation, one should not clairn an accuracy 
of evaluation which is practically unattainable, b,ut one should rather 
consider the obtained maximum errors as fair estimates of the effect. As 
previously stated, the systematic errors are insensitive to the change of 
the interpolating function. 

In order to close, I shall list a few data concerning the theoretical treatment 
of the threshold region (Sections 5 and 6): namely, the assumed values 
for the parameters 6;'' and the expressions of the functions q (as defined by 
Eq. (11) for the crossing-odd case and by an analogous formula valid for 
D',+,) in the crossing-even case). Table A3 below gives the list of a11 these 
quantities. 

Table A3. Parameters and functions necessary for the calculation of the amplitudes in the 
very-low-energy region (cf. Sections 5 and 6): 

6:-' = (- 3.4 _+ 2.6) mb; syst. errors = (f 1.2, - 2.4) mb; 

6:') = (4.3 I 2.6) mb; syst. errors = (+ 2.4, - 1.2) mb; 
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0.43 
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0.30 
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0.24 
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0.015 
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0.40 
0.30 
0.24 
0.20 
0.20 
0.20 
o. 20 
0.20 
o. 20 
0.20 
o. 20 
0.20 
0.20 
0.20 
o. 20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
o. 20 
0.20 
0.20 

STAT. 
E R R .  

0.030 
0.030 
0.030 
0.030 
0.029 
0.08 
0.08 
0.08 
0.08 
0.035 
O. 03.0 
0.025 
0.020 
o. 0 2 0  
0.020 
0.020 
0.020 
0.020 
0.020 
0.020 
0.020 
0.020 
0.015 
0.015 
0.031 
0.015 
0.015 
0.034 
o. 022 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.012 
0.010 

SYST. E R R O R S  
POS. 

0.26 
0.26 
0.26 
0.28 
0.29 
0.30 
0.32 
0.36 
0.40 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 
0.45 



T 
I GEV I 

4.7924 
4.8923 
4.9923 
5.0923 
5.1922 
5.3022 
5.4C22 
5.5021 
5.602 1 
5.7021 
5.8020 
5.9020 
6.302 
6.861 
7.861 
8.861 
9.861 

10.861 
11.861 
12.861 
13.861 
14.861 
15.861 
16.861 
17.861 
18.861 
19.860 
21.860 
23.860 
25.860 
27.860 
29.860 
34.860 
39.860 
44.860 
49.860 
54.860 
59.860 
64.860 

SIGMA- 
IMBJ 

29.339 
29.239 
29.134 
29.030 
28.931 
28.832 
28.749 
28.670 
28.593 
28.523 
28.460 
28.406 
28.194 
27.927 
27.494 
27.120 
26.800 
26.528 
26.297 
26.102 
25.935 
25.788 
25.663 
25.545 
25.433 
25.330 
25.238 
25.087 
24.969 
24.873 
24.797 
24.727 
24.576 
24.464 
24.3 73 
24.298 
24.235 
24. 182 
24.136 

TABLE 

S T A T .  
ERR. 

0.010 
0.010 
0.016 
0.010 
0.010 
0.031 
0.038 
0.025 
0.025 
0.027 
0.041 
0.045 
O. O9 
O. I 6  
0.030 
0.028 
0.027 
0.030 
0.033 
0.030 
O. O26 
0.026 
0.031 
0.025 
O. O72 
0.027 
0.078 
0.030 
0.025 
0.050 
0.025 
0.10 
O. 18 
O. I 7  
0.12 
0.09 
O. O9 
O. O9 
O. 14 

S Y S T .  ERRORS 
POS. NEG. 

STAT. 
ERR. 

0.021 
0,010 
O. O26 
0.010 
0.016 
0.018 
0.010 
0.025 
0.047 
0.028 
0.038 
0.057 
O. 13 
O. 19 
0.25 
O. 19 
O. 13 
o. 10 
0.071 
0.047 
O. O24 
0.024 
0.024 
O. 047 
0.070 
O. 046 
0.023 
0.24 
0.18 
0.20 
0.20 
0.21 
0.39 
0.32 
O. 24 
0.24 
0.20 
0.21 
O. 34  

S Y S T .  ERRORS 
POS. 



T O T A L  CRCSS S E C T I O N S  F O R  THE 

STAT. 
ERR. 

1.48 
1 .O6 
1.02 
1 .O3 
0.99 
0.94 
0.94 
0.94 
0.94 
0.94 
1.28 
1.28 
1.28 
0.48 
0.30 
0.26 
0.27 
0.31 
0.35 
0.39 
1.12 
0.46 
0.47 
0.45 
0.48 
0.49 
0.48 
0.49 
O. 50 
0.50 
0.50 
0.49 
0.47 
0.41 
0.35 
0.32 
0.30 
0.28 
0.25 

CROSSING- EVEN ANO 

SYST.  ERRORS 
POS. 

0.69 
0.50 
0.50 
0.60 
0.95 
1.30 
1.30 
1.30 
1.30 
1 - 3 0  
1.30 
1.30 
1.20 
0.85 
0.42 
0.28 
0.29 
0.41 
0.53 
0.59 
0.61 
0.65 
0.68 
0.66 
0.67 
0.88 
0.89 
0.89 
0.91 
0.92 
0.91 
0.85 
O. 77  
0.68 
0.59 
0.50 
0.44 
0.36 
0.35 

STAT. 
ERR. 

1.26 
0.97 
0.99 
1.03 
0.99 
0.94 
0.94 
0.94 
0.94 
0.94 
1.28 
1.28 
1.28 
0.48 
O. 30 
0.26 
0.27 
0.31 
0.35 
0.39 
1.12 
0.46 
0.47 
0.45 
0.48 
0.49 
0.48 
0.49 
O. 50 
O. 50 
O. 50 
0.49 
0.47 
0.41 
0.35 
0.32 
0.30 
0.28 
0.25 

SY:ST. ERRORS 
POS. 

0.32 
0.60 
0.70 
0.90 
1.10 
1.30 
1 - 3 0  
1.30 
1.30 
1.30 
1.30 
1.30 
1.20 
0.85 
0.42 
0.28 
0.29 
0.41 
0.53 
0.59 
0.61 
0.65 
0.68 
0.66 
0.67 
0.88 
0.89 
0.89 
0.91 
0.92 
0.91 
0.85 
0.77 
0.68 
0.59 
0.50 
0.44 
0.36 
0.35 



TABLE 

STAT. 
ERR. 

O. 3 2  
0.85 
0.85 
0.85 
0.046 
0.043 
0.040 
0.039 
0.038 
OC.037 
0.038 
O. 040 
0.044 
O. O48 
0.221 
0.048 
0.205 
0.046 
0.045 
0.043 
O. O42 
0.440 
0.039 
0.039 
O 040 
0.040 
0.041 
O. 043 
O. O46 
0.048 
0.050 
0.053 
0.056 
0.059 
0.061 
O. O63 
0.065 
0.371 
0.066 
0.066 

Z (CTD. 

SYST. ERRORS SIGMAí-1 
POS. 

- .  

NEG. ( M 8 I  
STAT. 

ERR. 

