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The study of bound states in potential theory using Padé approximants in the evaluation 
of the off-nass shell scattering amplitudes was proposed by Alabiso, Butera and Prosperi. 
In this case, the convergence of the Padé sequences is substantially enhanced. We propose 
a similar method for fíeld theoretical models aiming to the development of convenient appro- 
ximations for the bound states in relativistic quark models. 

O estudo de estados ligados na teoria do potencial, utilizando os aproximantes de Padé 
para as amplitudes de difusão fora da camada de massa, foi proposto por Alabiso, Butera 
e Prosperi. Neste caso, a convergência das sequências de Padé é bastante aumentada Pro- 
pomos aqui um método semelhante para modêlos de teoria de campos com a finalidade 
de desenvolver aproximações convenientes para os estados ligados em modêlos relativís- 
ticos de quarks. 

1. Introduction 

It has been pointed out recentlyl that it is possible to look for bound states 
in potential theory starting from Padé approximants of scattering ampli- 
tudes taken off mass-shell, improving in this way enormously the conver- 
gente of the Padé sequence, in comparison with the S matrix (or T matrix) 
approximants. 

The use of a similar method is here proposed and adapted for field theore- 
tical models with the particular purpose of developing convenient approxi- 
mations for the bound states in relativistic quark models. Indeed, owing 
to the great binding energy, this seems to be a typical case where the pre- 
dictions of the S matrix are quite different from those of its lower order Padé 
approximants. 
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In analogy with the work of Alabiso, Butera and Prosperil, we must deal 
with the relativistic four-point function G(J, s) at fixed total J ,  in order 
to look for the bound states of the quark-antiquark system as fixed poles 
in the s variable (s r W2 c.m.), namely, the square of the total c.m. energy. 
The complete Green's function for the elastic quark-antiquark system, in 
perturbation theoiy or in Padé approximation, is a matrix 16 @ 16 in 
spin space and has also a functional dependence on severa1 variables 
besides the usual Mandelstam s, t ,  u. If it has a pole in s, however, this 
must be common to a11 matrix elements and we therefore can restrict 
ourselves to only a part of the whole matrix, namely, the one that corres- 
ponds to the general spinor basis Ü(p1) Q qq), u(p) @ u(ql) where p, p', q, q' 
are here considered the four-momenta of two arbitrary spin 1/2 fermions 
incoming and outgoing, and two spin 112 antifermions respectively, to 
which we may attribute masses m, , m, , m, , m,. Such masses appear as 
free parameters in our Green's function and may vary freely without pro- 
ducing any shift in the s-pole which remains fixed in the exact off-shell 
amplitudes. This property is the starting point of the variationa1 approach 
in the Padé approximants. 

Our main purpose is then to build the Padé approximants of G(J, s, m, , 
m2 , m, , m,) from perturbation theory and then use the vanational method 
mentioned above, on the externa1 masses m, , m2 , m, , m, (or on the mass m') 
in order to derive the bound-state equation g2 

F g2(s), where g2 is the 
renormalized coupling constant of our field model. 

To this end, we first remark that renormalizability joined with Lorentz 
invariance leaves us very little choice for the Langrangian interaction 
density: we indeed are left with the scalar, pseudoscalar and vector inte- 
raction, or explicitly : 

qa(x) 5 quark field, ci = 1, 2, 3 

$(x) gluon field (scalar or pseudoscalar), 

B,(x) = uector gluon 

(where we take equal-mass quarks for the moment). 



Great attention has been devoted to the vector coupling because of its 
peculiarity of being chiral SU(3) @ SU(3) invariant? However, if we restrict 
ourselves to an SU(3) phenomenological description of the elementary par- 
ticles, this chiral invariance is already violated by the introduction of the 
mass terms in the free Lagrangian and so we may also consider the inte- 
raction terms that break chirality as the pseudoscalar or the scalar one. 

We here formulate the further assumption that the gluon responsible for 
the forces is an SU(3) singlet and analyze h detail the scalar and the pseudo- 
scalar cases. On the other hand, there seems good evidence in favour of 
these couplings from the nonrelativistic bosonic and fermionic states des- 
cribeú by the quark model. More precisely, the fact that the effective mass 
of the quark appears very small, from quite accurate fits of the mesonic 
spectrum and from the electromagnetic form factor of the nucleon3, has an 
easy explanation with a relativistic scalar potential in the Dirac equation 
for the quark particle4 and consequently in terms of scalar or pseudoscalar 
field couplings. Another point favouring this type of interaction is the fact 
that it provides attractive forces, with different intensities, for both quark- 
-antiquark and the quark-quark systems, thus providing a basis for the 
description of the three quarks. This is more difficult to be understood 
within the frame of the vector coupling. 

