
Revista Brasileira de Física, Vol. 2, N." 2, 1972 

Application of the Statistical Perturbation Method to the 
Heisenberg Ferromagnet 

J. G. RAMOS* and A. A. GOMES 
Centro Brasileiro de Pesquisas ~ i s i c a i ' ,  Rio de Janeiro GB 

Recebido em 1." de Outubro de 1971 

Extension of the statistical pertubation method to a non-Hermitian Hamiltonian is made 
and applied to the Dyson Hamiltonian. We obtained a low-temperature magnetization 
which is equal to that obtained by the Green's function method and is essentialy the Dyson 
result. This means that the kinematical interactions are properly taken into account in that 
temperature range. Finally, the renormalized energy of the spin-waves in the symmetric 
aproximation is obtained and the result coincides with that obtained by Callen using the 
Green's function method. These results show that the statistical perturbation and Green's 
function methods are equivalent. 

Estendemos o método da perturbação estatística a um Hamiltoniano não hermitiano para 
aplicá-lo ao Hamiltoniano de Dyson. Na região de baixas temperaturas, obtemos um resul- 
tado para a magnetização que é idêntico ao obtido com o método das funções de Green e 
que é, essencialmente, o resultado de Dyson. Isso significa que as interações cinemáticas 
são bem tratadas naquela região de temperatura. Finalmente, as energias renormalizadas 
das ondas de spin são determinadas na aproximação simétrica, o resultado sendo idêntico 
ao obtido por Callen com o método das funções de Green. Esses resultados mostram que 
os métodos da perturbação estatística e das funções de Green são equivalentes. 

1. Introduction 

As pointed out by Wortisl, the Heisenberg ferromagnet thermodynamics 
must be calculated without violating the following properties of the Heisen- 
berg model: (i) spin kinematics must always be obeyed and (ii) the low- 
lying states have a propagational, particle-like behavior. The violation of 
these properties by any formalism introduces spurious terrns in the ther- 
modynamics. 
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The purpose of this paper is to show that these two properties are not 
violated by the application of the statistical perturbation method2 to the 
Dyson spin-waves. As pointed out by wailace2, the application of this 
method to the Bloch spin-waves obscures the local spin kinematics. This 
can be understood by the fact that the Bloch spin-waves are obtained 
by a Fourier transform of the spin operators and this transformation 
defines new operators which do not obey the boson commutators. This 
implies that the local spin kinematics is violated and kinematical interac- 
tions are overestimated when a careless approximation is introduced in 
the commutator of these new operators. This means that the Bloch spin- 
waves must be carefully treated. 

On the other hand, the Dyson spin-waves are obtained by a transformation 
from the spin to boson operators. Hence, we expect that the local spin 
kinematics will not be violated by the application of the statistical pertur- 
bation method to the Dyson spin-waves. In Section 2, we show that the 
statistical perturbation method can be extended to a non-Hermitian 
Hamiltonian and it is applied to the Dyson spin-waves. The obtained 
magnetization is equal to that obtained by Tahir-Kheli and ter Haar4 

using the Green's function method and it is essentially the Dyson result3. 
Then we may conclude that the local spin kinematics and the particle-like 
behavior are not violated by the application of the statistical perturbation 
method to the Dyson spin-waves. From these results, we also may con- 
clude that the statistical perturbation and Green's function methods are 
equivalent. 

Wallace2 has shown that there is a T3 spurious term in the magnetization 
when the statistical perturbation method is applied to the Bloch spin- 
waves for S = 112. In addition, we must observe that in the Wallace results 
there is no T4 term. This result is equal to that obtained by Callen5 for 
S = 112, using the Green's function method with a symmetric decoupling. 
To obtain at, low temperatures, a result for the correlation function 
(S; SJS;), better than that obtained by Callens, it has been shown by 
Dembinski6 that the basic equation of the S = 112 Callen's decoupling 
must be modified. The present authors have shown that the S = 112 Callen's 
decoupling violates the local spin kinematics. Then we may conclude that 
this property is strongly violated by the careless aplication of the statistical 
perturbation method to the Bloch spin-waves. 

Finally, in Section 3, we obtain the renormalized energy of the spin-waves 
in the symmetric approximations. The result for this renormalized energy 
is equal to that obtained by Callen5. The result obtained here is a genera- 
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lization of the Wallace result2. The selfconsistent equation for the S = 112 
magnetization is equaI to that obtained by Callen. We must remember 
that the magnetization obtained from this selfconsistent equation also 
presents spurious terms. Again we may conclude that the statistical pertur- 
bation and Green's function methods are equivalent. 

