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The empirical pseudopotential method of Cohen and Bergst res~er '~~.~ is used to show the linear 
decrease of the gap of polytypes with respect to the increasing portion of the cubic packing4. 
The method is also used to study the optical properties of a four layer polytype of ZnS. 

O método do pseudopotencial empírico de Cohen e Bergstre~ser ' ,~.~ é usado para mostrar 
o decrescimento linear do gap dos politipos com relação ao crescimento da fração cúbica4. 
O método é também utilizado para estudar as propriedades ópticas dos politipos de ZnS 
de quatro camadas. 

Introduction 

A considerable amount of information with regard to the energy band 
structure of two and three layer crystals of ZnS has been obtained from 
various methods of band calculation. The empirical pseudo-potential 
m e t h ~ d ' , ~ , ~  was used to calculate the band structure of a two layer hexa- 
gonal crystal of ZnS (wurtzite) from the optical spectrum of a three layer 
cubic crystal of ZnS (zincblende). An OPW calculation of the energy 
levels of wurtzite has been made , where the crystal potential is formed 
by placing a self-consistent isolated atomic potential at each lattice site. 
The energy levels of wurtzite were also calculated using the Augmented 
Plane W a ~ e  Method (APW)6 at four symmetry points in the Brillouin 
Zone and at two points on the line A. A comparison between the energy 
levels of a two layer hexagonal and three layer cubic crystal of ZnS was 
made7 using the tight binding method. Experimental results of the reflec- 
tivity of some polytypes of ZnS are given by Baars4. Baars also shows 
the linear decrease of the gap ( r 6  - T, transition) with respect to the increa- 
sing portion of the cubic packing in the polytypes. 
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In this work, we calculated the energy band of a four layer polytype of 
ZnS and the energy at some symmetry points for higher order polytypes 
of ZnS using the empirical pseudo-potential method. We used the form 
factors determined by Cohen and Bergstresser2 for a two layer to deter- 
mine the energy for higher order polytypes. 

The matrix elements of the pseudopotential can be shown to depend 
separately upon the ion positions (structure factors) and upon the ion 
potential (form fac to r~ )~ .  Consequently, the crystal potentials for two, 
four, six, etc. layer hexagonal polytypes were determined using the same 
form factors as in Ref. (2) with the structure factors calculated as shown 
in the text. This implies that any modification in the electronic distribution 
around each ion that may arise due to polytypism is neglected. 

1. Polytypes 

Certain crystals like ZnS, SiC, etc. crystalize in layers. These layers are 
stacked parallel to each other at constant intervals along a fixed direction 
(z-direction). When a group of layers repeats itself in such a way that it 
generates the whole crystal, this crystal is called a polytype. If the group 
which repeats itself contains two layers, the polytype is a two layer poly- 
type, if it contains four layers it is a four layer polytype and so on. A useful 
terminology is to describe the layers by letters A, B, and C. With this nota- 
tion a two layer polytype is described by the symbol ABIABIAB.. . a 
three layer by ABCIABCIABC.. . , a four layer by ALIAC/ABAC/. . . etc. 
When using this terminology for polytypes of ZnS. a layer A implies a 
layer A of Zn atoms and a layer A of S atoms, etc. 

There is a simple rule to determine the symmetry of each layer of a polytype. 
A layer is an element of hexagonal packing (h) when it is neighbored by 
layers in equal positions, otherwise it is an element of cubic packing (c). 
In this way, the two, three, four, six, etc., layer polytypes can be expressed as 
ABIABIAB, ABCIABCIABC, ABACIABACIABAC, ABACBCIABACBCIA 

hh ccc chch chcchc 

. . . , respectively. The portion of the cubic packing is defined as the ratio 
between the number of layers of cubic symmetry in a period by the total 

number of layers, that is, p =A. The polytypes mentioned previously 
c + h  

have p = 0, 1, 0.5, 0.6, respectively. 



2. Details of the Calculation 

2.1. The Schrodinger equation for an electron in a crystal is 

where Vc(r) is the self-consistent crystal potential. The pseudo-potential 
method for finding the energy levels in a crystal consists of solving the 
equation 

H,v,(r) = [ h  -- V 2  + Vps(r)  v, ( r )  = E(k)v,(r), I (2-2) 

instead of Eq. (2-1). 

In equation (2-2), v,(r) is the smooth part of 4 , ( r )  (Ref. 10) and can be 
represented by plane waves as 

where B are reciproca1 lattice vectors; Vps(r)  is the small, non local pseudo- 
potential. The energy eigenvalues are the same for Eqs. (2-1) and (2-2). 

