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It is studied the dissipation of uniformly charged layers (box distribution) in solids with an
intrinsic conductivity. It is shown that an exact mathematical solution can be found, which
is particularly simple in the short circuited case.

Estuda-se a dissipacdo de camadas uniformemente carregadas (distribuicdo tipo caixa) em
sdlidos dotados de condutividade intrinseca. E mostrado que, no presente caso, é possivel
seachar uma solugdo mateméticaexata, a qual é particularmentesimplesquando oseletrédios
estdo em curto.

1. Introduction

In the present article, we study the motion o free space chargein dielectric
solids, with prescribed initial conditions (box distribution at zero time).
The subject has already been partially treated in the literature by Wintle?,
but we think that the method o solution proposed here is smpler even
in those points covered by Ref. 1 Plane symmetry and a medium with
intrinsic conductivity are assumed. Although reference is made to free
space charge, it is known that the results we will obtain can aso be applied
to solids with a system of single shallow traps?.

2. Excess Charge Touching One of the Electrodes

Suppose we have initially a uniformly distributed excess o charge p,,
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occupying a distance sy, sq < d, d being the thickness d the dielectric
sample (Fig. 1). The dieletric can be said to have an intrinsic conductivity
a, in such a way that the total conduction current is given by

i(x,t) = pp(x,t) E(x,t) + 0E(x,1), (1)

plx,t) and E(x,t) being the density d charge and dectric field at point
x and time t; p is the mobility of the excess charge. From the assumed
initial conditions, we have

p(xao)po! 0<X<SO,
p(x,0) =0, 5o < x < d.

We suppose also a constant applied voltage V:

f
j E(x,t)dx = V. 2)

0

We want to show that, with the given initial and boundary conditions,
the exact solution o the Poisson and continuity equations is given by
the box charge distribution, that is, a uniform time-varying density of
charge p(¢) (independent of x), spreading from x = O till x = s(z).

The solution of the pertinent equations should give p and s as functions
of time.
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The Poisson and continuity equations are:

6E dp O
6x =P e T T

with i(x, t) given by (1), ¢ being the permissivity.

Assume a solution of the form p = p(z), for 0 < x < s(t). We have then
d
Gett =0 (3)

From this, p(f) could be found as a function of p(0) = p,. Integrating
the continuity equation from x = 0 to x = d, we get, in genera,

%q — {0, )—ild, 1) = [up(0, ) + 0] EO, )~ oE(d, 1), @)

d s()

with g(t) = j pdx =J pdx, taking into account that, at x =d, the
0

excessdf charge is zero, that is, the space charge has not reached this point
yet.

n

On the other hand, assuming the box distribution, we can ﬁnd o q.

ds dp
ts St

alT @
Using the fact that ?j isequal to uE(s,t) = nE(d,t),sincefroms < x < d

the dielectric is free from charge, and using (3) for a p(t), we get:
d q
71 9= #Ed,O~[pp + 0] - &)

Now, if we substitute on Eg. 4 the explicit fidd values, namcly,

P*. 415 v
E (x, 0 + d[Z d}+d, O0<x<s,
(6)

Vv
7 s<x<d,

2
A
EZ(x5t) = %‘—l— +
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we see that Egs. (4) and (5) agree with each other. Actualy, we have sup-
posed that the field at x = O is negative and that the charge is dissipated
at the plate therein. However, it is shown in detail in Section 5, that even
here the box distribution is the exact solution o the space charge problem
we are dealing with.

Formally, we could also make the proof as follows. We have

plx, t) = 6]s(r) — x] p(2),
i(x,t) = pE(x, )0[s(t) - x] p(t) T E(x, 1),

with
[s)-x] =1, 0<x<s(),
ls()-x} =0, s(t)<x<d.

We then show that these functions satisfy the continuity equation. The
time derivatives o p and i are given by

op 00 ds dp ds - dp
’a—t——a Ep+97d7—5[s(t)—x]7£p+0dt s
0i O0E OE
a=yaep—ypE5[s(t)—x] +oo

For 0 < x < s(t), we have our previous Eq. (3). To get a meaningful relation
around X = s, we integrate in x in a small range 2A, centered at X = s.
The finite contributions come from the terms containing delta functions:

s+A
. op , _ ds
iﬁ%f =g

s—

A—o 0x

s+A 61
lim J‘ =—dx = - uE(s, ).
§=A

Because d;—(tt) was assumed to be uE(s, t),wesee that the continuity equation

is satisfied.

It can be shown along the same lines that p(f) given as a solution d (3)
is the correct one after the charge reaches the plate at d.
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The integration o (3) furnishes pft), which can be used in the equation

ds _ _ ks
o = HEW.0) = [28 + V] 7

to give s as a function of time.

3. Short Circuited Electrodes

The solution o Eg. (3) is independent o the boundary Eq. (2). It gives,
with ) = 29 and a= 9.
PO = o) 92 g

a
Py = ——— @)

(1 + a)exp (ng)—l

On the other hand, the solution d (7) isfacilitated if V is set equal to zero.