O. 32 
O. 85 
0.85 
0.85 
0.046 
O. 043 
0 040 
0.039 
0.038 
0.037 
0.038 
0.040 
O O44 
0.048 
0.221 
0.048 
0.205 
0.046 
O. 045 
0.043 
0.042 
0.440 
0.039 
0.039 
0.040 
0.040 
0.041 
O. 043 
0.046 
0.048 
0.050 
0.053 
0.056 
O 059 
0.061 
0.063 
0.065 
0.371 
0.066 
0.066 

SYST. ERRORS 
PCS. 

0.50 
0.84 
1.17 
1.47 
1.51 
1 - 2 6  
1.09 
1 .o0 
0.82 
0.74 
0.57 
0.51 
0.44 
0.46 
O - 4 5  
0.45 
0.45 
0.44 
O - 4 3  
0.42 
0.40 
0.39 
0.39 
0.39 
0.39 
0.39 
0.39 
0.38 
0.37 
0.37 
0.37 
0.37 
0.37 
0.36 
0.36 
0.35 
0.34 
0.35 
0.35 
0.35 



T 
I GEV I 

0.8800 
0.8949 
0.9C72 
0.9196 
0.9320 
0.9444 
0.9568 
0.9692 
0.9816 
0.9940 
1.0188 
1.0437 
1.0685 
1 .O933 
1.1182 
1. 1306 
1.1430 
1.1554 
1.1679 
1.1927 
1.2176 
1.2425 
1.2673 
1.2922 
1.3171 
1.3420 
1 3669 
1 3838 
1.4017 
1.4167 
1.4416 
1.4665 
1.4914 
1.5163 
1.5412 
1.5t6l 
1.5910 
1.6160 
1.6409 
1.6658 

T A B L E  

S T A T .  
ERR. 

O O65 
0.063 
0.061 
O. 207 
P.058 
O. O56 
0.054 
0.052 
O -05 1 
O. 049 
0.048 
0.048 
0.048 
0.048 
0.050 
O. 050 
O O60 
0.050 
0.052 
0.053 
0.089 
0.054 
0.055 
0.055 
0.065 
O. 194 
0.054 
0.203 
0.052 
0.052 
0.051 
0.050 
O. 049 
0.252 
0.115 
0.048 
0.047 
0.047 
O. O68 
0.047 

2 ( C T C .  1 

SYST.  ERRORS 
POS. 

0.35 
0.35 
0.35 
0.35 
0.36 
0.36 
0.37 
0.37 
0.37 
0.37 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.37 
O. 36 
0.35 
0.35 
0.34 
0.34 
0.34 
0.36 
0.36 
0.36 
0.36 
0.36 
O. 36 
0.37 
0.38 
0.39 
0.42 
0.43 
0.45 
0.47 
0.48 

NEG. 

0.35 
O. 35 
0.35 
0.35 
0.36 
0.36 
0.37 
0.37 
0.37 
0.37 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.37 
0.36 
0.35 
0.35 
0.34 
0.34 
0.34 
0.36 
0.36 
O. 36 
0.36 
0.36 
0.36 
O. 37 
0.38 
0.39 
0.42 
0.43 
0.45 
0.47 
0.48 

S T A T .  
ERR. 

0.065 
0.063 
0.061 
0.207 
0.058 
0.056 
O. 054 
0.052 
0.051 
0.649 
0.048 
0.048 
0.048 
0.048 
0.050 
O. 050 
0.060 
0.050 
0.052 
0.053 
0.089 
0.054 
0.055 
0.055 
0.065 
o. 194 
0.054 
0.203 
0.052 
0.052 
0.051 
0.050 
O 049 
0.252 
0.115 
0.048 
0.047 
0.047 
0.068 
O. O47 

SYST.  ERRORS 
PCS. 

0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
O. 35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
O .35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 



T 
1 CEV ) 

1.6907 
1.7157 
l.74C6 
1.7815 
1.8154 
1.8653 
1.9151 
1.9401 
1.9650 
2.0149 
2.0648 
2.1147 
2. I 6 4 6  
2.2145 
2.2645 
2.3144 
2.3843 
2 - 4 8 4  1 
2.5840 
2.6839 
2.7837 
2.8836 
2.9835 
3.0834 
3.1833 
3.2832 
3.3832 
3.4831 
3.5830 
3.6829 
3.7929 
3.8928 
3.9928 
4.0927 
4.1926 
4.2926 
4.3925 
4.4925 
4.5925 
4.6924 

TABLE 

STAT. 
ERR. 

0.192 
O. O46 
0.047 
0.173 
0.046 
O. O88 
0.088 
O. 113 
0.262 
0.050 
0.047 
0.044 
0.040 
0.040 
0.039 
0.251 
0.261 
0.102 
0.030 
0.030 
0.031 
0.030 
0.025 
0.025 
0.034 
0.037 
0.025 
O. 0 3 7  
0.038 
0.015 
0.049 
0.015 
0.015 
O. 0 4 2  
0.015 
0.015 
0.015 
0.015 
0.023 
0.017 

2 íCTC.1 

SYST. ERRORS 
NEG. 

0.51 
0.52 
0.52 
0.53 
0.54 
0.56 
0.62 
0.61 
0.60 
O. 54  
0.56 
0.60 
0.60 
0.59 
0.63 
0.60 
0.50 
O. 4 4  
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
O. 4 0  
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 

STAT. 
ERR. 

O. 192 
0.046 
0.047 
O. 173 
0.046 
0.088 
0.088 
O. 113 
0.262 
0.050 
O O47 
0.044 
O. 040 
0.040 
0.039 
0.251 
0.261 
0.102 
O. 030 
0.030 
0.031 
0.030 
0.025 
0.025 
0.034 
0.037 
0.025 
0.037 
0.038 
0.015 
O. O49 
0.015 
0.015 
0.042 
0.015 
0.015 
0.015 
0.015 
O. 023 
0.017 

SYST. ERRORS 
PCS. 

0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.39 
0.44 
0.54 
0.56 
0.60 
0.60 
0.59 
0.50 
0.50 
0.40 
0.33 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 







TABLE 3 

S T A T .  CORR. SYST.ERR. 
EKR. POS. NEG. 

0,109 
O. 105 
0.102 
0.098 
0.092 
0.084 
0.080 
0.078 
0.078 
0,081 
0.086 
0.095 
0.109 
0.126 
0.134 
0.128 
0.105 
0.076 
0.049 
0.041 
0.034 
0.029 
0.027 
0.027 
0.031 
0.037 
0.038 
0.039 
0.040 
0.040 
0.040 
0.040 
0.039 
0.040 
0.041 
0.042 
0.042 
0.042 
0.042 
0.042 
0.042 
0.042 
0.043 
0.043 
0.043 
0.043 
0.043 

STAT. CORR.SYST.ERR. 
ERR. POS. NEG. POS. 