We assume that the pseudo wave function v,(r) is a slowly varying function 
of the position compared to the core wave function for distances of the 
order of the ion radius. For this case, the pseudo-potential Vp,(r), in good 
aproximation, can be taken as a local potentia111,12. Since vP,(r)' has 
the periodicity of the lattice it can be expanded as 

Inserting Eqs. (2-4) and (2-3) into (2-2), we get 

The eigenvalues are given by the zeros of the 
2 

det [[& (k - B)' - E a B S B r  + WIB - I 



which is a N x N determinant, where N is the number of plane waves 
in the expansion (2-3). 

The Fourier coefficients of the pseudopotential W(B)  can be written as1, 

W(B) = (B)o S (B)  + iSA ( B ) o A  (B), (2-7) 

1 SS = - [exp (- iBh . s?) + exp (- iBh . sf)], (2-9a) 
n i  

SA = - [exp (- iB, c) - exp (- iB, . $ ) I ,  (2-9b) 
n i 

where n is the number of atoms per celi, W Zn and W S  are the Fourier coef- 
ficients of the pseudopotentials of the Zn and S atoms, respectively. The 
vectors si characterize the atom t inside the unit cell and the index i runs 
over a11 atoms inside the cell. 

2.2. The structure factors are calculated for four and six layer polytypes 
of ZnS. For four layers (ABAC) there are four molecules of ZnS per cell. 

The locations of Zn and S atoms in the unit cell are 

where the coordinates are given in terms of the non orthogonal vectors 
a,, a,, and a, ,  which satisfy 

(2- 1 1) 

Here, a is the lattice distance and p is the number of layers in the polytype. 



When we say plane A of atoms, we mean plane A of Zn atoms and plane 
A of S atoms separated by the distance u. We take u = 318. 

For six layers ABACBC, we have six molecules per cell. The vectors which 
characterize the atoms inside the cell are found in the same way as for four 
layers. 

Inserting the vectors si into expressions (2-9a) and (2-9b), we calculate 
the structure factors for each reciprocal lattice vector. 

TABLE I. Column 3 contains the coordinates of the vector G with respect to the primitive 
translation vectors of the reciproca1 lattice, where the first two form an angle of 60 O. Column 4 
contains the magnitude of G where c = 4a(2/3)'I2. Columns 5 and 6 contain the form factors 
for the four layer polytype in Ry. Columns 7 and 8 contain the structure factors for the four 
layer polytype. The number z in column 2 is the number of vectors G with the same magnitude. 



TABLE 11. Column 3 contains the coordinates of the vector G with respect to the primitiw 
translation vectors b , ,  b,, b, where b, . b, = b2/2. Column 4 contains Lhe magnitude of G 
where c = 4a(2/3)'I2. Columns 5 and 6 contain the form factors in Ry. In columns 7 and 8, 
we have the structure factors. In column 2, z is the number of vectors G with the same 
magnitude. 

The form factors are taken from Ref. 2, where they were calculated for 
a two layer (AB) ZnS, as explained in the introduction. The form factors 
are functions of the magnitude of the reciprocal lattice vectors. Since the 
reciproca1 space for higher order polytypes are not the same as the two 



layer polytype, we had to interpolate the form factors. In table I, we show 
the structure factors, the form factors, the vector G and the magnitude 
of the vector IGl for four layers, where 

Table I1 shows the same quantities for six layers. 

2.3. Replacing the values of the structure factors and form factors so 
obtained in Eq. (2-7), we can determine the potential. Next, the matrix 
(2-6) can be formed for two, four and six layer polytypes of ZnS. The four 
layer polytype has four molecules of ZnS per cell. Each molecule has 8 
valence electrons. Consequently, we have 32 valence electrons per cell. 
We need to solve Eq. (2-6) for 16 occupied valence bands and 16 empty 
conduction bands. 

The number of terms in the expansion (2-3) which determines the size 
of the matrix is related to the convergence that we are looking for. Using 
the Lowdin-Brust schemel42 15, it is possible to include more terms in thex 
expansion (2-3) without increasing the size of the matrix to be diagonalized. 
This is done in the following way. The set of N plane waves, considered 
in (2-3) is divided into two sets: the basic set, which is treated exactly, 
contains M plane waves whose reciprocal lattice vectors go from 

The set of N- M plane waves, whose reciproca1 lattice vectors satisfy 

enter the calculation through perturbation theory. 

For four layers, if we choose EM = 8 and E, = 18, we have to diagonalize 
an approximate 80 x 80 matrix with approximately 300 more plane 
waves added as perturbation. The convergence is of the order of 0.1 eV. 
For six layers, however, we did not increase lhe cut 05 energy due to prac- 
tical computational dificulties. As a consequence, the convergence for six 
layers is worse than 0.1 eV. 

