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Theempirical pseudopotential method of Cohen and Bergstresser':>? is used to show thelinear
decrease d the gap of polytypes with respect to the increasing portion o the cubic packing®.
The method is also used to study the optical properties of afour layer polytype of ZnS.

O método do pseudopotencial empirico de Cohen e Bergstresser'-** ¢ usado para mostrar

0 decrescimento linear do gap dos politipos com relagio ao crescimento da fragdo cibica®.
O método é também utilizado para estudar as propriedades Opticas dos politipos de ZnS
de quatro camadas.

Introduction

A considerable amount o information with regard to the energy band
structure of two and three layer crystals of ZnS has been obtained from
various methods o band calculation. The empirica pseudo-potential
method!-2* was used to calculate the band structure o a two layer hexa
gona crystal of ZnS (wurtzite) from the optical spectrum of a three layer
cubic crystal o ZnS (zincblende). An OPW caculation of the energy
levels of wurtzite has been made 3, where the crystal potential is formed
by placing a self-consistent isolated atomic potential at each lattice site.
The energy levels o wurtzite were also calculated using the Augmented
Plane Wave Method (APW)® at four symmetry points in the Brillouin
Zone and at two points on the line A. A comparison between the energy
levels of a two layer hexagonal and three layer cubic crystal of ZnS was
made’ using the tight binding method. Experimental results d the reflec-
tivity of some polytypes of ZnS are given by Baars®. Baars also shows
the linear decrease o the gap (I' - I"; transition) with respect to the increa-
sing portion o the cubic packing in the polytypes.

*Postal Address: ITA, 12200-Séo José dos Campos SP.
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In this work, we calculated the energy band of a four layer polytype of
ZnS and the energy at some symmetry points for higher order polytypes
of ZnS using the empirical pseudo-potential method. We used the form
factors determined by Cohen and Bergstresser? for a two layer to deter-
mine the energy for higher order polytypes.

The matrix elements of the pseudopotential can be shown to depend
separately upon the ion positions (structure factors) and upon the ion
potential (form factors)®. Consequently, the crystal potentials for two,
four, six, etc. layer hexagonal polytypes were determined using the same
form factors as in Ref. (2) with the structure factors calculated as shown
in the text. Thisimplies that any modification in the electronic distribution
around each ion that may arise due to polytypism is neglected.

1. Polytypes

Certain crystals like ZnS, SiC, etc. crystalize in layers. These layers are
stacked parallel to each other at constant intervals along a fixed direction
(z-direction). When a group of layers repeats itself in such a way that it
generates the whole crystal, this crystal is called a polytype. If the group
which repeats itsdf contains two layers, the polytype is a two layer poly-
type, if it contains four layersit isa four layer polytype and so on. A useful
terminology is to describe the layers by letters A, B, and C. With this nota-
tion a two layer polytype is described by the symbol AB/AB/AB... a
three layer by ABC/ABC/ABC. .., afour layer by ABAC/ABAC/... ec.
When using this terminology for polytypes o ZnS. a layer A implies a
layer A of Zn atoms and a layer A of S atoms, etc.

Thereis asimple rule to determine the symmetry of each layer of a polytype.

A layer is an element of hexagonal packing (h) when it is neighbored by

layers in equal positions, otherwise it is an element of cubic packing (c).

In thisway, the two, three, four, X, €tc., layer polytypes can be expressed as

AB/AB/AB, ABC/ABC/ABC, ABAC/ABAC/ABAC, ABACBC/ABACBC/A
hh cce chch chcehe

..., respectively. The portion of the cubic packing is defined as the ratio
between the number of layers of cubic symmetry in a period by the total

number of layers, that is, p:E—f—h. The polytypes mentioned previously
have p=10, 1, 05, 0.6, respectively.
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2. Details of the Calculation

2.1. The Schrodinger equation for an electron in a crystal is

H, () = [-g- v, (r)] 0u0) = EM,0), @)

m

where V,(r) is the sdlf-consistent crystal potential. The pseudo-potential
method for finding the energy levels in a crystal consists o solving the

eguation
H,v,(r) = [—qu2 + Vs (r)

instead of Eqg. (2-1).

v (r)= Etk)v,(r), (2-2)

In equation (2-2), v, (r) is the smooth part o ¢,(r) (Ref. 10) and can be
represented by plane waves as

v (r) = Y ag(k)e =B (2-3)
B

where B are reciprocal lattice vectors; V. (r) is the small, non loca pseudo-
potential. The energy eigenvaues are the same for Egs. (2-1) and (2-2).