0.020 
0.019 
0.019 
0.020 
0.023 
0.027 
0.031 
0.035 
0.038 
0.041 
0.045 
0.050 
0.055 
0.074 
0.103 
O. 119 
O. 139 
0.120 
0.051 
0.038 
0.036 
0.040 
0.042 
0.043 
0.042 
0.039 
O. 039 
0.039 
0.039 
0.039 
O. 040 
0.041 
0.041 
0.041 
0.041 
0.041 
0.041 
0.041 
0.042 
0.043 
0.043 
0.044 
0.044 
0.044 
0.044 
O. 045 
0.046 



STAT. C O R R .  S Y S T . E R R .  
E R R .  POS. N E G .  



T A B L E  3 

S T A T .  CCKR.SYST.ERR.  RAX.SYST.ERR.  
ERR. POS.  NEG. POS. hEG. 

S T A T -  
ERR- 

0.0155 
0.0132 
0.0181 
0.0166 
0.0123 
0.0181 
0.0294 
0.0343 
0.0184 
0.0125 
0.0114 
0.0120 
0.0142 
0.0261 
0.0402 
0.0408 
0.0259 
0.0154 
0.0112 
0.0106 
0.0102 
0.0100 
0.0103 
0.0113 
0.0118 
0.0119 
0.0128 
0.0131 
0.0133 
0.0145 
0.0138 
0.0139 
0.0154 
0.0151 
0.0147 
0.0154 
0.0164 
0.0116 
0.0187 
0.0198 
0.0213 
0.0229 
0.0242 

POS. 

0.0440 
0.0447 
0.0481 
0.0514 
0.0590 
0.0668 
0.0687 
0.0683 
0.0671 
0.0649 
0.0566 
0.0497 
0.0500 
0.0514 
0.0468 
0.0352 
0.0204 
0.0152 
0.0129 
0.0089 
0.0047 
0.0006 

-0.0036 
-0.0079 
-0.0122 
-0.0166 
-0.021 1 
-0.026 
-0.030 
-0.036 
-0.041 
-0.046 
-0.052 
-0.057 
-0.063 
-0.069 
-0.075 
-0.082 
-0.089 
-0.096 
-0.104 
-0.1 12 
-0.120 

POS. 

0.146 
0.156 
0.172 
0.188 
0.216 
0.264 
0.304 
0.368 
0.467 
0.474 
0.492 
0.509 
0.526 
0.552 
0.561 
0.531 
0.522 
0.447 
0.327 
0.286 
0.261 
0.241 
0.226 
0.213 
0.202 
O. 192 
0.183 
0.174 
0.166 
0.158 
0.149 
O. 150 
0.159 
0.168 
0.177 
O. 187 
0.197 
0.209 
0.221 
0.234 
0.249 
0.264 
0.282 
0.301 
0.325 
0.350 
0.379 



TPBLE 3 íCT0. I  

ERR. 

0.0170 
0.0171 
0.0174 
0.0179 
0.0195 
0.0225 
0.02C9 
0.0199 
0.0183 
0.0174 
0 - 0 1 7 1  
0.0166 
0.0164 
0.0163 
0.0164 
0.0165 
0.0167 
0.0174 
0.0184 
0.0197 
0.0190 
0.0183 
0.0188 
0.0192 
0.0198 

0.C207 
0.0181 
0.0163 
0.0152 
0.0145 
0.0139 
0.0134 
0.0126 
0.0120 
0.01 I 6  
0.0100 
0.0090 
0.0066 

POS. 

0.0205 
0.0202 
0.0199 
0.0196 
0.0181 
0.0159 
0.0130 
0.01 1 0  
0.0101 
0.0103 
0.0116 
0.0131 
0.0137 
0.0140 
0.0141 
0.0143 
0.0144 
0.0145 
0.0147 
0.0150 
0.0147 
0.0139 
0.0129 
0.0122 
0.0109 

0.0104 
0.0095 
0.0090 
0.0086 
0.0082 
0.0079 
C.0076 
0.0071 
0.0067 
O.CO64 
C.0053 
0.0047 
0.0032 

STAT. CORR.SYST.ERR. 
NEG. 

MAX.SYST.ERR. DFSt + I 
POS. NEG. (MBGEVI 





A I - ,  
lN.U.1 

0.4806 
0.5618 
0.6071 
0.6305 
0.6337 
0.6134 
0.5901 
O. 5620 
0.5319 
0.5031 
0.4795 
0.4592 
0.4515 
0.4550 
0.4653 
0.4932 
0.5368 
0.5799 
0.6296 
0.6910 
0.7661 
0.8408 
0.9068 
0.9638 
1 .O093 
1.0283 
1.0359 
1.0380 
1 .O342 
0.9805 
0.9195 
0.8592 
0.8040 
0.7399 
0.6546 
0.5760 
0.5108 
0.4576 
0.3792 
0.3135 
0.2478 
O. 1956 
0.1410 
0.1100 
0.0771 
0.0485 
0.0219 

-0.0369 
-0.0878 
-0.1278 
-0.1611 
-0.1952 

STAT.  
ERR. 

0,0008 
0.000V 
0.0044 
0.0010 
C.0043 
0.0010 
0.0010 
0.0010 
0.0009 
0.0100 
Oi0009 
0,0009 
C.0009 
0.0010 
O&OlO 
0.001 1 
0.00 12 
0.0012 
C.0013 
0.0014 
0.0015 
0.0016 
0.0017 
0.0018 
0.0018 
0.0105 
0.0019 
0.0019 
0.0019 
0.0019 
0.0018 
0.0062 
0.0018 
0.0017 
0.0017 
0.0016 
0.0016 
0.0016 
0.0016 
0.0016 
0.0016 
0.0017 
C.0018 
0.0018 
0.0022 
0.0019 
0.0019 
0.0020 
0.0034 
0.0021 
0.0022 
0.0023 

S Y S T .  ERRORS 01-1 
POS. NEG. 1N.U. I 

STAT. 
ERR. 

0.0052 
0.0055 
O -0060 
O.UO6 1 
0.0058 
0.0056 
0.0055 
0.0056 
0.0069 
0.0082 
0.0070 
0.0058 
0.0057 
0.0057 
0.0057 
0.0058 
0.0058 
0.0059 
0.0059 
0.0060 
0.0061 
0.0061 
0.0062 
0.0062 
0.0078 
0.0093 
0.0082 
0.0068 
0.0067 
0.0065 
0.0070 
0.0075 
0.0071 
0.0067 
0.0068 
0.0068 
0.0069 
0.0069 
n ,,-v,, ".""." 
0.0071 
0.0073 
0.0074 
0.0076 
0.0077 
0.0077 
0.0019 
0.0079 
0.0081 
0.0083 
0.0084 
0.0085 
0.0087 

CORR. SYST.  ERR. 
POS. NEG. 



STAT.  
ERR. 

0.0027 
0.0082 
0.0023 
0.0088 
0.0023 
0.0023 
0.0023 
C.0023 
0.0023 
0.0119 
0.0055 
0.0023 
0.0023 
0.0023 
0.0034 
Ci0024 
0.0100 
0.0025 
C.0025 
0.0094 
0.0026 
C.0050 
0.0052 
0.0067 
0.0157 
0.0031 
0.0029 
C.0028 
0.0026 
0.0027 
C.0027 
0.0175 
0.0187 
0.0076 
C.0023 
0.0024 
0.0026 
0.0026 
0.0022 
0.0023 
0.0032 
C.0036 
0.0025 
0.0038 
0.0040 
C.0016 
C.0055 
0.0017 
0.0018 
C.0050 
0.0019 
0.0019 

S Y S T .  ERRORS 
N E G i  POS. 

