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Deep inelastic electron scattering is studied in a resonance model derived from a two spinless 
particle bound state, in the framework of nonrelativistic dynamics. The calculated structure 
function vW, does not obey approximate scaling for finite momentum and energy transfers 
but, in the Bjorken limit, approaches a scaling function, representing a quasi-elastic, scale 
invariant peak. 

Estuda-se o espalhamento inelástico do elétron na região inelástica profunda, num modelo 
ressonante para um estado ligado de duas partículas sem spin dentro de uma dinâmica não 
relativística. A função de estrutura vW, não obedece a condição de scaling para transferências 
finitas de energia e momento. No entanto, no limite de Bjorken, aproxima-se de uma função 
delta, invariante por transforinações de escala, representativa de um pico quase elástico. 

1. Introduction 

This work is motivated by the experiments on deep inelastic electron- 
proton scattering'. The large magnitude of the inelastic cross section leads 
one to consider the proton in terms of point-like constituents. In the parton 
modelZ, the electron collides with a proton at high energies as if the proton 
were a gas of non-interacting point-like constituents (partons), the elec- 
tron being scattered incoherently by these free partons. This model explains 
the scaling behaviour of the structure functions. 

We are interested in the study of deep inelastic electron scattering within 
the framework of the quark model, where the hadronic target is considered 
as a state of strongly bound quarks3. The electron now is scattered by 
bound quarks and not by free particles as in the parton model. Because 
the quarks are strongly bound, they cannot he ejected, but they make 
transitions to excited states. We assume that the hadronic final state is 
completely expressible by a superposition of resonant states. 
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Domokos et aL4 discu sed  in a series of papers some aspects of a resonance 
model for inelastic electron-nucleon scattering. They argue that the exci- 
tation of many overlapping resonance states of an oscillator-like spectrum 
leads to structure functions like those experimentally observed. From an 
universality assumpticn on the transition form factors, they derive scaling 
in the Bjorken limit. 

We are interested in the relation o1 deep inelastic electron scattering to 
quark dynamics. For t his reason, we study as an exercise a resonance model 
derived from two spiriless particle bound >,&te in the framework of non- 
relativistic dynamics. The explicitly calculated form factors of our oscil- 
lator model do not satisfy the universality assumption of Domokos. There- 
fore, we do not have zrpproximate scaling for finite momentum and energy 
transfers, q2 and V .  However, in the Bjorken limit, our structure function 
approaches a &function, representing a quasi-elastic, scale invariant peak. 

In Section 2, we study the covariance properties of the current tensor 
W,, with respect to the Galilei group in nonrelativistic quantum mecha- 
nics. W,, is determined by two structure functions W,  and W,, which 
are calculated in a nonrelativistic oscillator model in Section 3. 

2. The Current Tensor VIí,, in a Galilei Invariant Model 

The invariance group of nonrelativistic quantum mechanics is the Galilei 
group. It consists of fhe translations in space and time, the rotations and 
the pure Galilei tra.lsformations. The canonical coordinates: position 
momentum p and timc: coordinate t  of a sinele particle of mass m, transform 
Iike 

x' = Rx + vt + b, 
p' = Rp + mv, ( 1 )  
t ' =  t  + b,, 

upon transformation from one inertial system to another. Here R denotes 
a three dimensional space rotation, v the relative velocity of the two refe- 
rente systems, b a spacial and b, a time displacement. 

The solutions of the Schrodinger equation transform, under the Galilei 
transformations, as5 

y ~ ( ~ , t )  = e-if(x',t') v ( x ', t ' l  (2) 

where (x', t') depend on Ix,t) according to ( I )  and 
.f (x', t') = mv .x' - $mv2 t' . 



Unlike the relativistic case, the phase factor f(x,t) cannot be eliminated. 
The solutions of the Schrodinger equation for a free spinless particle 
belongs to the physical representation of the Galilei group characterized 
by two real numbers, the particle mass and the internal energy. 

In the space of Schrodinger functions Y(x,t), we introduce a basis Ip) 
of momentum eigenvalues normalized in a Galilei invariant way as 

The homogenous Galilei group is not semi-simple. There are reducible 
representations of this group which are not decomposable, and this makes 
the invariance considerations of the Galilei group rather involved. 

For the description of the transformation properties of the energy p, 
and the momentum p, we form, together with the mass, a five-vector 
p - (m, p, p,), which transforms under pure Galilei transformations as 

m' = m, 
p' = p + mv, 
pg = p, + p . v  + $mv2. 

The following bilinear form of five-vectors, 

is invariant under the Galilei transformations. The "five-momentum" 
squared, 

is related to the characteristic internal energy and the mass of the particle. 
For comparison with the relativistic four momentum squared p2 = p i -  
- p2 = M I ,  we put M ,  = m + E, and have approxiqately for E, < m, 
p2 = MS. 