We assume that the pseudo wave function v, (r) is a dowly varying function
of the position compared to the core wave function for distances o the
order o the ion radius. For this case, the pseudo-potential V,(r), in good

aproximation, can be taken as a local potential':'2. Since V. (r)’ has
the periodicity d the lattice it can be expanded as

V,s(r) = Y W(B)e® . (2-9)
B

Inserting Egs. (2-4) and (2-3) into (2-2), we get

2
L a0 | gy - BP- 50| bnn + W =0 09

The eigenvaues are given by the zeros o the

d 2 B)Y’-E
etlili—zzﬂ(_ ¥ -

33.3' + W(B—B')] =0, (2‘6)
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which isa N x N determinant, where N is the number of plane waves
in the expansion (2-3).

The Fourier coefficients of the pseudopotential W(B) can be written as*?

W(B) = §°(B)o¥(B)t iS*(B)0oAB), 2-7)
where
S = n- LW + W), (2-80)
ot =n-3(W"- W), (2-8b)
S = %Z[EXIO B 57 + exp (- B, . s5)], (2-9a)
st = —#Z[exp (- By, T —exp (- iB, . s¥)], (2-9b)

where n is the number of atoms per cell, W*" and W ® are the Fourier coef-
ficients of the pseudopotentials of the Zn and S atoms, respectively. The
vectors s} characterize the atom t inside the unit cdl and the index i runs
over all atoms inside the cell.

2.2. The structure factors are calcuiated for four and six layer polytypes
o ZnS. For four layers (ABAC) there are four molecules o ZnS per cell.

The locations of Zn and S atoms in the unit cdl are

. /11 1Y 2\ , (1 1 3

o (2-10a)
s} =(0,0,u); s5 =<—31— % %—i—u\); s3 =<0,0,%+ u);
1 1 3
si_(?,?,?quu), (2-10b)

where the coordinates are given in terms of the non orthogonal vectors
a,, a,, and a,, which satisfy

) a® 2
la1|=|32|=a> a,°2; =2, 2; =0, al-az—__———2—,|a3]=paﬁ=c.

(2-11)

Here, ais the lattice distance and p is the number o layersin the polytype.
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When we say plane A o atoms, we mean plane A o Zn atoms and plane
A o S atoms separated by the distance u. We take u = 3/8.

For sx layers ABACBC, we have six molecules per cell. The vectors which
characterize the atoms inside the cdll are found in the same way as for four

layers.

Inserting the vectors s} into expressions (2-9a) and (2-9b), we calculate
the structure factors for each reciprocal lattice vector.

# z G |GJ? w? o’ §s N
1 1 000 0 1 0
2 2 001 18692 — 0 0
3 2 002 74770 — 0 0
4 2 003 1.68232 - 0 0
5 6 100 2.66667 — -.24 25 4+ 0.0i 0
6 12 101 2.85359 23 -.22 06 + .151 A5 + .37
7 2 004 2.99079 23 - 0 i
8 12 102 3.41436 .19 -.19 37 + .37 37 + .37
9 12 103 4.34898 12 -.15 37 + 151 15 + 061
10 2 005 4.67310 - - 0 0
11 12 104 5.65745 .10 — 0 251
12 2 006 6.72927 - - 0 0
13 12 105 7.33977 .05 .02 37 + .151 15 + .06i
14 6 210 8. — .03 1 0
15 12 211 8.18692 - 0 0
16 12 212 8.74770 - 0 0
17 2 007 9.15928 — - 0 0
18 12 106 9.39594 03 06 37+ 37 374 301
19 12 213 968322  — _ 0 0
20 6 200 10.66667 - 07 25 0
21 12 201 10.85359 .02 .07 06 + .151 A5 + 37
22 12 214 10.99079 .02 - 0 i
23 12 202 11.41436 .02 .07 37 + .37 37 + .37
24 12 107 11.82595 .02 .06 06 + .15i A5 + 371
25 2 008 11.96314 - .06 1 0
26 12 203 12.34898 .02 .06 37 + 151 15 + .06i
27 12 215 12.67310 — — 4] Q
28 12 204 13.65745 — 0 0
29 12 10R 14 67981 .03 25 0
30 12 - 0 0

TABLE I. Column 3 contains the coordinates of the vector G with respect to the primitive
translation vectors of the reciprocallattice, where the first two form an angle of 60 °. Column 4
contains the magnitude of G where ¢ = 4a(2/3)*/%. Columns 5 and 6 contain the form factors
for the four layer polytype in Ry. Columns 7 and 8 contain the structure factors for the four
layer polytype. The number z in column 2 is the number of vectorsG with the same magnitude.
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# z G |GJ? o? o® s8 54

1 1 000 0 — - 1 0

2 2 001 .08308 - - 0 0

3 2 002 33231 - - 0 0

4 2 003 74770 - - 0 0

5 2 004 1.32924 - - 0 0

6 2 005 2.07693 - - 0 0

7 6 100 2.66667 - —.24 .50 4 .29i 0

8 12 101 2.74974 .23 -.24 -14 - .1li 035 + .26i
9 14 102 2.99079 22 -.22 .50 + .50i 50 + .501
10 12 103 3.41436 19 -.19 32 4 321 42 + 134
11 12 104 3.99590 14 - 0 501
12 2 007 4.07079 - - 0 0