0.014 
0.015 
0.015 
0.015 
0.015 
0.015 
0.016 
0.016 
0.016 
0.017 
0.017 
0.017 
0.017 
0.017 
0.018 
0.018 
0.018 
0.018 
0.019 
0.019 
0.019 
0.020 
0.020 
0.023 
0.026 
0.033 
0.035 
0.039 
0.039 
0.040 
O. 034 
0.035 
O. 029 
0.025 
0.019 
0.020 
0.021 
0.022 
0.022 
0.023 
O. 024 
O. 024 
0.025 
0.026 
O. 027 
0.027 
O. O28 
0.029 
0.029 
0.030 
0.031 
O. 032 

CORR. SYST. ERR. MAX. SYST. ERR. 
POS. NEG. PCS.  NEG. 



NU 
IGEVI 

4.5321 
4.6321 
4.7321 
4.8320 
4.9320 
5.0319 
5.1319 
5.2319 
5.3318 
5.4418 
5.5418 
5.6417 
5.7417 
5.8417 
5.9416 
6.0416 
6.442 
7.001 
8.001 
9.001 

10.001 
11.001 
12.001 
13.001 
14.001 
15.001 
16.001 
17.001 
18.001 
19.001 
20.000 
22.000 
24.COO 
26.000 
28.000 
30.000 
35.COO 

40.000 
,c n"" 

50.000 
55.000 
60.000 
65.000 
70.000 
80.000 
90.000 

100.000 
150.000 
200.000 
500.000 

STAT. 
ERR. 

0.0019 
0.0020 
0.0031 
0.0024 
0.0032 
0.0022 
0.0046 
0.0023 
0.0029 
0.0057 
0.0062 
0.0065 
0.0086 
0.0067 
0.0087 
0.0071 
0.013 
0.050 
C.046 
0.049 
0.029 
0.032 
0.031 
0.022 
0.016 
0.017 
0.018 
0.020 
0.021 
0.027 
0.046 
0.132 
0.069 
0.075 
0.080 
0.086 
0.090 

0.102 .,. ". , 6 8 

0.121 
0.130 
0.139 
0.148 
0.156 
0.173 
O. 189 
0.204 
0.276 
0.341 
0.657 

TABLE 4 ICTC.) 

SYST. ERRORS 01-) 
POS. NEG. IN.U.1 

STAT. 
ERR. 

0.0262 
0.0267 
0.0275 
0.0281 
0.0286 
0.0294 
0.0300 
0.0308 
0.0313 
0.0324 
a.0332 
0.0342 
0.0350 
0.0358 
0.0371 
0.0388 
0.045 
0.056 
O -060 
0-064 
0.066 
0.069 
O. 074 
0.077 
0.082 
0.088 
0.094 
0.101 
0.108 
0.119 
0.132 
0.155 
0.163 
0.171 
0.189 
0.206 
0.248 

0.297 
ü.iPi 
0.292 
0.300 
0.312 
0.324 
0-336 
0.361 
0.387 
0.416 
0.538 
0.645 
1.183 

CORR. SYST. ERR. 
POS. NEG. 

MAX. SYST. ERR. 
PCS. NEG. 



STAT. 
ERR. 

0.0000 
9.001 1 
0.0015 
0.0018 
0.0020 
0.0022 
0.0023 
0.0026 
0.0029 
0.0031 
0.0047 
0.0051 
0.0054 
0.0022 
0.0014 
0.0013 
0.0015 
0.0018 
0.0021 
0.0024 
0.0070 
0.0030 
0.0032 
0.0031 
0.0035 
0.0037 
0.0037 
0.0038 
0.0040 
0.0041 
C.0042 
0.0043 
0.0042 
0.0038 
C.0034 
0.0032 
0.0032 
0.0031 
0.0028 
0.0038 
0.0104 
0.0107 
0.0111 
Oi00O6 
0.0006 
0.0006 
0.0006 
0.0006 
0.0006 
0.0007 
0.0008 

TABLE 5 

COMPLETE CROSSlNü-EVEN AMPLITUOE 

SYST. ERRORS D1+1 
POS. 

0.0000 
0.0005 
O. 0007 
0.0010 
0.0019 
0.0030 
O. 0032 
0.0036 
0.0040 
0.0043 
0.0048 
0.0052 
0.0051 
0.0038 
0.0020 
0.0014 
0.0016 
O. 0024 
0.0032 
0.0037 
0.0038 
0.0042 
0.0046 
0.0046 
Oi0048 
0.0066 
0.0068 
O. 0070 
0.0073 
0.0075 
0.0076 
O. 0074 
O. C069 
0.0064 
OiO057 
0.0051 
0.0046 
0.0039 
0. O040 
O. 0059 
0.0103 
0.0148 
0.0193 
0.0205 
0.0180 
0.0163 
Oi0157 
0.0134 
0.0127 
0.0101 
0.0095 

-. . 
NEG. tN.U.1 

nrx. svsr. ERR. 
POS. NEG. 



STAT. 
ERR. 

0.0009 
0.0009 
0.0044 
0.0010 
C.0043 
0.0010 
0.0010 
0.0010 
0.0009 
0.0100 
0.0009 
0.0009 
0.0010 
0.0010 
0.0010 
C.OO1l 
0.001 1 
0.0012 
0.0013 
C.0014 
0.0015 
0.0016 
0.0017 
C.0018 
0.0018 
0.0105 
0.0019 
C.0019 
0.0019 
C.0018 
0.0018 
0.0062 
0.0018 
0.0017 
0.0017 
0.0016 
0.0016 
0.0016 
C.0016 
0.0016 
U e U U I b  
0.0017 
C.0018 
0.0018 
C.0022 
0.0018 
0.0019 
0.0020 
0.0034 
0.0071 
0.0022 
0.0022 

T L B L E  5 

SVST.  ERRORS 
POS. NEG. 

STAT-  C O R R i  SYST.  ERR. 
ERR. POS. NEG. 

nrx. s v s r .  ERR. 
POS. NEG. 





STAT. 
ERR. 

0.0019 
0.0020 
0.0031 
0.0023 
0.0032 
0.0022 
0.0046 
0.0022 
0.0029 
0.0056 
C.0062 
0.0065 
0.0087 
0.0075 
0.0117 
0.0167 
0.039 
0.050 
C.052 
C.049 
O:'O40 
0.031 
0.024 
0.022 
0.016 
0.017 
0.018 
0.024 
0.051 
C.027 
0.046 
0.151 
0.123 
0.148 
0.160 
0.214 
0.310 

0.328 
ü .306  
0.408 
0.447 
O. 487 
0.527 
0.567 
0.647 
0.727 
0.807 
1.206 
1.605 
3.998 

TABLE 5 

SYST. ERRORS 
POS. 