2. Quantitative Formulation of Quark-Antiquark Bound ~ta tes  

The two body quark-antiquark system is here looked at by studying the 
off-shell four-point function of the quark-antiquark elastic process. The 
latter can be calculated as a two body T matrix amplitude T(J, s) with arbi- 
trary spin 112 particles initial and final, whereas the "physical" quark 
appears with its fixed mass m in the propagator lines. The calculation of 
the G(J, s), is here further simplified by assuming a11 the externa1 lines with 
the same mass m' r m, = m, m, r m4 # m. The G(J, s) thus coincides 
essentially with the partia1 wave matrix T(J, s, m') which follows from the 
five helicity amplitudes 

(for definitions and details see the Appendix). 



We have in fact for the singlet and the decoupled triplet transitions (pari- 
ty (-1)'+'): 

T ( J  I 0 ,  J ;  O, J )  = 4nFl ( J ,  s), (2-1) 

and again for the coupled triplet T matrix elements (parity (- 

T(J  ( 1, J -  1; 1, J -  1) = (25 + I)- '  [(J + 1) h:,, + Jg,,- 
- 2 J f  )h{,2] = T,,, 

(2-3) 

T ( J I  1,J + 1 ; 1 , J - 1 )  = (25 + ~ ) - l [ , / m ( h : , ~ - h { , ~ ) -  
-h:,2 J ]  = T I 2  = T z l ,  

(2-4) 

T(J  11, J + 1;  1, J + 1) = (2J + 1)-I [(J + ~ ) Y , I  + J K , , 2 -  (2-5) 
- 2 , / m h { , 2 ]  = T2,, 

where 

and the partia1 wave functions Fk(J,s) are defined as (112) dzPj(z) Fk(s, t); .r:: 
the F, are linearly related to the @s in the following fashion: 

F 1  = 41-42 61-62 9 (2-9) 

with 

4, = 4, [sin (~7/2)]1"-~l - [cos(a/211a+ b l .  (2-14) 

(see Appendix for definitions of a, a, b) 



These formulas represent the kinematical framework which relates the 
partial waves to the invariant amplitudes for equal mass spin 112 two-body 
scattering and must be used in perturbation theory to evaluate the Padé 
approximants of T(J, s, m'). 

The simplest approximant T"," consists of the Bom t e m  (TB) and the 
full fourth-order renormalized calculation (T,); one must then compute 
the helicity amplitudes that are explicitly given in the Appendix for both 
the scalar and the pseudoscalar interaction, at the required perturbative 
order. 

3. Padé Approximants 

Dealing with two spin 112 particles in the initial and final states, the T ma- 
trix, as it has been pointed out in the kinematical formulas, has two diffe- 
rent representations, in the partial waves, for the two opposite parity states. 
More specifically, once the SU(3) quantum numbers are given, we have 
the singlet ( J  = 1, S = 0) and one of the triplets ( J  = I ,  S = 1) as simple 
one-dimensional amplitudes with the total parity equal to (- I r f  ', which 
differ from each other for the charge conjugation quantum number 
C = (- in the non-strange quark-antiquark bound states and are 
decoupled. These amplitudes, however, become coupled through the sin- 
glet-triplet transition in the strange quark-antiquark states when the mass 
difference between the E. and the n-p quarks is taken into account. The 
other possibility is the two by two transition matrices that correspond to 
the coupled triplet (from J f l-+ J+ 1) with parity (- as it is easily 
seen from formulas (2-3), (2-4), (2-5). To such a structure for the T matrix 
elements must be joined the wanted SU(3) physical states in order to pro- 
vide us with the various bosonic states we are looking for. 

Let us consider the Padé approximants in the uncoupled (J = I )  and in 
the coupled cases. The former gives a simple expression for the T'',') (J, s, m'). 

T['>l1 (J, s, m') = s2G(J, s, m') . 