13 12 105 4.74360 A1 ~.12 d6 + .21 -.24 + .04i
14 2 008 5.31695 - - 0 0

15 12 106 5.65745 10 -.06 29 + 291 -29 - .29
16 2 009 6.72927 - - v 0 0
17 12 107 6.73746 .06 ~.01 J0 4+ 04 25 - .10i
18 12 108 7.98262 - 03 25 + .141 0

19 6 210 8. — 03 50 + .29 0
20 12 211 8.08308 .04 .03 -10 - .04i 25 + .101
21 2 0010 8.30774 - - 0 0

22 12 212 8.33231 .03 .03 Jd4 — 14 14 — 14
23 12 213 8.74770 .03 .04 .53 + 071 -22 - .03i
24 12 214 9.32924 .03 - 0 .29

25 12 109 9.39594 03 06 18 + 131 42 4+ 32
26 2 0011 10.05236 - - 0 0

27 12 215 10.07693 02 06 16 + .21 07 + .09
28 6 200 10.6667 - 07 .50 + .29 0

29 12 201 10.74974 - - 0 0

30 12 1010 10.97441 .02 07 29 — 294 29 — 291
31 12 216 10.99079 02 07 A1 - .39 -11 + .39
32 12 202 10.99398 02 07 -29 + 2% -28 + 28i
33 12 203 11.41436 - - 0 0
34 22 0012 11.96314 02 - 0 i
35 12 204 11.99590 .02 - 0 29 + .50i
36 12 217 12.07079 .02 07 09 + .07 21 + 161
37 12 1011 12.71903 01 .05 26 - 03i At~ 0l

TABLE II. Column 3 contains the coordinates of the vector G with respect to the primitive
translation vectors by, b,, b, where b, .b, = b%2. Column 4 contains the magnitude of G
where ¢ = 4a(2/3)'/2. Columns 5 and 6 contain the form factorsin Ry. In columns 7 and 8,
we have the structure factors. In column 2 z is the number of vectors G with the same
magnitude.

The form factors are taken from Ref. 2, where they were calculated for
a two layer (4B) ZnS, as explained in the introduction. The form factors
are functions of the magnitude of the reciprocal lattice vectors. Since the
reciprocal space for higher order polytypes are not the same as the two
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layer polytype, we had to interpolate the form factors. In table I, we show
the structure factors, the form factors, the vector G and the magnitude
d the vector |G| for four layers, where

B= T \[ G. (2-12)
Table II shows the same quantities for sx layers.

2.3. Replacing the values d the structure factors and form factors so
obtained in Eq. (2-7), we can determine the potential. Next, the matrix
(2-6) can be formed for two, four and Sx layer polytypes of ZnS. The four
layer polytype has four molecules of ZnS per cell. Each molecule has 8
valence eectrons. Consequently, we have 32 valence electrons per cdl.
We need to solve Eq. (2-6) for 16 occupied vaence bands and 16 empty
conduction bands.

The number o terms in the expansion (2-3) which determines the size
o the matrix is related to the convergence that we are looking for. Using
the Lowdin-Brust scheme!# 13, it is possible to include more terms in the*
expansion (2-3) without increasing the size o the matrix to be diagonalized.
This is done in the following way. The set o N plane waves, considered
in (2-3) is divided into two sets: the basic set, which is treated exactly,
contains M plane waves whaose reciprocal lattice vectors go from

|[k-B,|>=E; to |k-By|*=E,. (2-13)
The set o N- M plane waves, whose reciprocal lattice vectors satisfy
Ey < |k-B,|? < Ey, (2-14)

enter the calculation through perturbation theory.

For four layers, if we choose E,; =8 and E, = 18, we have to diagonalize
an approximate 80 x 80 matrix with approximately 300 more plane
waves added as perturbation. The convergence is of the order o 01eV.
For six layers, however, we did not increase the cut off energy due to prac-
tical computational difficulties. As a consequence, the convergence for six
layers is worse than 0.1eV.

24. If we neglect lifetime broadening effects, such as those resulting from
phonons and impurity scattering, and consider only vertical band to band

transitions, the imaginary part o the dielectric constant &,(w) is given
by15,16,17

Ine’ hz > e )3[ Sy ]2 O[E, (k) - E,(k) - ho}dk,  (2-15)

3m*w? 5

&, (w) =
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whereé is the polarization d the light, m and n the valence and conduction
band indices and

Sym = Jv;{‘)k(r)va,k(r)dr. (2-16)

The imaginary part of the dieletric constant was calculated for four layers
only. It was done in a way similar to that used by Collins, Euwema et al.!”,
A mesh of 112 equally spaced points is constructed inside a section of
1/24 of the Brillouin Zone, Fig. 1.