We shall now consider some quantities which are important in a scat- 
tering process, when we have in the initial state two particles with five- 
momentum k - (m,, k, k,) and p E (M, p, p,) and in the final state k' 

(m,  , k' , kg) and p' E (M, p', pb). Energy momentum conservation reads 
p + k = p' + k'. The center of mass energy s = ( p  + k)2 is 



wherí: E, is the sum of the interna1 energy of the two particles plus a rela- 
tivistic energy betwee.1 the two particles: 

The five-momentum t ransfer q = (k- k') is q r (O, k - k', k,  - kg), with the 
invariant five-momentum squared q2 = - (qI2.  The energy transfer in the 
laboratory system is 

For the discussion of electromagnetic processes, we have to discuss the 
transformation properties of the electromagnetic current under the pure 
Galilei transformatioris. It transforms like the m and p components of 
the five-momentum, 

jo (x', t') = jo(x, t), 

j(xl, t ' )  = j(x, t) + vjo(x, t). (7) 

We see, by expression (4), that this transformation carries a representation 
of the pure Galilei group. 

For the one-particle expectation value of the current operator the norma- 
lization condition reiids, with our convention on state normalization 
(equation (3)), 

d 3  

where Q is the charge of particle, and the phase space is - We see that 
this normalization is I he limit of the relativistic case. 

2M ' 

Similarly to the wel -known relativistic case6, the cross section of an 
electromagnetic procc:ss is described by the current tensor W,, 

The transformation xoperties of the current implies that the current 
tensor transforms, un'jer the pure Galilei transformations, like 



In order to write the general form of the tensor W,,, we observe that there 
are only two five-vectors on which this tensor can depend, p and q, and 
only two independent scalars which can be formed from these five vectors, 
q2 and q - p. Thus, the most general form for the components of W,, is 

Current conservation implies that q, Woo - q, Wio = q, Wio - qi W IJ = 0. 
These relations are sufficient to eliminate two invariant functions and, 
as in the relativistic case, W,,, is completely expressible by two invariant 
functions, W, (q2, p q) and W2 (q2, p q) : 

3. Deep Inelastic Electron Scattering in a Nonrelativistic Bound State Model 

We shall consider now the deep inelastic electron scattering in a nonrela- 
tivistic spinless two-particle bound-state model. The electron is scat- 
tered by a bound state of two particles with charge Q, and Q2 and the 
same mass m. We assume that the interaction between the two particles 
is of the harmonic oscillator type. 

The time independent Schrodinger equation is 

1 - - v  2m + 1 ,  2 + V - 2 ) ( ,  r = E (  r ) ,  (13) 

where ri is the position operator for the ith-particle and 

V(rl -r2) = +k(rl -r2)'. (14) 

If we introduce the center of mass and relative coordinates R = (1/2)(r, +r,), 
r = r, -r,,  we have two independent equations, one for the center of 



mass wave function $,,,(R) and the other for the relative wave function 
$rei ( r )  

The normalized bound state wave functions are7 

where 

is the normalized harmonic oscillator wave function with a2 = (pk)'I2. 

The electromagnetic current of point-like particles in the Schrodinger 
picture, at t = O, is 

2 

jO(x) = i =  1 QiS(x- r,), 

where ri and ri are the position and velocity of each i-particle. As a conse- 
quence of the time iiidependent Schrodinger equations, this current is 
conserved. The current matrix elements between the bound states of our 
model are 



In order to calculate the structure functions, we saturate the intermediate 
states with the resonant states and take the sum over a11 resonant states. 
By expression (12), W 2  is given by Woo : 

In the laboratory system, we take q in the z-direction and the sum reduces 
to one only over a single index: 

4M 2 Q 2 m 

W - exp (- $) O@,  + q,) J(2p-q + q2-8(n + 312)a2). ' - (2n) n = O  

(22) 

In view of the fact that the intermediate resonant states have overlapping 
width for large n, we may substitute the sum by an integration. This pro- 

8a2 
cedure was discussed by Domokos. For this we assume that y = - @ 1 

2Mv 
and the summation over n can be replaced by an integration on the variable 

8a2 
x = -- n. The n ! can be approximated by a gamma function on the x 

2Mv 
variable. We therefore write: 

where w = - 2Mv is the scaling variable. We obfain 
Is12 

The behaviour of W ,  is like a continuous Poisson distribution and if 

.> 1, this expression can be approximated by a normal distribution 
8a2 

of half width -z : ("'r2 



In terrns of the scaling variable, 

It is not difficult to see that W,,  = O and, consequently, that W ,  = 0. 
This is consistent with the parton model where, for spinless partons, W, 
must be zero. vW2 dom not satisfy scaling for fínite q2 and v. In the Bjorken 
limit, the width of the distribution (25) goes to zero and vW, is strongly 
peaked around o = 2, 

This distribution cor~responds to elastic scattering on quasi-free consti- 
tuents with the mas;; m = M/2. 

The author wishes to thaiik Prof. H. Joos for suggesting this theme and for many helpful 
discussions, as well as for the hospitality extended to him at DESY. 
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