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It is studied the dissipation of uniformly charged layers (box distribution) in solids with an 
intrinsic conductivity. It is shown that an exact mathematical solution can be found, which 
is particularly simple in the short circuited case. 

Estuda-se a dissipação de camadas uniformemente carregadas (distribuição tipo caixa) em 
sólidos dotados de condutividade intrínseca. É mostrado que, no presente caso, é possível 
se achar uma solução matemática exata, a qual é particularmente simples quando os eletródios 
estão em curto. 

1. Introduction 

In the present article, we study the motion of free space charge in dielectric 
solids, with prescribed initial conditions (box distribution at zero time). 
The subject has already been partially treated in the literature by Wintlel, 
but we think that the method of solution proposed here is simpler even 
in those points covered by Ref. 1. Plane symmetry and a medium with 
intrinsic conductivity are assumed. Although reference is made to free 
space charge, it is known that the results we will obtain can also be applied 
to solids with a system of single shallow traps2. 

2. Excess Charge Touching One of the Electrodes 

Suppose we have initially a uniformly distributed excess of charge p,, 
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occupying a distance s,, s, < d, d being the thickness of the dielectric 
sample (Fig. 1). The dieletric can be said to have an intrinsic conductivity 
a, in such a way that the total conduction current is given by 

p(x, t )  and E(x ,  t )  being the density of charge and electric field at point 
x and time t; p is the mobility of the excess charge. From the assumed 
initial conditions, we have 

We suppose also a constant applied voltage V: 
d j, E(., t )dx  = V. (2) 

We want to show that, with the given initial and boundary conditíons, 
the exact solution of the Poisson and continuity equations is given by 
the box charge distribution, that is, a uniform time-varying density of 
charge p(t) (independent of x), spreading from x = O, til1 x = s(t). 

The solution of the pertinent equations should give p and s as functions 
of time. 



The Poisson and continuity equations are: 

with i(x, t )  given by (I), E being the permissivity. 

Assume a solution of the form p = p(t), for O < x < s(t). We have then 

From this, p(t) could be found as a function of p(0) = p , .  Integrating 
the continuity equation from x = O to x = d, we get, in general, 

with q(t) - jod p dx = 1''' p dx, taking into account that, at x = d,  rhe 

excess of charge is zero, that is, the space charge has not reached this point 
yet. 

dq On the other hand, assuming the box distribution, we can find - : 
dt  

ds  
Using the fact that - is equal to pE(s, t )  = pE(d, t), since from s < x < d dt  

d 
the dielectric is free from charge, and using (3) for - p(t), we get: 

d t  

Now, if we substitute on Eq. 4 the explicit field values, namcly, 



we see that Eqs. (4) and (5) agree with each other. Actually, we have sup- 
posed that the field at x = O is negative and that the charge is dissipated 
at the plate therein. However, it is shown in detail in Section 5, that even 
here the box distribution is the exact solution of the space charge problem 
we are dealing with. 

Formally, we could also make the proof as follows. We have 

p(x, t )  = Q[s(t) - x ]  p(t), 
i(x,  t )  = pE(x, t )8[s(t)  - x ]  p(t) + oE(x ,  t), 

with 

We then show that these functions satisfy the continuity equation. The 
time derivatives of p and i are given by 

For O < x < s(t), we have our previous Eq. (3). To get a meaningful relation 
around x = s, we integrate in x in a small range 2A, centered at x = S. 

The finite contributions come from the terms containing delta functions: 

- d x  = - pE(s, t). lim r" .: 
A- o  

s- A 

M t )  Because - was assumed to be pE(s, t ) ,  we see that the continuity equation 
dt 

is satisfied. 

It can be shown along the same lines that p(t) given as a solution of (3) 
is the correct one after the charge reaches the plate at d. 



I h e  integration of (3) furnishes p(t), which can be used in the equation 

to give s as a function of time. 

