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Deep inelastic electron scattering is studied in a resonance model derived from a two spinless
particle bound state, in the framework of nonrelativistic dynamics. The calculated structure
function vW, does not obey approximate scaling for finite momentum and energy transfers
but, in the Bjorken limit, approaches a scaling function, representing a quasi-elastic, scae
invariant peak.

Estuda-se o espalhamento inelastico do elétron na regido inelastica profunda, num modelo
ressonante para um estado ligado de duas particulas sem spin dentro de uma dindmica ndo
relativistica. A fungdo de estruturavW, ndo obedece a condicdo de scaling para transferéncias
finitas de energia e momento. No entanto, no limite de Bjorken, aproxima-se de uma funcéo
delta, invariante por transformag¢des de escala, representativa de um pico quase eléstico.

1 Introduction

This work is motivated by the experiments on deep inelastic electron-
proton scattering'. The large magnitude d the inelastic cross section leads
one to consider the proton in terms d point-like constituents. In the parton
model?, the electron collides with a proton at high energiesas if the proton
were a gas o non-interacting point-like congtituents (partons), the elec-
tron being scattered incoherently by these free partons. This model explains
the scaling behaviour o the structure functions.

We are interested in the study of deep inelastic electron scattering within
the framework o the quark model, where the hadronic target is considered
as a state o strongly bound quarks®. The electron now is scattered by
bound quarks and not by free particles as in the parton model. Because
the quarks are strongly bound, they cannot be gected, but they make
transitions to excited states. We assume that the hadronic find state is
completely expressible by a superposition o resonant states.

*On leave of absence from the Instituto de Fisica Teorica, S. Paulo, with a fellowship from
FAPESP, S Paulo.
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Domokos et al.* discussed in a series of papers some aspects of a resonance
model for inelastic electron-nucleon scattering. They argue that the exci-
tation of many overlapping resonance states of an oscillator-like spectrum
leads to structure functions like those experimentally observed. From an
universality assumpticn on the transition form factors, they derive scaling
in the Bjorken limit.

We are interested in the relation of deep inelastic electron scattering to
quark dynamics. For thisreason, we study as an exercise a resonance model
derived from two spinless particle bound s.te in the framework of non-
relativistic dynamics. The explicitly calculated form factors o our oscil-
lator model do not satisfy the universality assumption of Domokos. There-
fore, we do not have approximate scaling for finite momentum and energy
transfers, g2 and v. However, in the Bjorken limit, our structure function
approaches a é-function, representing a quasi-elastic, scale invariant peak.

In Section 2, we study the covariance properties of the current tensor
W,, with respect to the Galilei group in nonrelativistic quantum mecha-
nics. W,, is determined by two structure functions W,; and W,, which
are calculated in a nonrelativistic oscillator model in Section 3.

2. The Current Tensor W, in a Galile Invariant Modd

uv
The invariance group of nonrelativistic quantum mechanics is the Galilel
group. It consists of the translations in space and time, the rotations and
the pure Gdlilel traasformations. The canonical coordinates. position
momentum p and time: coordinate t of a single particle of mass m, transform

like

X =Rx+vt+h,
p =R +my, (1)
t,=t+b0,

upon transformation from one inertial system to another. Here R denotes
a three dimensional space rotation, v the relative velocity of the two refe-
rente systems, b a spacial and b, a time displacement.

The solutions of the Schrodinger equation transform, under the Galilei
transformations, as’

W (x,) = e 0 ply's 1), (2)

where (x,t') depend on (x,f) according to (1) and
(X, )= mv-x' -imv?t.
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Unlike the relativistic case, the phase factor f(x,f) cannot be eliminated.
The solutions o the Schrodinger equation for a free spinless particle
belongs to the physical representation o the Galilei group characterized
by two real numbers, the particle mass and the internal energy.

In the space o Schrodinger functions ‘¥(x,r), we introduce a basis |p)
o momentum eigenvalues normalized in a Galilel invariant way as

p|p"> = 2mi(p-p). G)

The homogenous Galilei group is not semi-simple. There are reducible
representations d this group which are not decomposable, and this makes
the invariance considerations of the Galilei group rather involved.