O. 116 
0.119 
o. 121 
0.124 
O. 127 
O. 129 
O. 132 
0.134 
O. 137 
O. 140 
O. 142 
O. 145 
O. 147 
O. 150 
O. 149 
O. 148 
O. 141 
0. 136 
0.119 
0.103 
0.080 
0.066 
0.051 
O. 056 
O. 060 
0.064 
0.068 
0.073 
0.077 
0.081 
0.086 
O. 100 
0.116 
0.134 
0.152 
O. 180 
0.240 

O. 273 
ü. M O  
O. 340 
0.373 
0.406 
0.439 
0.473 
O. 539 
0.606 
O. 672 
1.005 
1.337 
3.331 

NEG. 

0.052 
0.053 
0.054 
0.055 
0.056 
0.057 
0.059 
0.060 
0.061 
0.062 
0.063 
0.064 
0.065 
0.067 
0.068 
0.069 
0.072 
0.074 
0.073 
0.067 
0.057 
0.053 
0.051 
0.056 
0.060 
0.064 
0.068 
0.073 
0.077 
0.081 
0.086 
0.100 
0.116 
O. 134 
0.152 
O. 180 
0.240 

0.273 
ü .ãü0  
0.340 
0.373 
0.406 
0.439 
0.473 
0.539 
0.606 
0.672 
1.005 
1.337 
3.331 

CORR. SYST. ERR. 
POS. 

-0.025 
-0.027 
-0.029 
-0.032 
-0.034 
-0.037 
-0.040 
-0.043 
-0.046 
-0.050 
-0.054 
-0.058 
-0.063 
-0.069 
-0.076 
-0.081 
-0.097 
-0.112 
-0.133 
-0.146 
-0.149 
-0.144 
-0.129 
-0.114 
-0.106 
-0.100 
-0.095 
-0.090 
-0.085 
-0.080 
-0.074 
-0.061 
-0.051 
-0.042 
-0.031 
-0.023 
-0.033 

-Oi O50 
-u.u3 1 
-0.053 
-0.055 
-0.056 
-0.057 
-0.058 
-0.059 
-O. O60 
-0.061 
-0.064 
-0.065 
-0.070 

HAX. SYST. ERR. 
PCS. 

0.067 
0.071 
0.075 
O. 079 
0.084 
0.089 
0.095 
O. 101 
O. 108 
0.117 
O. 125 
O. 136 
O. 148 
O. 163 
0.184 
0.214 
0.272 
0.262 
O. 240 
0.185 
0.111 
O. 109 
O. 114 
O. 120 
0.130 
0.142 
0.158 
O. 177 
0.201 
0.235 
O. 293 
0.399 
0.443 
0.499 
O. 570 
0.624 
0.538 

0.368 
u.322 
0.311 
O. 303 
0.297 
0.292 
0.289 
0.283 
0-280 
0.277 
0.270 
0.267 
0.259 

NEG. 

0.073 
0.078 
0.084 
0.090 
0.097 
0.104 
0.112 
0.121 
O. 130 
0.141 
0.153 
0.167 
0.183 
0.204 
0.230 
0.264 
0.312 
0.329 
0.316 
0.265 
0.194 
0.192 
0.190 
O. 187 
0.193 
0.204 
0.217 
0.235 
0.258 
0.291 
O. 349 
0.454 
0.497 
0.553 
0.624 
0.677 
0.591 

0.421 
u . i i *  
0.363 
0.355 
o. 349 
0.344 
0.340 
0.335 
0-331 
0.329 
0.322 
0.318 
0.309 



TABLE 6 

COMPLETE AMPLITUDE FOR PI-P SCATTERING 

NU 
I GEV I 

O. 13958 
O. 14458 
0.14858 
O. 15258 
O. 15683 
0.16108 
O. 16438 
O. 17058 
O. 17658 
0.18108 
O. 18958 
O. 19758 
0.20458 
0.21118 
0.21658 
0.22658 
0.23558 
0.24558 
0.25358 
0.25858 
0.25998 
0.26658 
0.27558 
0.27958 
0.28958 
0.29858 
0.30258 
0.30758 
0.31258 
0.31758 
0.32458 
0.33458 
0.34458 
0.35658 
0.36858 
0.38158 
0.39458 
0.40Ç58 
0.42158 
0.43458 
0.44958 
0.46358 
0.47958 
0.4951 
0.5191 
0.5432 
0.5674 
0.5917 
0.6160 
0.6404 
0.6648 
0.6893 
0.7015 
0.7138 
0.7236 
0,7432 
0.7629 
0.7752 
0.7875 
0.7998 
0.8121 
0.8244 
0.8367 
0.8491 
0.86 14 
0.8737 
0.8861 
0.8984 
0.91C8 

STAT. 
ERR. 

0.0000 
0.0008 
0.0010 
0.0013 
0.0015 
0.0018 
0.0020 
0.0022 
0.0025 
0.0026 
0.0029 
0.0032 
0.0034 
0.0018 
0.0009 
O. 0008 
0.0007 
0.0007 
O. 0008 
0.0009 
O.OOC9 
0.0012 
0.0012 
0.0010 
0.0013 
0.0015 
0.0015 
0.0016 
0.0015 
0.0015 
0.0015 
0.0016 
0.0016 
0.0017 
0.0016 
0.0014 
0.0013 
0.0011 
0.0011 
0.0012 
0.0073 
0.0076 
0.0079 
0.0004 
0.0004 
0.0004 
0.0005 
0.0005 
O. 0005 
0.0006 
0.0007 
0.0008 
0.0009 
0.0044 
0.0009 
0-0099 
0.0009 
0.0009 
0.0009 
0.0009 
0.0100 
0.0008 
0.0008 
0.0009 
0.0009 
0.0009 
0.0010 
0.0010 
0.0011 

SYST. 
POS. 

0.0000 
0.0005 
0.0008 
0.001 1 
0.0015 
0.0018 
0.0020 
0.0022 
0.0025 
0.0026 
0.0029 
0.0032 
0.0030 
0.0016 
0.0004 
0.0004 
0.0005 
0.0009 
0.0010 
0.001 1 
0.001 1 
0.0010 
0.0012 
0.0012 
0.0014 
0.0017 
0.0017 
0.0017 
0.0018 
0.0019 
0.0019 
0.0019 
0.0018 
0.0017 
0.0015 
0.0012 
0.0013 
0.0010 
o.ou10 
0.0015 
0.0033 
0.0054 
0.0077 
0.0091 
0.0084 
0.0078 
0.0078 
0.0069 
0.0065 
0.0053 
O. 0050 
0.0040 
0.0047 
0.0048 
0.0049 
0,0060 
0.0051 
0.0050 
0.0051 
0.0049 
0.0048 
0.0049 
0.0049 
0.0050 
0.0051 
0.0052 
0.0050 
0.0048 
0.0049 

ERRORS 
NEG. 

