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It isshown that the problem of a Dirac particlein an external potential, which is a superpo-
sition o attractive vector and scalar potentias, both o Coulomb form, admits, for bound-
states, an exact solution. As particular cases, the bound-state problem for the pure vector
Coulomb and scalar Coulomb cases are derived. The degeneracy pattems of the spectra are
discussed as well as the role of 0(4,1) as the spectrum generating algebra The magnetic mo-
ments of the bound-states, in both scalar and vector cases, are also discussed.

Considerando uma particula de Dirac en um campo externo produzido pela superposicso
de um potencial vetorial atrativo e um potencial escalar também atrativo, ambos de forma
coulombiana, mostra-se que a equacdo de Dirac, para estados ligados, admite solugéo exata
Particularizando o presente tratamento, obtemos os casos puramente vetorial e puramente

escalar. Discute-sea degenerescénciado espectro e o papel de 0(4,1) como a & gebra geradora
do espectro. Os momentos magnéticos dos estados ligados para os casos escalar e vetorial

sdo também discutidos.

1. Introduction

Only for a few special cases, the Dirac equation in an externa electro-
magnetic field is known to admit exact solutions'. Among them, the most
important is that of the Coulomb vector potential, due to its relevance
to the spectroscopy o the hydrogen atom.

In this paper, it is shown that the bound-state of a Dirac particlein a Cou-
lomb vector field to which is superimposed a scalar potential d Coulomb
form, also admits an exact solution®. The degeneracies in the spectrum
o the particlein a vector Coulomb field are not removed by the addition
o a scalar potential. The two cases of a pure vector Coulomb potential
and pure scalar Coulomb potential are specia cases of the present treat-
ment. The similarities and main physical differences of these cases are
discussed, particularly the characteristicsdof the energy spectrum, the dege-
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neracy patterns and the magnetic moments of the bound-statesin a wesk
external magnetic field. The role o the Lie algebra 0(4, 1) as the spectrum
generating algebrais also discussed.

2 Solutions for Bound-States

The Hamiltonian for a Dirac particle in the presence o an attractive
vector potential (& =Q i¥)

eV = —% )
and an attractive scalar potential
v =-L @
r
reads (h =c =1):
H=a-p-ev * gm+yv), ?3)

wherea and g are the Dirac matrices which, in the Dirac-Pauli represen-
tation, are written as

0 o 1 0
(o 8)r=(0 -3)
the components o a being the Pauli 2 x 2 matrices.

One can immediately see that, in the present case, besides J=L + 1%,
the well-known Dirac operator

K=pZ-L+1) 4

isalso an integral of moation, i.e.,[H, K] =Q The existence of thisintegral
allows the separation of the angular part o the energy eigenfunctions
u(r), in a wdl-known way?, through the' Ansatz

_ (90 i,
0= (7% o )

e
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where the indices [, and |, are related to the eigenvalues o K and J?,
which satisfy

Ku(r) = - ku(r), J2u(r) = jij + Du(r),

by
p _fi+s for k=j+i,
4=9:_1 = (i 4 L
j-1 for k=-(+3),

and
Lo fi-% for k=j+4,
BoVU+%s for k=-(G+9d.

The radial functions satisfy the system of coupled equations:

d 1-k%
L f+(yf“~az)g=0,

dr
6))
fg +1—-’|i +(y;a*°‘1)f=0,
where
Xy =m+E, oy =m-—E. (6)

One can easily see that, for small values of r, both f(r) and g(r) behaves
as r*~ 1 with

s=./ Kk + 9y -2 )

In order to solve Eq. (5) we make the following Ansatz*:

flo)=—Jaze 65" L —),
‘ ®)
90) = /o e 651 (g + Y,
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with o = 2./ «,a, ». Substitution of Eq. (8) into Eq. (5) gives the following
equations d the Kummer type>, for ¢(r) and $(r):

GWW%%+1—@¢—G*M52g>¢=Q
WV %1%

©)

oy’ + (25 + l—a)n//'~(s y1-mE “E)(// =0,
N

whose regular solutions at the origin are of the form®:

E
(,,=A-1F1(S_L'"i:*_, 1+2s,a),
ym 4+ oFE (10)
g_ym+ak
W =———E%A'1F1(s+ I“ME‘, 1 +2S,6>,
k—L—i—— AVARIUS )
N

in terms o the hypergeometric confluent function ,F,(a, b,9.

Since ;F, (a,b, a) diverges exponentially for large values of o, one must,
in order t0 have physically admissible solutions for f and g, impose the
condition that the ;F, (a,b,s)’s in Eg. (10)reduce to polynomials. Thus,

s-MmroE o ow—o 2.

N/ alaz n ’
(1)

E
mEeE W, W =012,

s+ 1- ;
N7

One must exercise some care when n =Q(E = 1), since in this case, the
series which appears in , does not terminate. However, from the first

Eq. (11), and Eq. (7), one sees that 1 =0 implies

E
VE + om 12)

N gy

|| =




In this case, from Eg. (10), one must have

E
s ym+aE

This condition follows from Eq. (12) without any indeterminacy only if
k < Q It follows that, for I = O, one must exclude the case k > 0, a result
which, as we shall see, implies the non-degeneracy o the n =0 levels.
From the first o Egs. (11), it follows that the energy o the bound-states

is given by

g _ (W o s F oIl ¥ 57 -]
(' + s> T a2
(13)
),
n' T2+ /

From Eq. (13), it follows that the degeneracy of the energy spectrum is
similar to the well-known case of the Dirac H-atom, namely: then =0

states are not degenerate since only the k < O values are alowed. For
n =0, dueto the quadratic dependence on k, there is a double degeneracy
o the energy levds, related to the two signs of k Thus, one sees that the
scalar potential does not remove the degeneracy aready present in the
pure vector case.

