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It is shown that the problem of a Dirac particle in an external potential, which is a superpo- 
sition of attractive vector and scalar potentials, both of Coulomb form, admits, for bound- 
states, an exact solution. As particular cases, the bound-state problem for the pure vector 
Coulomb and scalar Coulomb cases are derived. The degeneracy pattems of the spectra are 
discussed as well as the role of 0(4,1) as the spectrum generating algebra The magnetic m e  
ments of the bound-states, in both scalar and vector cases, are also discussed. 

Considerando uma partícula de Dirac em um campo externo produzido pela superposição 
de um potencial vetorial atrativo e um potencial escalar também atrativo, ambos de forma 
coulombiana, mostra-se que a equação de Dirac, para estados ligados, admite solução exata 
Particularizando o presente tratamento, obtemos os casos puramente vetorial e puramente 
escalar. Discute-se a degenerescência do espectro e o papel de 0(4,1) como a álgebra geradora 
do espectro. Os momentos magnéticos dos estados ligados para os casos escalar e vetorial 
são também discutidos. 

1. Introduction 

Only for a few special cases, the Dirac equation in an external electro- 
magnetic fíeld is known to admit exact solutionsl. Among them, the most 
important is t hat of the Coulomb vector potential, due to its relevante 
to the spectroscopy of the hydrogen atom. 

In this paper, it is shown that the bound-state of a Dirac particle in a Cou- 
lomb vector field to which is superimposed a scalar potential of Coulomb 
form, also admits an exact soliition2. The degeneracies in the spectrum 
of the particle in a vector Coulomb field are not removed by the addition 
of a scalar potential. The two cases of a pure vector Coulomb potential 
and pure scalar Coulomb potential are special cases of the present treat- 
ment. The similarities and main physical differences of these cases are 
discussed, particularly the characteristics of the energy spectrum, the dege- 

*With partia1 support of BNDE; through the Contract FUNTECl125. 
'Postal Address: Caixa Postal 5956, 01000 - São Paulo SP. 



neracy patterns and the magnetic moments of the bound-states in a weak 
externa1 magnetic field. The role of the Lie algebra O(4, 1) as the spectrum 
generating algebra is also discussed. 

2. Solutions for Bound-States 

The Hamiltonian for a Dirac particle in the presence of an attractive 
vector potential (d = O, iV") 

and an attractive scalar potential 

reads (h = c = 1): 

H =a. p - e Y  + jl(m + yv), (3) 

where a and jl are the Dirac matrices which, in the Dirac-Pauli represen- 
tation, are written as 

the components of a being the Pauli 2 x 2 matrices. 

One can immediately see that, in the present case, besides J = L + 42, 
the well-known Dirac operator 

is also an integral of motion, i.e., [H, K] = O. The existente of this integral 
allows the separation of the angular part of the energy eigenfunctions 
u(r), in a well-known way3, through the' Ansatz 



where the indices I A  and I , ,  are related to the eigenvalues of K and J2, 
which satisfy 

and 

The radial functions satis& the system of coupled equations: 

dg 1 + k  y - o !  
- +- g  dr r  + (T-al)f '0, 

where 

One can easily see that, for small values of r, both f ( r )  and g(r) behaves - 

as r"-', with 

In order to solve Eq. (5)  we make the following Ansatz4: 



with o 2&,a2 r .  Substitution of Eq. (8) into Eq. (5) gives the following 
equations of the Kummer type5, for q(r) and $( r ) :  

whose regular solutions at the origin are of the form5: 

in terms of the hyper&eometric confluent function , F ,(a, b, o). 

Since , F ,  (a, b, a) diverges exponentially for large values of o, one must, 
in order to have physically admissible solutions for f and g, impose the 
condition that the ,F ,  (a, b, o)'s in Eq. (10) reduce to polynomials. Thus, 

One must exercise some care when n' = 0  (E' = I), since in this case, the 
series which appears in +, does not terminate. However, from the first 
Eq. (1 I ) ,  and Eq. (7), one sees that n' = O implies 



In this case, from Eq. (10), one must have 

This condition follows from Eq. (12) without any indeterminacy only if 
k < O. It follows that, for n' = 0, one must exclude the case k > O, a result 
which, as we shall see, implies the non-degeneracy of the n' = O levels. 
From the first of Eqs. (ll), it follows that the energy of the bound-states 
is given by 

, = ( Jy2a2 + [(n/ + s12 + a2] [(nl + SI' - y2] 
(n' + s ) ~  + a2 

- 
(n' + s)' + a2 

From Eq. (13), it follows that the degeneracy of the energy spectrum is 
similar to the well-known case of the Dirac H-atom, namely: the n' = O 
states are not degenerate since only the k 4 O values are allowed. For 
n' = 0, due to the quadratic dependem. on k, there is a double degeneracy 
of the energy levels, related to the two signs of k. Thus, one sees that the 
scalar potential does not remove the degeneracy already present in the 
pure vector case. 