0.0000 
0.0006 
0.0009 
0.0013 
0.0017 
0.0018 
0.0020 
0.0022 
0.0025 
0.0026 
0.0029 
0.0032 
0.0030 
0.0020 
0.0004 
0.0004 
0.0005 
0.0009 
0.0010 
0.0011 
0.001 1 
0.0010 
0.0012 
0.0012 
0.0014 
0.0017 
0.0017 
0.0017 
0.0018 
0.0019 
0.0019 
0.0019 
0.0018 
0.0017 
0.0015 
0.0012 
0.0013 
0.0010 
0.0010 
0.0015 
0.0033 
0.0054 
0.0077 
0.0091 
0.0084 
0.0078 
0.0078 
0.0069 
0.0065 
0.0053 
0.0050 
0.0040 
0.0047 
0.0048 
0.0049 
0.0060 
0.0051 
0.0050 
0.0051 
0.0049 
0.0048 
0.0049 
0.0049 
0.0050 
0.0051 
0.0052 
0.0050 
0.0048 
0.0049 

STAT. 
ERR. 

0.0140 
0.0139 
0.0138 
0.0137 
0.0136 
0.0135 
0.0135 
0.0133 
0.0133 
0.0133 
0.0132 
0.0132 
0.0'13T 
0.0129 
0.0127 
0.0126 
0.0125 
0.0125 
0.0124 
0.0135 
0.0137 
0.0124 
0.0125 
0.0125 
0.0123 
0.0125 
0.0124 
0.0124 
0.0124 
0.0124 
0.0123 
0.0123 
0.0123 
0.0122 
0.0122 
0.012'1 
0.0121 
0.0121 
0.0122 
0.0124 
0.0132 
0.0136 
0.0132 
0.0125 
0.01 19 
0.0118 
0.0118 
0.0118 
0.0118 
0.0118 
0.01 18 
0.01 18 
0.0119 
0.0120 
0.0120 
0.01m 
0.0119 
0.01 19 
0.01 19 
0.0122 
0.0126 
0.0122 
0.0119 
0.0119 
0.01 19 
0.01 19 
0.01 19 
0.0119 
0.01 19 

SYST. 
POS. 

0.0038 
0.0042 
0.0046 
0.0050 
0.0053 
0.0051 
0.0050 
0.0053 
0.0057 
0.0061 
0.0077 
0.0133 
0.0163 
0.0158 
0.0141 
0.0103 
0.0106 
0.0111 
0.01 11 
0.01 11 
0.01 10 
0.0107 
0.0104 
0.0104 
0.01 11 
0.0109 
0.0105 
0.0101 
0.0100 
0.0100 
0.0104 
0.01 16 
0.0130 
0.0144 
0.0157 
0.0170 
0.0185 
0.0203 
0.0221 
0.0290 
0.0396 
0.0452 
0.0521 
0.0455 
0.0209 
0.0163 
0.0147 
0.0143 
0.0143 
0.0142 
0.0143 
0.0144 
0.0145 
0.0146 
0.0147 
0 4 1 4 9  
0.0150 
0.0151 
0.0153 
0.0154 
0.0155 
0.0157 
0.0158 
0.0159 
0.0161 
0.0163 
0.0164 
0.0166 
0.0167 

ERRORS 
NEG. 

O. 0037 
0.0041 
0.0045 
0.0049 
O. 0052 
0.0050 
O. 0048 
0.0052 
0.0056 
0.0059 
0.0076 
0.0132 
0.0163 
0.0156 
0.0137 
0.0100 
0.0104 
0.0108 
0.0109 
0.0108 
0.0108 
0.0105 
0.0102 
a.0101 
0.0109 
0.0106 
0.0102 
O. 0098 
0.0097 
0.0097 
0.0101 
0.0113 
0.0127 
0.0140 
0.0154 
0.0166 
0.0180 
0.0198 
0.0217 
0.0286 
0.0391 
O. 0441 
0.0516 
0.0450 
Oi0203 
0.0156 
0.0140 
0.0136 
0.0135 
0.0134 
0.0135 
0.0136 
0.0136 
0.0137 
O. 01 37 
0.03aU 
0.0140 
0.0140 
8.0141 
0.0142 
0.0143 
0.0144 
0.0145 
0.0146 
0,0148 
0.0149 
0.0150 
0.0151 
0.0152 

29 1 



T A B L E  6 

S T A T .  
ERR. 

0.0012 
0.0013 
0.0014 
0.0015 
0.0015 
0.0016 
0.0017 
0.0105 
0.0017 
0.0017 

SYST.  
POS. 

0.0049 
0.0050 
0.0051 
0.0049 
0.0049 
0.0047 
0.0048 
0.0051 
0.0051 
0.0052 

ERRORS 
NEG. 

0.0049 
0.0050 
0.0051 
0.0049 
0.0049 
0.0047 
0.0048 
0.0051 
0.0051 
0.0052 

D- STAT.  S Y S T - E R R O R S  
[N.u.) ERR. Pas. NEG. 

0.3927 0.0119 0.0169 0.0153 
0.3971 0.011S' 0.0170 0.0155 
0.3817 0.01151 0.0172 0.0156 
0.3416 0.0119 C.0173 0.0157 



TABLE 6 ICTO.1 

SYST. 
POS. 

0.0362 
0.0375 
0.0388 
0.040 1 
0.0413 
0.0426 
0.0439 
0.0452 
0.0465 
0.0478 
0.0490 
0.0505 
0.0517 
0.0530 
0.0543 
0.056 
0.057 
0.058 
0.059 
0.061 
0.062 
0.063 
0.065 
0.066 
0.067 
0.068 
0.070 
0.071 
0.072 
0.074 
0.075 
0.073 
0.071 
0.061 
0.050 
0.034 
0.028 
0.023 
0.025 
0.027 
0.029 
0.031 
0.033 
0.035 
0.037 
0.040 
0.042 
0.044 
0.048 
0.053 
0.056 
0.063 
O. O77 
0.100 

0.114 
0.128 
O. *43 
0.157 
0.171 
O. 185 
0.22 
0.29 
0.36 
0.43 
0.62 
0.81 
1.90 

ERRORS 
NEG. 

0.0161 
0.0167 
0.0172 
0.0178 
0.0184 
0.0189 
0.0195 
0.0201 
0.0207 
0.0212 
0.0218 
0.0224 
0.0230 
0.0236 
0.0241 
0.025 
0.025 
0.026 
0.026 
0.027 
0.028 
0.028 
0.029 
0.029 
0.030 
0.030 
0.031 
0.032 
0.032 
0.033 
0.033 
0.034 
0.034 
0.035 
0.036 
O. O34 
0.028 
0.023 
0.025 
0.027 
0.029 
0.031 
0.033 
0.035 
0.037 
0.040 
0.042 
0.044 
0.048 
0.053 
0.056 
0.063 
0.077 
0.100 

0.1 14 
0.128 
0.143 
0.157 
0.171 
O. I 8 5  
0.22 
0.29 
0.36 
0.43 
0.62 
0.81 
1.90 

STAT. 
ERR. 

0.0143 
0.0144 
0.0146 
0.0147 
0.0149 
0.0151 
0.0153 
0.0155 
0.0157 
0.0159 
0.0161 
0.0164 
0.0166 
0.0168 
0.0171 
0.0172 
0.0174 
0.0176 
0.0179 
0.0182 
0.0185 
0.0187 
0.0191 
0.0193 
0.0197 
o. 0200 
0.0206 
0.0210 
0.0216 
0.0222 
0.0229 
O. 0245 
0.0268 
0.031 
0.038 
0.039 
0.041 
0.041 
0.041 
0.042 
0.044 
0.046 
0.049 
0.053 
0.058 
0.064 
0.071 
0.081 
o. 102 
0.113 
0.123 
O. 146 
0.171 
0.216 

0.258 
0.227 
0.207 
0.201 
0.201 
0.203 
0.206 
0.214 
0.223 
0.235 
0.288 
O. 338 
0.602 

SYST. 
pas. 