3. Pure Coulomb Scalar Potential

As particular cases of our treatrnent, we have:

i) pure scalar case a =0, y # O The energy levels are given by

(14)

2
E,. =m\/1~ 4 :
° K+ 9> +n)?
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The corresponding radial functions are

f(O')=—C_V£%_e—a/2 0.s~1l:(k—T--'yz_E?).lF1 1+ 2s,0)
k—— "=

m? - E?

-nylel—%,1+2&aﬂ, (14)

glo) = C@e‘olz o1 [(k___yzE___z_> JF, (*n;’ 1‘_‘_ 2s, 0)
k~——y———— < m*-E
Jm -
+n;'1F1(1—n;,1 +2$,0-)j|,
y—m_s.
\/ mP-E?
i) pure vector case* a # Q y =0, with energy levels given by
E,. - , 15)

y=

where n, =

[ (x2
NI —
( /kz_az +nl)2
the corresponding radial functions being
o J/m-E -
Jer=-¢ am e"a l:(k_ 7"2 EEZ)~ Fi-n,, 1t 25,0)
—_——— ms -
“TwE

-1, Fy (1-n6,1 Tt 2s,0)

(159

vm+E s am
gle) = C ﬁe o [(k———————w)'lﬂ(—n;,l.—}-.?s,o)
Jm-E?
+un Fi(l-n,1 +2s,o):l
with g = —2E

In Egs. (14) and (15), C and C are normalization constants.
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Although Eg. (15) is an exact expression, it is only a meaningful one as
far as a < |k|. On the contrary, Eq. (14) is vdid for a scaar Coulomb
potential of arbitrarily high strength®.

Introducing the principal quantum number n = n' + |k}, one getsfor small
values of y?, the expression

Ea:o _ 1 '}’2 yz 1 ,yZ
m T eInmtret (16)
to be compared with the well-known expression for the vector case®
E, > 3 o
=0 = | (1 + Ko 7 — + ) (17

As pointed out by Lipkin and Tavkhelidze’, thereis, as far as the magnetic
moments of the bound-states are concerned, a remarkable differencewhe-
ther the external potential is of a vector or scalar nature. In the former
case, the external magnetic fidd only causes a shift of the bound-state
levd, giving practically no contribution to the magnetic moment of the
bound-state. For a scalar potential, however, the strong binding provides
a remarkable enhancement of the magnetic moment o the bound-state.
This enhancement mechanisin plays an important réle in the quark rela-
tivistic shell-model of N. N. Bogoliubov et al.2.

It is a ssimple matter to derive this effect using a perturbative treatment
of theiterated Dirac equation in the presence of a weak magnetic externa.
field, as done by P. N. Bogoliubov?. Following his treatment, it is easily
shown that the magnetic moment of the ground-state, for the case of a
scalar potential of Coulomb form, is given by

_e/i+2f 1/ 1 ] (18)
2m 3 /1+v2 ’

which clearly increases with y?

4. A Final Remark

In arecent paper on the non-invariance group for the relativistic hydrogen-
-atom, Kiefer and Fradkin® pointed out that the bound-state solutions
provide a Hibert space for a class of unitary irreducible representations
(UIR) o the de Sitter 0(4, 1) group The relevant UIR for the problem
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is that designated by v, , by Strom'®. This representation is a particular
case of the continuous classv,, depending on the continuous parameter o.
The fact that v, , is the relevant representation may be easly seen by
decompositiond the representationspace in the chain 0(4, 1) > 0(4) = 0(3):

vr,a' = Z @ e#k,k’ ) (19)
kK

where k, k' =0,%,1,... and r = min(k+k'). The #,, are the representa-
tion spaces carrying (2k + 1)k’ + 1)— dimensional representationsadf 0(4),
whose angular momentum content is given by |k-K | < j < k + K. For the
particular case r =4, the 0(4) representations appearing in Eq. (19) are
given by the points of the following diagram, drawn in the (k, k) plane!®
(Fig. 1).

k|

fe e e e e e e i e e

|
!
!
|
|
I
|
|
]
2 K
Fig. 1 - The v, , representation of 0(4, 1) group. The small circles give the allowed values

o (k k) in Eq. (19).
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It follows then that

V%,a=”0,5@%¢,0@”§,1('9%13@”1,%@%3,1@'“,

whose j content reproduces the well-known pattern of the spectrum. Since
in all the three cases given by Egs. (13), (14) and (15) the structure of the
energy spectrum is the same, one concludes that the 04, 1) group is the
non-invariance group, in all these cases, the relevant representations being
those of the typev, ,. Different values o the parameter ¢ produce inequi-
valent representations with the same physical content. Threfore, it is
plausiblie to conjecture that realizationsof the Hilbert space of the bound-
-state solutions for the cases corresponding to Egs. (13), (14) and (15) are
possible, selecting, eventually, differeht values of @ However a constructive
proof of the above statement will not be attempted here.

The author is grateful to Prof. P. Leal Ferreira for the kind hospitdity at the |.E.T., where
this work was performed. Thanks are also due to him for suggesting this work and for the
many hepful discussions.
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