3. Short Circuited Electrodes 

The solution of Eq. (3) is independent of the boundary Eq. (2). It gives, 
~ ( t )  o  with pl(t) = - and a = - : 
~ ( 0 )  PPo 

On the other hand, the solution of (7) is facilitated if V is set equal to zero. 
ds p p ~ 2  ~ h ~ ~ ~ f ~ ~ ~ ,  - - (9) and ~ ( t )  can be found in terms of p(t), substi- 
d t  2cd 

tuting dt  from (3). We have 

which gives, with 

1 1 1 o + p p .  
--- = - log --- 
s so 2d o  + ppo 

For large enough 
to zero before the 

intrinsic conductivity, the density of charge can drop 
front reaches the plate at d. The distance s', when the 

density is zero, can be found from (9), setting p' = O. We find 

2d 2d - = -  a .  + log - 
s' s a + l  

However, Eq. (8) tells us that s' is reached only asymptoticaly since the 
required time is infinite. This is not surprising because, according to Eq. 

ds 
(9), is proportional to p. 
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low conductivity, the charge reaches the plate at d in a time t, that 
be calculated from (10) and (8) putting s = d. We get 

external current j(t), can be found using the conditions prevailing at 
d, that is, no conduction current from the space charge 

The same result is found if use is made of the expression deduced by Lind- 
mayer, Gross and Perlman3, 

where x ,  gives the position of the zero field plane. 

The total charge on the external circuit is 

J, 
a 

Q(t) = j(t)dt = &[E(d, t) - E(0, t)] + - ( s  - s,). 
P 

4. A Solution with an Applied Voltage 

Here, as in the short circuited problem, the differential equation for p 
is Eq. (8). With it, we could solve Eq. (7). However, we must consider the 
sign of the field at x = O. If it is positive, the charge will be detached from 
the nearby plate, drifting to the right: so, two velocities should be calcul- 
ated, those of the front and of the back of the space cloud. This will be 
discussed more thoroughly in the next section. But we should add that 
our results do not agree with those reported in the literature2. On the 
other hand, if the field is negative, we see from Eq. (6) that eventually the 
field at x = O reaches positive values (if the conductivity is low enough), 
when detachment will take place. Supposing that the applied voltage is 
such that we do not have detachment from the plate, and low conduc- 
tivity, a situation is reached in which the whole charge spreads uniformily 
from x = O to x = d. Without applied voltage this time would equal the 
time t, 'calculated in Eq. (12). 



BE . 
Integrating the equation j(t) = i + E -, we get the well known relation 

Bt 

j(t) = 7 idx; in our case, this gives J, 

Eq. (13) shows that the conductivity only adds an ohrnic t e m  to the externa1 
current. This solution is valid til1 the detachment of the space charge 
from the plate at x = 0. 

5. Floating Space Charge 

Now we consider the situation when initially a space charge of density p 
is uniformly distributed from s, (O) to s,(O), iIs initial thickness being 
s(0) = s,(O)- s,(O); Fig. 2. The dielectric thickness is d and an applied 
voltage V is present. 

Our proof that the box distribution is the solution of the problem is 

Fig. 2. 



essentially the same as before. The variation of the total charge is given 
by Eq. (4): 

On the other hand, assuming the box distribution, we can write again 
Eq. (3), namcly, 

We have the differential equations for s, (t) and s,(t): 

The fields in the regions 1,2,3 (Fig. 2) are, for the box distribution, given by 

Substituting the appropriate values in Eqs. (15), it follows that 

ds ds, ds, pps 
- - - - - - 
dt dt dt E ' 

The time derivative of q(t) = p(t)s(t) = q, is 

With (3) and (16) substituted here, and the field values fed into Eq. (14), 
it is seen that the two expressions are the same. From (16) and (3) it is 
possible to calculate s(t). It gives 

s-s, = --[i c -exp(-$)] 



For vanishing o, we see that the charge spreads uniformly with time, its 
lu velocity being -q,. It is interesting to note that this result does not 
E 

depend on the presence of an applied voltage: the spread comes from 
the electrostatic repulsion in the cloud itself; its velocity is proportional 
to the total charge and does not depend on the thickness of the sample. 

Calling v(t)  = (d - s,) - s, , which measures the asymmetry of the charge 
distribution with respect to the plates, it is easy to find it as function of 

ds 
time for the case when o = O. It gives, using the expressions for 

dt 

ds2 and -, 
dt 

So, the asymmetry tends to increase with time, but if at the beginning is 
zero, it remains so for all times. The same result has already been found4 

in the open circuit condition. 

1. H. J. Wintle, Journal of Appl. Phys. 42, 4724 (1971). 
2. A. Many, G. Rakavy, Phys. Rev. 126, 1980 (1962). 
3. B. Gross, M. Perlman, Short Circuit Currents in Charged Dielectrics and Motion of Zero 
Field Planes, to be published. 
4. 1. P. Batra, K. Kanazawa, H. Schechtman, H. Seki, Journal of Appl. Phys. 42,1124 (1971). 

[NOTE ADDED IN PROOF: It came to the knowledge of one of the 
authors that Prof. J. van Turnhout arrived independently to about the 
same results reported here]. 