0.096 
0.086 
0.079 
O. 075 
O. O7 1 
0.068 
0;066 
01063 
0.061 
0.059 
0.058 
0.056 
0.055 
0.055 
0.056 
0.058 
0.059 
0.061 
01063 
0.065 
0.067 
0.071 
0.075 
0.079 
0.084 
0.089 
0.095 
0.102 
O. I 0 9  
0.118 
0.129 
O. 144 
0.165 
0.207 
0.203 
O. 190 
O. 154 
0.099 
0.095 
0.100 
0.106 
C.112 
0.121 
O. 133 
O. 149 
O. 169 
O. 196 
0.241 
0.326 
0.360 
0.403 
0.454 
0.490 
0.419 

0.299 
0.265 
0*2b 1 
0.257 
0.255 
0.255 
0.255 
0.256 
0.26 1 
0.264 
0.286 
0.306 
0.416 

ERRORS 
NEG. 

0.081 
O. 072 
O. 067 
0.063 
O. O6 1 
0.059 
0.057 
0.056 
0.054 
0.053 
O. 053 
O. 052 
O. O5 1 
0.052 
0.054 
0.056 
0.059 
0.061 
O. O 64 
O. O67 
O. O7 1 
0.076 
0.081 
0.086 
O. 092 
O. O98 
O. 106 
O. 114 
O. 124 
O. 135 
O. 148 
O. 166 
O. 189 
0.224 
0.237 
0.230 
O. 197 
O. 145 
O. 140 
O. 141 
O. 141 
O. 146 
O. 153 
0.165 
O. 180 
O. 198 
0.225 
0.270 
0.354 
0.388 
0.431 
O. 482 
0.517 
0.446 

O. 326 
O. 292 
0-287 
O. 283 
O. 282 
0.281 
0.281 
O. 284 
0.28$ 
0.290 
0.311 
0.331 
O. 44 1 



TAELE 7 

COMPLETE AMPLITUDE FOR PI+P SCATTEFING 

STAT. 
ERR. 

0.0000 
0.0008 
0.0010 
0.0013 
0.0014 
0.00 11 
0.0012 
0.0014 
0.0015 
0.0016 
0.0037 
0.0040 
0.0043 
0.0012 
0.0011 
0.0011 
0.0012 
0.0016 
0.0020 
0.0022 
0.0069 
0.0027 
0.0030 
0.0030 
0.0033 
0.0034 
0.0034 
0.0035 
0.0037 
0.0038 
0.0039 
0.0040 
0.0039 
0.0035 
0.0030 
0.0029 
0.0029 
0.0027 
0.0026 
0.0035 
0.0073 
0.0076 
O. 0079 
0.0005 
0.0005 
O. 0004 
0.0004 
0.0004 
0.0004 
0.0003 
0.0003 
0.0003 
O.OOC3 
0.0003 
0.0003 
0.0042 
0.0003 
C.0003 
0.0003 
0.0003 
0.0003 
0.0004 
0.0004 
0.0004 
O. 0004 
0.0004 
0.0005 
0.0005 
0.0005 

SYST. 
POS. 

0.0000 
0.0004 
0.0007 
0.001 1 
0.0012 
0.001 1 
0.0012 
0.0014 
0.0015 
0.0016 
0.0018 
0.0020 
0.0021 
0.0022 
0.0016 
0.0010 
0.0010 
0.0015 
0.0022 
0.0025 
0.0027 
3.0032 
0.0035 
0.0033 
0.0041 
0.0050 
0.0051 
0.0052 
0.0054 
0.0056 
0.0057 
0.0055 
0.0051 
0.0047 
0.0043 
0.0038 
0.0034 
0.0030 
0.0030 
O.OC43 
0.0068 
0.0093 
0.0115 
0.0114 
0.0096 
0.0085 
0.0078 
0.0066 
0.0062 
0.0048 
0.0045 
0.0044 
0.0043 
0.0042 
0.0043 
0.0044 
0.0043 
0.0044 
0.0042 
0.0040 
0.0041 
0.0042 
0.0042 
0.0043 
0.0044 
0.0044 
0.0045 
0.0046 
0.0046 

ERRORS 
NEG. 

0.0000 
0.0006 
0.0011 
0.0014 
0.0013 
0.001 1 
0.0012 
0.0014 
0.0015 
0.0016 
0.0018 
0.0020 
0.0021 
0.0022 
0.0016 
0.0010 
0.0010 
0.0015 
0.0022 
0.0025 
0.0027 
0.0032 
0.0035 
0.0033 
0.0041 
0.0050 
0.0051 
0.0052 
0.0054 
0.0056 
0.0057 
0.0055 
0.0051 
0.0047 
0.0043 
0.0038 
0.0034 
0.0030 
0.0030 
0.0043 
0.0068 
0.0093 
0.0115 
0.0114 
O.OC96 
0.0085 
0.0078 
0.0066 
0.0062 
0.0048 
0.0045 
0.0044 
0.0043 
0.0042 
0.0043 
0.0044 
0.0043 
0.0044 
0.0042 
0.0040 
0.0041 
0.0042 
0.0042 
0.0043 
0.0044 
0.0044 
0.0045 
0.0046 
0.0046 

STAX. 
ERR 

0.0140 
0.0119 
0.0118 
0.01?7 
0.0136 
0.0125 
0.01?5 
0.01?3 
0.0123 
0.0133 
0.0132 
0.0132 
0.0131 
0.0129 
0.0127 
0.0126 
0.0125 
0.0125 
0.0124 
0.0135 
0.0137 
0.0124 
0.0125 
0.0125 
0.0123 
0.0125 
0.0124 
0.0124 
0.0124 
0.0124 
0.0123 
0.0123 
0.0123 
0.0122 
0.0122 
0.0121 
0.0121 
0.0121 
0.0122 
0.0124 
0.0132 
0.0136 
0.0132 
0.0125 
0.01 19 
0.0118 
0.01 I 8  
0.0118 
0.01 18 
0.0118 
0.01 18 
0.0119 
0.01 I 3  
0.0123 
0.0123 
0.0124) 
0.01 19 
0.01 12 
0.01 1'3 
0.012.! 
0.01215 
0.0122 
0.01 19 
0.0 1 1'3 
0.01 I'? 
0.01 1') 
0.01 1') 
0.01 19 
0.01 19  

SYST. 
pos. 