2. Statistical Perturbation Method 

2.1. Summary of the Wallace Results 

Let us a'ssume that for a given Hamiltonian it is possible to find approxi- 
mate creation operators O:, which satisfy the following equation of motion: 

[ H ,  $1- = o,,$ + R;,  (2- 1) 

where the w, are real positive numbers and the R; operators may be consi- 
dered as a perturbation in the sense that it gives small contributions to 
the statistical averages2. 

In the zeroth-order approximation, we neglect the R: operators, and the 
basic equations for this approximation are2 

( 0 ;  R )  = @ )  ( [ R ,  e;!.] * )  (2-2a) 

and 

<no,> = d " ( [ @ i ,  Q]*>, .(2-2 b) 

where 

6Ik) = (exp (fim,) + i)-', (2-3) 

/? = (k,T)-'  and R is an operator. The statistical average is defined in 
the usual manner. 

In the special case R = O,, and taking into account the R: operators, we 
can obtain the statistical averages in the first-order approximation, that is, 

The renormalized energies, in the first-order approximation, are given 
by o, + o,,, where2 

= ( R ;  e,)l(e; e , ) .  (2-5) 



Thus, with the oIi given by Eq. (2-5), the first-order basic equation for 
(eiQi) reduces to a zeroth-order basic equation with the renormalized 
energies 

(e; ei) = 4<,:)([ei, e;],), (2-6) 

where 

4'li' = (exp p(o i -o l i ) -  (2-7) 

In principle, the statistical average (8(8,) must be obtained selfconsis- 
tently from the coupled equations (2-5) and (2-6). However, in practice 
ali is evaluated in the zeroth-order approximation and this result is used 
in Eq. (2-6). 

Actually, the Wallace procedure is to treat the effect of the as a pertur- 
bation and then make an a posteriori check to see if it does indeed give 
small contributions to the statistical average. 

In general, the usefulness of Eq. (2-6) is that the commutator or the anti- 
commutator are much simpler than the product of 0; with Oi. In particular, 
in the case that the 0; operators are bosons or fermions, from Eq. (2-6) 
we obtain the occupation numbers of renormalized quasi-particles in 
the first-order. 

2.2. Extension of the Statistical Perturbation Method to a Non-Hermitian 

Hamiltonian 

We assume that we are dealing with a non-Hermitian H,, Hamiltonian 
-and that it is possible to find approximate creation operators r;, which 
satisfy the commutator equation 

[H,, , r;] - = @,I-( + R ; ,  

where the oi are real positive numbers. 

Transforming the H,, operator, by a non-unitary matrix, into a Hh Hermi- 
tian operator, Eq. (2-8) becomes 



where 

and 

T-' T = 1. 

(2- 1 Oa) 
(2- 10b) 
(2- 1 Oc) 

The Wallace formalism may be applied to Eq. (2-9). The zeroth- and first- 
-order basic equations are Eqs. (2-2) and (2-6), respectively. However, 
Eq. (2-2) may be rewritten as follows: 

and 

where cp = T-'QT. Of course, the density matrix is now given by p = 

= exp (- BH,,). 

But 

[T-lqT 9 T - ' r Q  i TI, = T-'[q, r/], T. (2- 13) 

Hence, substituting Eq. (2-13) into Eq. (2-12) and using the cyclic permu- 
tation theorem for the traces, we obtain 

(I-: c p )  = $Ik)([$, r:],) (2- 14a) 

and 

(qri) = 4!"<[ri, q]+). (2- 14b) 

We also may easily obtain 

Finally, we may obtain the zeroth-order basic equation with renormalized 
energies : 

(r;ri) = 4\$)([ri, r;]+) (2- 16) 

where 

wli = ( R ;  ri)/(r; r i ) .  (2- 17) 



Thus, similar equations for the operators 0: and Oi are valid for the operators 
and Ti, which are related to the non-Hermitian Hamiltonian. 

We want to emphasize that equations (2-14) to (2-17) will be useful in 
calculating the Dyson spin-wave thermodynamics by the statistical pertur- 
bation method. 

2.3. Dyson Spin-Waves 

Let us consider a ferromagnetic material described by N localized spins 
in a crystal lattice and coupled through the isotropic Heisenberg Hamil- 
tonian 

where S j  is the spin operator (h = 1) of the j lattice site, Ji j  is the exchange 
integral between spins at i and j lattice sites, h is the externa1 magnetic field 
and p = gp, (g = spectroscopic factor and p, = Bohr magneton). 