For the description o the transformation properties of the energy p,
and the momentum p, we form, together with the mass, a five-vector
p = (m,p,p,), which transforms under pure Galilei transformations as

m = m,
P=ptm, )
Pp=p, tp-v T imv.

The following bilinear form o five-vectors,

p-p =mp, +mp, + mm-p-p, ' %)

is invariant under the Gadlilei transformations. The "five-momentum"
squared,

p* =2mp, + m*-p* = 2mE, + m?,

is related to the characteristic internal energy and the mass of the particle.
For comparison with the relativistic four momentum squared p?> = p3—
-p?=M?, we put M,=m= E, and have approximately for E, < m,

P’ =M.

We shall now consider some quantities which are important in a scat-
tering process, when we have in the initial state two particles with five-
momentum k = (m,, k, k) and p e (M, p, p,) and in the final state k' =
=(m,,kK,k) and p = (M, p, p,). Energy momentum conservation reads
ptk=p ¥ k. The center of mass energy s = (p T k)? is

s = (M + m)? + 2M + m)E,, - (6)
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where E, is the sum o the internal energy of the two particles plus a rela-
tivistic energy betweea the two particl%:

1 M
ES_E"+E"+2(M+m1)< J >
The five-momentum transfer q = (k-k) isq r (0, k=K', k, - k;), with the
invariant five-momentum squared ¢*> = —|q|*>. The energy transfer in the
laboratory system is
_qgp_ M .
=M, "M +E, i+ E, ke ko

For the discussion of electromagnetic processes, we have to discuss the
transformation properties of the electromagnetic current under the pure
Galilei transformations. It transforms like the m and p components o
the five-momentum,

Jo (X', 1) = jo(x, 1),

(s 1) = j(x, ) Fvio(x, 1), @
We see, by expression (4), that this transformation carries a representation
of the pure Galilei group.

For the one-particle expectation value o the current operator the norma-
lization condition reads, with our convention on state normalization

(equation (3)),

2
l8O)py = (—é”m—?, (®)

d?
where Q is the charge of particle, and the phase space is 2|\5I) We see that
this normalization is the limit of the relativistic case.

Similarly to the wel -known relativistic case®, the cross section of an
electromagnetic process is described by the current tensor W,

= Q2n)" Y. 8(p + q—p)<p|j, ©)|p' n><{p'n|j,©)|p). 9)

The transformation »roperties of the current implies that the current
tensor transforms, under the pure Galilei transformations, like
W()o = Woo,
Woi= Wei + 0:Woe, (10)
W;j = W + 21} WO] + b;v; WOO
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In order to write the general form o the tensor W, we observe that there
are only two five-vectors on which this tensor can depend, p and g, and
only two independent scalars which can be formed from these five vectors,
g? and q-p. Thus, the most general form for the components o W,, is

WOO = A(qz, p q)a

Wo: = B(g*, p-a)q: + Alq*, p-9pi/M, (11)

W, = C¢*,p" 9)d:q; + Alg*>,p" Dpip/M* + Bl@>,p- d)a:ip/M + pig,/M)
+ E(g*,p" 9)9;;-

Current conservation implies that q,Wyo-4;Wio = q,Wio—q;Wu=0.

These relations are sufficient to eliminate two invariant functions and,

as in the relativistic case, W, is completely expressible by two invariant

functions, W, (g% p-q) and W,(q? p-q):

Woi =W, (p',- —%q) /M, (12)

< ’ P q
Wi = W0, + 0:9,/9°) + W, (Pi—p‘qz—q4i> (Pj‘q—ij'>/M2~

3. Deep Inelastic Electron Scattering in a Nonrelativistic Bound State Model

We shall consider now the deep inglastic €lectron scattering in a nonrela-
tivistic spinless two-particle bound-state model. The electron is scat-
tered by a bound state of two particles with charge Q, and @, and the
same mass m. We assume that the interaction between the two particles
is of the harmonic oscillator type.