0.0037 
0.0040 
0.0044 
0.0050 
0.0054 
0.0052 
0.0050 
0.0054 
0.0057 
0.0061 
0.0077 
0.0133 
C.0 163 
0.0158 
0.0140 
0.0102 
0.0105 
0.01 10 
0.01 1 1  
0.0110 
0.01 10 
0.0107 
0.0104 
0.0103 
0 . O l l l  
0.0108 
0.0104 
0,0100 
0.0099 
0.0099 
0.0103 
0.01 15 
0.0129 
0.0143 
0.0156 
0.0169 
0.0184 
0.0202 
0.0220 
0.0289 
0.0395 
0.0451 
0.0520 
0.0454 
0.0208 
0.0161 
0.0145 
0.0142 
0.0141 
0.0141 
0.0142 
0.0143 
0.0144 
0.0145 
0.0146 
0.0 147 
0.0149 
0.0150 
0.0151 
0.0153 
0.0154 
0.0155 
0.0156 
0.0 I 5 8  
0.0159 
0.0161 
0.0162 
0.0164 
0.0165 

ERRORS 
NEG. 

0.0038 
O. 0043 
O. 0046 
O. O048 
0.0050 
0.0048 
O. 0048 
0.0052 
0.0056 
0.0059 
O. O076 
0.0132 
0.0162 
O. 0 1  56 
0.0138 
0.0101 
0.0104 
0.0109 
0.01 10 
0.0109 
0.0108 
0.0106 
0.0102 
0.0102 
0.0109 
0.0107 
0.0102 
0.0099 
0.0097 
O. 0098 
0.0102 
0.0114 
0.0127 
0.0141 
O. O 154 
O. C 167 
0.0181 
0.0199 
0.0217 
0.0287 
O. 0392 
O. O448 
0.0517 
O. 045 1 
O. 0204 
0.0158 
0.0141 
0.0137 
0.0136 
0.0136 
0.0136 
0.0137 
0.0137 
0.0138 
0.0138 
0.0140 
0.0141 
0.0142 
0.0143 
0.0144 
0.0145 
0.0146 
0.0147 
0.0148 
0.0149 
0.0150 
0.0151 
0.0153 
0.0154 



S T A T .  
E R R .  

O.OCC5 
0.0006 
O.OOC6 
0.0006 
0.0006 
0.0007 
0.0007 
0.0007 
O. OOC7 
0.0007 
0.f7007 
0.0007 
O.udO7 
0.0060 
0.0008 
0.0008 
0.0008 

S Y S T .  ERRORS 
POS.  NEG.  

S  TA?. 
ERR. 

0.01 19 
0.0119 
0.01 19 
0.01 19 
0.0120 
0.0120 
0.0124 
0.0129 
0.0125 
0.0121 
0.012í 
0.0120 
0.0121 
0.0123 

SYST. E R R O R S  
POS. NEG. 



TABLE 7 

SYST. ERRORS 
POS. 

0.0362 
0.0375 
0.0388 
0.0401 
0.0413 
0.0426 
0.0439 
0.0452 
0.0465 
0.0478 
0.0490 
0.0505 
0.0517 
0.0530 
0.0543 
0.056 
0.057 
0.058 
0.059 
0.061 
0.062 
0.063 
0.065 
0.066 
0.067 
0.068 
0.070 
0.071 
0.072 
0.074 
0.075 
0.076 
0.078 
0.081 
0.086 
0.084 
0.074 
0.057 
0.041 
0.025 
0.028 
0.031 
0.032 
0.033 
0.036 
0.040 
0.041 
0.043 
0.050 
0.062 
0.074 
0.088 
0.103 
0.120 

o. 137 
O. 154 
0.171 
0.188 
0.205 
0.223 
0.25 
0.31 
0.37 
0.43 
0.62 
0.81 
1.90 

NEG. 

0.0161 
0.0167 
0.0172 
0.0178 
0.0184 
0.0189 
0.0195 
0.0201 
0.0207 
0.0212 
0.0218 
0.0224 
0.0230 
0.0236 
0.0241 
0.025 
0.025 
0.026 
0.026 
0.027 
0.028 
0.028 
0.029 
0.029 
0.030 
0.030 
0.031 
0.032 
0.032 
0.033 
0.033 
0.034 
0.034 
0.037 
0.038 
0.039 
0.039 
0.034 
0.028 
0.025 
0.028 
0.031 
0.032 
0.033 
0.036 
O. 040 
0.041 
0.043 
0.050 
0.062 
0.074 
0.088 
0.103 
0.120 

0.137 
0.154 
O. 1-7 1 
0.188 
0.205 
0.223 
0.25 
0.31 
0.37 
0.43 
0.62 
0.81 
1-90 

STA1. 
ERR . 

0.0143 
0.0144 
0.0146. 
0.0147 
0.0149 
0.0151 
0.0153 
0.0155 
0.0157 
0.01 59 
0.0161 
0.0164 
0.0166 
0.0168 
0.0171 
0.0172 
0.0174 
0.0176 
0.0179 
0.0182 
0.0185 
0.0187 
0.0191 
0.0193 
0.0197 
0.0200 
0.0206 
0.0210 
0.0216 
0.0222 
0.0229 
0.0245 
0.0268 
0.031 
0.038 
0.039 
0.04 1 
0.041 
0.041 
0.042 
0.044 
0.046 
0.049 
0.053 
0.058 
0.064 
0.071 
0.081 
o. 102 
0.113 
O. 123 
0.146 
0.171 
0.216 

0.258 
0.227 
'L 2= 
0.201 
0.201 
0.203 
0.206 
0.214 
0.223 
0.235 
0.288 
0.338 
0.602 

S Y S T .  
POS. 

0.091 
o. 08 1 
0.075 
0.071 
0.068 
0.065 
0.062 
0.060 
0.058 
0.057 
0.055 
0.053 
0.052 
0.052 
0.054 
0.055 
0.057 
0.059 
0.061 
0.063 
0.065 
0.069 
0.073 
0.077 
0.082 
0.087 
O. 094 
0.100 
O. 108 
O. 117 
O. 128 
O. 143 
0.164 
0.204 
0.203 
O. 192 
0.157 
0.103 
0.099 
O. 103 
O. 108 
O. 114 
O. 123 
O. 135 
0.150 
0.170 
O. 197 
0.242 
0.327 
0.361 
0.404 
0.455 
0.490 
0.420 

O. 300 
0.266 
L 2 6 1  
0.257 
0.256 
0.256 
0.255 
0.258. 
0.261 
0.264 
0.286 
0.306 
0.416 

ERRORS 
NEG. 

0.086 
O. O77 
0.071 
O. O67 
O. 064 
O. 062 
O. 060 
O. 059 
0.057 
0.056 
0.055 
O. 054 
0.053 
O. 054 
O. O56 
O. 059 
0.061 
0.064 
O. 066 
O. 069 
0.073 
0.077 
O. O82 
0.088 
O. 094 
o. 100 
O. 108 
O. 116 
O. 125 
O. 136 
O. 150 
O. 167 
o. 190 
O. 226 
O. 237 
0.229 
O. 194 
O. 141 
O. 136 
O. 137 
O. 139 
O. 144 
O. 152 
O. 163 
O. 178 
O. 198 
O. 224 
O. 269 
O. 353 
O. 388 
0.430 
0.481 

' O. 517 
0.445 

0.325 
O. 29 1 
4 2  8 3  
0.283 
0.281 
0.280 
0.281 
0.282 
O. 287 
0.290 
0.31 1 
0.331 
0.441 
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