The spin operators are defined by the i,ommutators 

[S' , S,:] - = 2s: dij, (2- 19a) 

[SF, S j ' ] -  = S i S i j ,  [S f ,  S& = - S l  S.. IJ ' (2- 19b) 

[S;,  S i ] -  = [S;, S,]- = O. (2- 1 9 ~ )  

The S-  and S+ operators satisfy the following subsidiary condition: 

(Sf)2S+l = (Sí)2S+1 = 0 (2-20) 

which is responsible for the kinematical interactions. 

Let us transform the spin operators to boson operators by the Maleev 
transformation

g 

Sj' = (2S)'I2(bj + b: bjbj/2S), 
SJ = (2s)'l2b:, Sj' = S -  bf  b j ,  (2-21) 

where the bj and bj  are creation and annihilation boson operators, 
respectively. 

Dyson spin-wave creation and annihilation operators are boson operators 
and are defined by the Fourier transform of the bj and bj  operators, 
respectively : 



bj  = N -  ' I 2  C exp (ik . j)ak . 
k 

Dealing with the transformations (2-21) and (2-22), the isotropic Heisen- 
berg Hamiltonian (2-18) will read 

, . + N-'  C ( J k -  Jk-kz,)a'k a;,ak., a,+,.-,.. , (2-23) 
kk'k" 

where 
U, = ph + 2S(Jo - Jk), (2-24) 

J k  = 1 Jmj  exp [ik . (m - j ) ]  . (2-25) 
m - j  

The Heisenberg Hamiltonian in terms of the a; and a, operators is known 
as the Dyson spin-wave non-Hermitian Hamiltonian. 

The commutator [H,, a i ] -  is given by 
. . 

[H,, , ai]  - = wk a; + (2 /N)  C (J,, - J,, - ,) a;. i;,, a,, + ,., - . (2-26) 
k'k" 

Comparing Eqs. (2-8) and (2-26), we see that 
. . 

Ri = (2 /N)  1 (J,, - J,. -,) a; ai., a,.,,,, -, 
k'k" 

At low temperatures, taking the leading term in Eq. (2-26) and using the 
zeroth-order approximation basic equation (2-14), we obtain 

( i k  ak> = rbk ,  (2-28) 

where 4, is defined by Eq. (2-3). 

From Eqs. (2-21) and (2-22), we easily obtain 

N-'  C (aia,)  = S -  ( S z ) .  (2-29) 
k 

Thus, the zeroth-order magnetization is given by 

( S Z )  = s- 4, 
where 4 = N-'  C (bk. 

k 



Considering only nearest-neighbor exchange and primitive cubic lattices, 
has the usual temperature power series2 

where we have used Wallace's notation2. Thus, the zeroth-order magne- 
tization is given by 

The magnetization (2-32) is equal to that obtained for the independent 
Bloch spin-waves2. 

Let us now evaluate the perturbation t e m  ( R i a , ) .  From the first-order 
basic equation (2-15), we may write: 

N-'  C (a :ak)  = N-'  4, - (P /N)  (4, - l ) ( ~ k  a , ) .  (2-33) 
k k k 

The correlation function ( R i a , )  can be evaluated in zeroth-order by 
using the basic equation (2-14): 

< R , h k >  = 4k([ak,  c-). (2-34) 

But 

[a, ,  R:] - = (2 /N)  (J,, + Jk - Jk ,  - ,  - J&;, a,, . (2-35) 
k' 

and, therefore, combining Eqs.' (2-33), (2-34) and (2-35), we obtain 

where the integrals are evaluated as Substituting Eq. (2-36) into 
Eq. (2-29), the iirst-order magnetization is given by 

The magnetization given by Eq. (2-37) is equal to that obtained by Tahir- 
Kheli and ter Haar4, applying the Green's function method to the Dyson 
spin-waves. Hence, we may conclude that, for low boson concentrations, 
the application of the statistical perturbation method to the Dyson spin- 
waves violates neither local spin kinematics nor the particle-like beha- 
vior. We must emphasize that Eq. (2-37) shows the equivalence between 
the statistical perturbation and Green's function methods. 