The time independent Schrodinger equation is
1
—2m (V1 + V)W, 1,) + Ve -1)P(ry,1;) = E¥(ry,r),  (13)
where r; is the position operator for the ith-particle and
Vi, —1,) = 3k(r, -1,)%. (14)

If we introduce the center of mass and relative coordinates R=(1/2)(r; +r)),
r=r,-r,, Wwe have two independent equations, one for the center of
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mass wave function v -,,(R) and the other for the relative wave function

l//rel (l‘)

1
—mvlzz‘//CM(R) = Ech//_CM(R),
1, 1 (15)
“‘Zu_vr (prel(r) + Tkrz lﬁrel(r) = Erel lﬁrel(r),

where W(ry,1;) = Yo RW,u), M =2m, u=m/2 and E.y + E,,, = E.

The normalized bound state wave functions are’

1 —_
p, n) = WﬁM e® R f (1), (16)
where
f (r)=[—5—]me“”2’“2’2 f[( 1 )MH (or) (17)
n \/7; l=1 2nlnl! r.'l' 1

is the normalized harmonic oscillator wave function with a? = (uk)!/2.

The electromagnetic current o point-like particles in the Schrodinger
picture, at t =0, is

2
J8&) =31 0:8(x—r),
. (18)
x = _Zl Q[ 6(x~ ri)]sym >

where r; and ¥; are the position and veocity d each i-particle. As a conse-
quence of the time independent Schrodinger equations, this current is
conserved. The current matrix elements between the bound states o our
model are
.o 2M
@ n| 8O = S F, (),
(2m)
20 (19)
JOlp> = 55 [0 Fullal’) + 402, Fy(aP)]

p',n
where q =p'~p, @ = Q, + Q, and

F.(q’) = j d>re VDT f2(1) fo (1)

o 1 3 1 1/2 ; n; 1 qIZ
= O e 11 (2"i , !) <§q&) oxp [‘ 2 <§a_2 ) ] 0
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In order to calculate the structure functions, we saturate the intermediate

states with the resonant states and take the sum over all resonant states.

By expression (12), W, is given by Wy,:

4M2 Q2 s 2 PAYY
o "i; 0p, + 4)0[(p + 9)* - MQE, + M)]|F, |q|(;[1)

In the laboratory system, we take g in the z-direction and the sum reduces

to one only over a single index:

am=Q* (=1l = 1 (|q|?Y
W, - (Zn)Q exp( %)nzo 0(pg+qg)n (I‘ll )5(2p a+q*- 8(n+3/2)¢:22;)

Wz = Woo =

In view o the fact that the intermediate resonant states have overlapping
width for large n, we may substitute the sum by an integration. This pro-

cedure was discussed by Domokos. For this we assume that y = 8a”

2Myv
and the summation over n can be replaced by an integration on the variable
X = 2%0/‘1— n. The n! can be approximated by a gamma function on the x

variable. We therefore write:

4M2Q* 1 lq*\ [ 1 1 la]?\*"
W2~ (27‘5)5 WCXP(—E—(X—Z . dxd 1_—63_)6 ———“—F . 1 W) B
—~+
5+

where o = IZA/IIZV is the scaling variable. We obtain
202 nN1-1/w
W, ~ 4M*Q _1_ 1 exp (—'q'z/&)ﬂ?‘) (%) v 23)

5 2
(2ny  8a r(l—;/ +1)

The behaviour o W, is like a continuous Poisson distribution and if

IqI s 1, this expression can be approximated by a normal distribution

o half width (%)

{1 ~1/o M}Z
2MQ* 2My 1Ly &2

@n)° 8«7 ﬁ(lqlz)l/z i ) [qf
8a?

VW, ~ - (24)
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In terrns of the scaling variable,

2MQ? o 1 w(l -2/w)?
= W\/ 2y e"f’[‘?*—y’—] =

It is not difficult to see that W,, =0 and, consequently, that W, = Q.
This is consistent with the parton model where, for spinless partons, W,
must be zero. vW, does not satisfy scaling for finite g7 and v. In the Bjorken
limit, the width o the distribution (25) goes to zero and vW, is strongly
peaked around O = 2,

~ 2MQ?
@2n)

vW, 6(1-2/w). (26)
This distribution corresponds to elastic scattering on quasi-free consti-
tuents with the mass m = M/2.

The author wishes to thank Prof. H. Joos for suggesting this theme and for many helpful
discussions, as well as for the hospitality extended to him at DESY.
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