3. Pure Coulomb Scalar Potential 

As particular cases of our treatrnent, we have: 

i) pure scalar case a = O, y # O. The energy levels are given by 



The corresponding radial functions are 

f ( o ) = - c  Jm-E e-0,20s-1 
YE 

k -  
J 2 3  

Ym where nj, = - S. 
m2 - E2 

ii) pure vector case1 a # O, y = 0, with energy levels given by 

the corresponding radial functions being 

f(o) = -c Jm-E am 
am e - d ' o s - l [ k - J )  m2 - E2 lFl(-nó,, 1 + 2s,c) 

-nó,. ,F1 (1 -nó,, 1 + 2s,4 I (1 5')  

g(o) = C' am ,niE 
os-' [(k-J-)* lFl(-ni, I.+ 2s, o) am 

k- m2 - E' 
J ~ ~ ' - E z  

with nó, = 
aE 

,/- - 

In Eqs. (14') and (15'), C and C are normalization constants. 



Although Eq. (15) is an exact expression, it is only a meaningful one as 
far as a I Ikl. On the contrary, Eq. (14) is valid for a scalar Coulomb 
potential of arbitrarily high strength6. 

Introducing the principal quantum number n E n' + I k 1, one gets for small 
values of y2, the expression 

to be compared with the well-known expression for the vector case3 

As pointed out by Lipkin and Tavkhelidze7, there is, as far as the magnetic 
moments of the bound-states are concerned, a remarkable difference whe- 
ther the external potential is of a vector or scalar nature. In the former 
case, the external magnetic fíeld only causes a shift of the bound-state 
level, giving practically no contribution to the magnetic moment of the 
bound-state. For a scalar potential, however, the strong binding provides 
a remarkable enhancement of the magnetic moment of the bound-state. 
This enhancement mechaniim plays an important role in the quark rela- 
tivistic shell-model of N. N. Bogoliubov et aL2. 

It is a simple matter to derive this effect using a perturbative treatment 
of the iterated Dirac equation in the presence of a weak magnetic externa. 
fíeld, as done by P. N. Bogoliubov2. Following his treatment, it is easily 
shown that the magnetic moment of the ground-state, for the case of a 
scalar potential of Coulomb form, is given by 

which clearly increases with y2 

4. A Final Remark 

In a recent paper on the non-invariance group for the relativistic hydrogen- 
-atom, Kiefer and Fradkin8 pointed out that the bound-state solutions 
provide a Hibert space for a class of unitary irreducible representations 
(UIR) of the de Sitter 0(4, 1) group

g
. The relevant UIR for the problem 



is that designated by v+,, by Strom". This representation is a particular 
case of the continuous class v , ,  depending on the continuous parameter o. 
The fact that v+,, is the relevant representation may be easily seen by 
decomposition of the representation space in the chain 0(4,1) 2 0(4) 2 q3):  

where k, k'=O, f , 1,. . . and r = min(k+k'). The .Xk,. are the representa- 
tion spaces carrying (2k  + 1)(2k' + 1) - dimensional representations of 0(4), 
whose angular momentum content is given by I k - k' 1 I j I k + k'. For the 
particular case r = 4 ,  the 0(4) representations appearing in Eq. (19) are 
given by the points of the following diagram, drawn in the (k, k') plane1' 
(Fig. 1). 

Fig. 1 - The v+,, representation of q4, 1) group. The small circles give the allowed values 
of (k, k') in Eq. (19). 



It follows then that 

whose j content reproduces the well-known pattern of the spectrum. Since 
in a11 the three cases given by Eqs. (13), (14) and (15) the structure of the 
energy spectrum is the same, one concludes that the 0(4, 1) group is the 
non-invariance group, in a11 these cases, the relevant representations being 
those of the type Different values of the parameter o- produce inequi- 
valent representations with the same physical content. Threfore, it is 
plausible to conjecture that realizations of the Hilbert space of the bound- 
-state solutions for the cases corresponding to Eqs. (13), (14) and (15) are 
possible, selecting, eventually, differeht values of o. However a constructive 
proof of the above statement will not be attempted here. 

The author is grateful to Prof. P. Leal Ferreira for the kind hospitality at the I.F.T., where 
this work was performed. Thanks are also due to him for suggesting this work and for the 
many helpful discussions. 
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