Finally, we must emphasize that Eq. (3-34) of Wallace's paper2 may be 
written as follows 

This means that the perturbation t e m  introduces a spurious T 3  term 
and cancels the T4 term in the Bloch spin-wave magnetization. Eq. (2-38) 
is fundamentally different from the Dyson result3 and coincides with 
that obtained by Callen5 for S = 112. Then the local spin kinematics is 
violated by the careless application of the statistical perturbation method 
to the Bloch spin-waves. 

Dyson3 and Wortisl have shown that, at low temperatures, the kinema- 
tical interactions are negligible. This means that the Fourier transform 
of the S+ and S- operators may be considered as boson operators. Conse- 
quently, with this ad hoc argument we may obtain Eq. (2-37) instead of 
Eq. (2-38), for the S = 112 Bloch 'spin-wave magnetization2. 

3. Symmetric Approximation to the Renormalized Energies 

As pointed out by Wallace2, the relevant equation for the Fourier transform 
of the spín operator may be rewritten as follows: 

[H, A;]-  = %A,'-P,, (3- 1) 
where 

= ph - 2 ( S z ) ( J o  - J k )  (3-2) 
and 

The A;, A, and Bk operators are Fourier transforms of the S i ,  S i  and S 
operators, respectively2. 

For the renormalized energies, the basic equation (2-6) reads 

(ALA,) = $,,([A,, ALI-), (3-4) 

and 



Then the S = 1/2 magnetization is the selfconsistent solution of the fol- 
lowing equation: 

Let us determine the renormalized energies in the symmetric approxi- 
mation. Callen5 has proposed the following S representation: 

Si" = ( S z )  + (1/2)(1 -a)Sf S j  -(1/2)(1 + a)S; S f  , (3-9) 

where a = (Sz ) /S  for S = 112. The Fourier transform of Eq. (3-9) gives 

Substituting Eq. (3-10) into (3-3), the P: operator is now given by 

P<- k - - N-'  C (Jk '-k-Jk ') .  
k'k" 

- ( ( 1  - a ) ~ ; .  Ak,, A ; , , ' ~ , + ~  - ( 1  + a ) ~ ; .  A;.,-,.+, A,..). (3-1 1 )  

Using Eq. (3-l l ) ,  we may evaluate the numerator of Eq. (3-6.). The result is 

(pj, A,) = N -  C (J,, - ,  - J,.). 
k'k" 

. {(i - u ) ( A ~ ,  A ; ~ ~ - ~ ~ + ~  A ~ )  - ( i  + CC)(A;, A ; , , - ~ , + ~ A ~ , ,  A ~ ) ) .  
(3- 12) 

For the representative correlation function of the right hand side of Eq. 
(3-12), let us use the following approximation: 

The approximation (3-13) corresponds to the Callen symmetric decou- 
pling5, which is easily verified using the A; and Akoperator definitions. 
With this approximation, the correlation function ( P ,  A,) reads 



The second term of the right side of Eq. (3-14) is zero, which is verified 
by taking the average of Eq. (3-9). In this case, using Eq. (3-4) we obtain 

(P:  A,) = - {~(s ')~/Ns~)(A: Ak) ( J ~ ,  - k  - J ~ . ) @ ~ ~ ,  . (3-15) 
k' 

Combining Eqs. (3-15) and (3-6), we obtain 

= { ~ ( s ~ ) ~ / N s ~ )  C ( J ~ ,  - Jkr-k)$lkf. (3- 1 6) 
k' 

Finally, the renormalized energy in the symmetric approximation reads 

which is exactly the Callen results. Eq. (3-17) is a generalization of the 
Wallace result2. 

Eqs. (3-17), (3-8) and (3-7) can also be obtained by the Green's function 
method for S = 112 (Ref. 5). This means that the low temperature magne- 
tization has the spurious T 3  term and does not have the T 4 Dyson term5. 
A critica1 discussion of this point is given in Ref. 7. Once again, the equi- 
valente between the statistical perturbation and Green's function methods 
is shown. 

4. Conclusion 

In conclusion, we may say that one must be careful in calculating the 
thermodynamics of the Bloch spin-waves by the statistical perturbation 
method. Unless ad hoc arguments are introduced (e.& kinematical inte- 
ractions can be neglected), spurious terms are present in the low tempe 
rature magnetization, although the application of this method to the Dyson 
spin-waves violates neither the local spin kinematics nor the particle-like 
behavior. 

Finally, we may say that the S = 112 Callen renormalized energy can be 
obtained by the statistical perturbation method. The results of this paper 
show the equivalence between the statistical perturbation and Green's 
function methods. 
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