2.4. If we neglect life-time broadening effects, such as those resulting from 
phonons and impurity scattering, and consider only vertical band to band 
transitions, the imaginary part of the dielectric constant &,(o) is given 
b ~ ' ~ , ' ~ , ' ~  



where ê is the polarization of the light, m and n the valence and conduction 
band indices and 

(2- 1 6) 

The imaginary part of the dieletric constant was calculated for four layers 
only. It was done in a w#iy similar to that used by Collins, Euwema et al.17. 
A mesh of 112 equally spaced points is constructed inside a section of 
1/24 of the Brillouin Zone, Fig. 1. 

Fig. 1. Brillouin zone for he.tagona1 lattice, with symmetry points and sectlon 01' the zone 
where the matrix is diagonalized. 

The eigenvectors and eigenvalues of Eq. 2-6 are calculated for a11 points 
of the crude mesh mentioned above. A fine mesh of 1000 points is placed 
around each point of the crude mesh. The energy at each point in the fine 
mesh, Ep(ki + 6) is given by 

where E,&) is the eige~ivalue of Eq. (2-6) at the crude mesh point k,, and 

where the a's are the eigenvectors of Eq. (2-5). 

The imaginary part of the dielectric constant, ~ , ( o ) ,  is calculated for ener- 
gies going from O to 12 eV. This range of energy is divided in bins of size 
0.04eV. The energies are calculated at points k + 6. Then E& + 6) is 
divided by 0.04 to see which bin the contribution 

goes to, where E ,- E m  ho, as in Eq. (2-15). 



From eZ(o), we calculated the real part of the dielectric constant E, (o). 
The real part of the dielectric constant and the reflectivity R(w) are gim 
by the relations 

where n(o) and k(o) are given by 

E1 ( o )  = nz 
- k2, 

e2 (0 )  = 2nk. 

Fig. 2 shows the gap decrease of the polytypes with respect to the increa- 
sing portion of the cubic packing. We can see the increase in the uncer- 
tainty in the results as we increase the order of the polytype. For six layers 
we kept approximately the same number of plane waves in the expansion 
of the wave function as for four layers. The six layer unit cell is more 
crowded than the four layer one. The wave function should oscillate more 
in the six layer unit cell. So we need more terms in expansion (2-3) to get 
a better representation of the wave function. 
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Fig. 2. Variation of the band-gap with the structure of ZnS. - 



To obtain convergence of the order of 0.1 eV for six layers we would have 
to use such a Iarge mai.rix that we would exceed the memory of the com- 
puter (CDC 6600). 

Fig. 3 shows the imaginary part of the dielectric constant. Fig. 4 shows 
the real part of the dielectric constant and in Fig. 5 we have the reflectivity 
as calculated theoretically. We also present the experimental reflectivity 
determined by Baars. 'We notice that our results agree with the experi- 
mental one with respect to the location of the peaks of reflectivity but 
not with respect to the ntensity of the peaks. In our calculation, the maxi- 
mum intensity occurs at energies around 9.5 eV which corresponds to 
peak no. 4 in Fig. 6 .  11 addition, the intensity of peak number 1 is less 
than 100. What we plot in Fig. 3 is i2(w) given by 

where ~ ~ ( 0 )  is the contribution found in each bin after the calculation 
is over. 

- 
Fig. 3. Imaginary part the dielectric constant for a four layer polytype of ZnS 
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Fig. 4. Real part of the dielectric constant for a four layer polytype of ZnS. 

We can have a rough idea of the perturbation caused by the polytypism 
by comparing the energy levels (along the A line, in particular at the point 
A) of the four layer polytype, with wurtzite, but considering the Brillouin 
zone of wurtzite divided in half along the b, direction and folding the 
energies of the second half into the first half This is shown on table I11 
where the first column represents the energies at point A  as calculated 
by Cohen and Bergstresser for the two layer polytype A B A B . .  . . The 
second column gives the values of the energy at the middle point between 
r and A  for the two layer polytype, as obtained by Cohen and Bergstresser. 
The third column shows the energies at the same point as the second 
column, but for the four layer polytype ABACABAC..  . . 
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Fig. 5. Reflectivity spectra of 4H ZnS. 

Fig. 6. Reflectivity spectra c ~ f  4H ZnS as determined experimentally in Baars. 
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CB (two layers) Zone divided four layers 

- 3.5 - 3.8 
- 2.5 

- 3.5 - 3.5 

TABLE 111. The first column shows the energies (in eV) for wurtzite as calculated by Cohen 
and Bergstresser for the symmetry point A. The second column shows the same energies but 
with the Brillouin zone divided in half. The third column is the result for four layers for the 
same point A. 
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