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The properties of a ferromagnetic with a Hamiltonian using the Schrodinger spin-exchange 
operator are calculated. Most results are very reasonable but a disturbing difference exists 
between the Curie temperatures found by two different approximations.' 

Calculam-se as propriedades de um meio ferromagnético 'utilizando-se uma hamiltoniana 
que inclui o operador de Schrodinger de troca de spin. A maioria dos resultados são razoá- 
veis mas ocorre uma diferença inesperada na temperatura de Curie calculada em duas dife- 
rentes aproximações. 

We present here a calculation of the properties of a ferromagnet with' 
the two-particle Harniltonian 

H , ,  = - J P , ,  - g P H M ,  (1) 

where J  is the two-particle exchange integral, P , ,  the spin-exchange 
operator', g the Landé factor, P the Bohr magneton, H the magnetic fíeld, 
and M the z-component of the total spin of the two particles. Such a Hamil- 
tonian has been suggested2 as a possible alternative to the Heisenberg 
Hamiltonian usually used in theories of ferromagnetism and some of the 
resulting properties have been calculated for spin = Calculations of 
the transition temperature and some other properties at higher temp- 
eratures have also been carried out for higher spins4. 

In the present note, we choose the spin to be S ,  = 2 and the method of 
calculation to be the well-known constant-coupling approximation5. 
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We need to evalute the partition function, summing over the eigenvalues 
of H,,. Since the eigenvalues of P,, are + 1, depending on the total spin, 
S _I 2S,, and those of M are between - S and + S, the result is immediate: 

where 
n - 

C,@) = 1 + 2 cosh ( k Á )  
k =  1 

with H,  the applied field and H, the interna1 or Weiss field. 

The internal field is evaluated by means of a consistency condition3 : The 
partia1 trace over one spin of the two-particle density matrix must reduce 
to the one-particle density matrix with the internal fields in the two density 
matrices being in the ratio (n - 1) : n, where n is the coordination number 
of the lattice. The internal field is then calculated numerically from an 
impllcit equation, giving the field as a function of the temperature (and 
the applied field). 

At this point, the thermal properties of the system can be found and we 
proceed to calculate the Curie temperature, the magnetization, the suscep- 
tibility, and the exchange energy and specific heat. The results are sum- 
marized below . 

The Curie temperature is taken to be that at which the magnetization 
goes to zero when there is no applied field. We find 

p, = J/kT, = (112) ln [(n + 3)/(n - 7)], (3) 

a result which is considerably different from that found by the high-tem- 
perature series expansion method4, as shown in Table 1. 

present series 
calculation expansion4 

6 complex ? 
8 334 1.82 

12 1.62 2.34 

Table 1 - Reduced Curie temperatures for severa1 lattices. 
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The average magnetization per atom, m, cannot be stated in explicit form, 
but we can obtain approximate values in the two limited regions: 

i) T- O :  m ~ 2 - [ ( 1 + e - ~ ~ ) / 2 ] " ,  (4) 

i )  T + T : m N [t(l  - t ) ] l í2 .  (5 )  

Note the absence of complete saturation; m has the value 2-(112)" at 
absolute zero, a result typical of the constant-coupling approximation. 
Saturation is approached but never quite achieved. The temperature 
behavior in both regions is like that of the molecular íield theory and 
many other cluster approximations. 

For temperatures above T,, it is not difficult to find the susceptibility per 
atom, and the exchange energy and heat capacity per atom is: 

with 

3 + 7 exp (2p) 
(n + 3) - (n - 7 )  exp (2p) I 
nJ [ 312 - exp (- 2p) E = -- 
2 312 + exp (- 2p) I ' 

3np2 exp (- 2p) 
c/K = 

C312 + exp (- 2p)I2 

Below T,, these quantities, like the magnetization, can only be obtained 
numerically. 

The inverse susceptibility will be almost a straightline with some positive 
curvature near T,. For T % T,, the Curie-Weiss law holds, 

x = CI(T - $ 1 7  

with the asymptotic Curie temperature given by 

k$/J = (14 - n)/5 

and the ratio 

8/Tc = [(I4 - n)/10] ln [(n + 3)/(n - 7)] ,  

or 1.44 for n = 8 and 1.26 for n = 12. 

The heat capacity shows a tail above T, that eventually falls off as T- ' .  



The behavior of these functions is quite typical of severa1 theoretical 
methods that improve on the molecular field theory. 

Because of this similarity of the present results to those of other theoretical 
approaches, and the qualitative agreement with experimental data, it does 
not seem possible to state definitively the utility or not of the Hamiltonian 
proposed in Eq. (1). 

On the other hand, the large discrepancy in the values of kTJJ found by 
the present constant-coupling calculation and those found by the high- 
temperature series expansion method4 suggests the possibility of some 
difficulty. Both theoretical methods are known to be usually trustworthy 
and to give quite similar results6. One has an uneasy feeling on finding 
that two different, usually reliable methods give such dissimilar results. 
The fault could lie in the proposed Hamiltonian or in the applicability 
of either approximation to that model. 
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