JAVANEE S

)
Y

Fig. 1 Brillouin zone for heagonal lattice, with symmetry points and section of the zone
where the matrix is diagonalized.

The eigenvectors and eigenvalues of Eq. 2-6 are calculated for all points
d the crude mesh mentioned above. A fine mesh of 1000 points is placed
around each -EOi nt of the crude mesh. The energy at each point in the fine
mesh, E,(k; T 6) is given by

E,(k; + &) = E, (k) + 6 VE,|;-0, (2-17)
where E, (k;) is the eigenvalue of Eq. (2-6) at the crude mesh point k;, and

2
VEM) = Y apr ok, (2-18)
J

where the a's are the eigenvectors of Eq. (2-5).

The imaginary part o the dielectric constant, ¢, (), is calculated for ener-
gies going from O to 12eV. This range o energy is divided in bins of size
0.04eV. The energies are calculated at points k + 6. Then Ek T 6) is
divided by 0.04 to see which bin the contribution

SZ
__nm 2-19
IEn_Em‘2 ( )

goes to, where E,- E,, > hw, as in Eq. (2-15).
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From &, {w), we calculated the real part o the dielectric constant €, (0).
The real part o the dielectric constant and the reflectivity R(w) are given
by the relations

b =1+ f 20, (220
0

[A(w)—1]* + k(w)?

Riw) = [n(w) + 117 + kw)*” (2-21)
where n(w) and k(w) are given by
g, (0) = n?=k?, (2-22)
&, (0) = 2nk. (2-23)
4. 0.
38 X
Eev)
30 X
X
2.0
°© oS o 1.0

Portion of the cubic packing

Fig. 2. Variation of the band-gap with the structure of ZnS.

Fig. 2 shows the gap decrease d the polytypes with respect to the increa-
sing portion o the cubic packing. We can see the increase in the uncer-
tainty in the resultsas we increase the order o the polytype. For six layers
we kept approximately the same number of plane waves in the expansion
d the wave function as for four layers. The six layer unit cdl is more
crowded than the four layer one. The wave function should oscillate more
in the gx layer unit cdl. So we need more terms in expansion (2-3) to get
a better representation d the wave function.
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To obtain convergence of the order of 0.1eV for six layers we would have
to use such a large matrix that we would exceed the memory o the com-

puter (CDC 6600).

Fig. 3 shows the imaginary part of the dielectric constant. Fig. 4 shows
the real part of the dielectric constant and in Fig. 5 we have the reflectivity
as calculated theoretically. We also present the experimental reflectivity
determined by Baars. 'We notice that our results agree with the experi-
mental one with respect to the location of the peaks o reflectivity but
not with respect to the ntensity of the peaks. In our calculation, the maxi-
mum intensity occurs at energies around 95 eV which corresponds to
peak no. 4 in Fig.6. 11 addition, the intensity of peak number 1 is less

than 100. What we plot in Fig. 3 is ¢,(w) given by

- _ &l i
&, () = AT (Zw Tt 100, (2-24)

where ¢, (w) is the contribution found in each hin after the calculation
is over.

Ef

ioo

s0
40

20

4 5 ] 7 8 y 40 i

Enersy (ev)

Fig. 3. I?nagi nary part the dielectric constant for a four layer polytype of ZnS
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Energy(&v)
Fig. 4 Rea part of the dielectric constant for a four layer polytype of ZxS.

We can have a rough idea of the perturbation caused by the polytypism
by comparing the energy levels (along the A line, in particular at the point
A) o the four layer polytype, with wurtzite, but considering the Brillouin
zone of wurtzite divided in hdf aong the b, direction and folding the
energies o the second hdf into the first half. This is shown on table II
where the first column represents the energies at point A as calculated
by Cohen and Bergstresser for the two layer polytype ABAB.... The
second column gives the values o the energy at the middle point between
I' and A for the two layer polytype, as obtained by Cohen and Bergstresser.
The third column shows the energies at the same point as the second
column, but for the four layer polytype ABACABAC....
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Fig. 5. Reflectivity spectra of 4H ZnS.

Fig. 6. Reflectivity spectra of 4H ZxS as determined experimentally in Baars.
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CB (two layers) Zone divided four layers

25 2 T35
23 3 5
-3 i ~
-3 I T
53 pp <0
53 53 57
83 y y
83 6 s

TABLE II. The first column shows the energies (in eV) for wurtzite as calculated by Cohen
and Bergstresser for the symmetry point A. The second ‘column shows the same energies but
with the Brillouin zone divided in half. The third column is the result for four layers for the
same point A.
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