2
Therefore, %; % ) and s(®) can be found in terms o p(r), substi-

tuting dt from (3). We have

ds _ —1. _pdp
27 2d o+ pp’

which gives, with s(0) = s,,
11

1 g4 up
P ﬁIoo— — (10)

+_Hpo

For large enough intrinsic conductivity, the density o charge can drop
to zero before the front reaches the plate at d. The distance S, when the
density is zero, can be found from (9), setting p = 0. We find

2d 2d
——=——-+ a .
s S Ioga+| (1)

However, Eq. (8) tdls us that s is reached only asymptoticaly since the
required time is infinite. This is not surprising because, according to Eq.

9), %S; is proportional to p.
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For low conductivity, the charge reaches the plate at d in a time ¢, that
can be calculated from (10) and (8) putting s = d. We get

1y = %o'log{l + a[l—exp(i—j—2>}}. (12)

The external current j(t), can be found using the conditions prevailing at
x = d, that is, no conduction current from the space charge

i) = dE(d )t oEdy =P8 (-1——s»>.

2ed d

The same result is found if useis made o the expression deduced by Lind-
mayer, Gross and Perlman?,

0 =~ plxg, )20 = B0

where x, gives the position of the zero fidd plane.

The total charge on the externa circuit is

o) = j H0de = LB, Y- EO, 0] + % (550,
0

4. A Solution with an Applied Voltage

Here, as in the short circuited problem, the differential equation for p
is Eq. (8). With it, we could solve Eq. (7). However, we must consider the
sign of the fidd at x = O. If it is positive, the charge will be detached from
the nearby plate, drifting to the right: so, two velocities should be calcul-
ated, those of the front and of the back of the space cloud. This will be
discussed more thoroughly in the next section. But we should add that
our results do not agree with those reported in the literature?. On the
other hand, if the field is negative, we see from Eq. (6) that eventually the
fidd at X = O reaches positive values (if the conductivity is low enough),
when detachment will take place. Supposing that the applied voltage is
such that we do not have detachment from the plate, and low conduc-
tivity, a situation is reached in which the whole charge spreads uniformily
from x = 0 to X = d. Without applied voltage this time would equal the
time ¢, 'calculated in Eqg. (12).
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Integrating the equation j(t) =i + s%, we get the well known relation

d
jty = .:?J idx; in our case, this gives
0

v

O =— + npv. (13)

Eq. (13) showsthat the conductivity only addsan ohrnic term to theexternal
current. This solution is valid till the detachment o the space charge

from the plate at x = 0.

5. Floating Space Charge

Now we consider the situation when initialy a space charge of density p
is uniformly distributed from s;(0) to s,{0), its initial thickness being
s(0) = 5,(0)—s,(0); Fig. 2 The didectric thickness is d and an applied
voltage V is present.

Our proof that the box distribution is the solution o the problem is

|
|
|
|
|
|
S

0——-——
K d

Fig. 2.
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essentialy the same as before. The variation d the total charge is given
by Eqg. (4):

ad? q(t) = i(0,)—id, t) = o[E(0, t) - E(d, t)]. (14)

On the other hand, assuming the box distribution, we can write again
Eqg. (3), namcly,

dp | pp*
i I ) 3
ik e p 0 (3)

We have the differential equations for s, (t) and s, (¢):

a5 LT
dt - qu(ds t)’ dt - I“LE(O, Z)' (15)

Thefiddsin theregions 1, 2, 3 (Fig. 2) are, for the box distribution, given by

E, = 2d(32_51 2szd+2ds1)+%, 0<x<sy,
px vV
E2=—é—+—2—g(sz-s1 2szd)+7, 5, <X <8y,
E =_(52_52)+K s, <x<d.
3 28d 2 1 d’ 2

Substituting the appropriate values in Egs. (15), it follows that
ds_ ds, ds, _ pps

R i S 19
The time derivative o g(t) = p(t)s(t) = g, 18

dq ds dp

TP a +s——=0. (17)

With (3) and (16) substituted here, and the field values fed into Eq. (14),
it is seen that the two expressions are the same. From (16) and (3) it is
possible to calculate s(t). It gives

etefen( )
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For vanishing o, we see that the charge spreads uniformly with time, its
velocity being %qo. It is interesting to note that this result does not

depend on the presence o an applied voltage: the spread comes from
the electrostatic repulsion in the cloud itself; its velocity is proportional
to the total charge and does not depend on the thickness o the sample.

Calling v(t) = (d —s,) - s;, which measures the asymmetry o the charge
distribution with respect to the plates, it is easy to find it as function of

time for the case when o = O It gives, using the expressions for %

t

So, the asymmetry tends to increase with time, but if at the beginning is
zero, it remains so for all times. The same result has already been found*
in the open circuit condition.

ds,
dt’
v 2V
t —_——
") 9o

2V
= | p(0) = 2
,v(’) qdo
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[NOTE ADDED IN PROOF: It came to the knowledge of one o the
authors that Prof. J. van Turnhout arrived independently to about the
same results reported here].
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