1 - g2 T4(J, S, m') 
TB(J, s, m') 

The latter brings to the two by two matrix 

Tr'9'1(~,s,m') = g 2 T g ' [ ~ B - g 2 ~ 4 ] - 1  a & .  



The bound state function g2(s, m') is therefore equal to TB/T4 in the uncou- 
pled case and to 

for the coupled triplet, where 

A, r det 

A, E det 

and 

4 = T 4 1 1  2 ( 4 2 2  T B 1  + ( 4 2  1 2  (3-5) 

The variational method toward the parameter m' is now performed on 
the function g2(s, mr) in order to obtain the stationary function g2(s) such that 

6,1 i j2(s, m') = O. (3-6) 

Once the function g2(s) is obtained, the bosonic spectrum and the corres- 
ponding Regge trajectories must be looked at. 

In practice the stationary point can be searched onIy numerically by tabu- 
lating g as function of m'. 

4. Bosonic Spectmm and Regge Trajectories 

The formulas explicity treated here are valid for the bosonic octet states 
and, with the introduction of the symmetry-breaking effects in the coupling 
or in the masses, they may be used for a large fit of particles; the singlet 
states can also be considered by adding the corresponding graphs with 
only gluons in the intermediate states. 

The evaluation of the Regge trajectories is simple from formulas (2-1) 
-(2-5), because of the possibility of considering for the functions F,(J, s) 
the Froissart-Gribov representation from our formulas that are written 
by dispersive integrals. A11 formulas of ours do reggeize except for the 
J = O case, where we may find Kronocker delta functions in our partia1 
wave T-rnatrix elements; correspondingly we have the blowing up of 
the Froissart-Gribov representation. The investigation of the Regge tra- 



jectories is very interesting in the equal mass case (m, = m,,,,) because 
severa1 features of these are supposed to be independent of the SU(3) 
symmetry-breaking effects. 

The author acknowledges: Professors E. Ferreira, S. Ragusa, and J. A. Swieca for their inte- 
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Notations and Definitions 

p = gluon m a s  
m = quark mass 
m' = externa1 line mass 
t =- 2p2(1- cosa) 
p2 = (I/) (s - 4mt2) 

Appendix 

The Scalar interaction 

Bom term - The Bom term (second order in g) is essentially a gluon exchange in the t-channel 
because the gluonic exchange in the s-channel contributes only to the SU(3) qij singlet states. 
We obtain indeed: 

p -mr2 41 = k'cos -.-. 

Fourth order - It consists of the self-energy part, the two vertex (equal) parts and the direct 
and crossed box diagrams. Again, we treat only the contributions that are relevant for the 
octets. 



Self energy - It equals three times (n, p, Â quark loops) the following contribution: 

4 ,  = k' cos2 5. 2 (- mf2) q(t) . 

where 

4m2 -tf  Jt'-4mi 
~ ~ ( t ' )  = - ( 2 4 -  - - 

(p2 - t') t' 

Vertex part - It is twice the following contribution: 

where 

m2 - m'Z 
(m + m')2 + pZ - 2m' (m + m') --- + 4p2 m' (m + m') --- 

t - 4m1Z t - 4m'2 1. ~ i e ,  



Direct box diagram 

1 4; = k' sin o 

Js 4 & g5 = m'(m + m ' ) 2 - Y A  + - (m + m ' ) ( ~ - 4 r n ' ~ ) Y , - m ' - Y ~  + - s m l Y D ,  
4 16 16 4 

where 

1 xi 

Y = j dx ,  j dx, c dx,  I/*, 
o o 

and dispersively : 



where 

Crossed box diaaram. W e  obtain: 

sm' 1 
gi =-mt ' (m  + m ' ) 2 ~ A  + - ( m  + m ' ) Y g  + - m ' 2 ( 2 m ' 2 - s ) Y ~ -  2 2 



Pseudoscalar Interaction 

Born Term 

$J3 = o ,  4 4  = 4 2  > 45 = 01 4 6  =o .  

Seij energy 

4i = O, + 2  = K s i n o .  (+ p2) .?(C). 
2 

where the function q(t) was defined in the self-energy section of the scalar case. 

~ e r t e x  (ps). We obtain 

41 = 4 3  = 4 5  = o ,  
0 1 4 ,  = 4,  = sin2 - (4.1~ - s) - ,u(t) {- i (k ) - '  (&-I . 
2 4 

A&) = (p2 - t ) -  {[(m' - m)' + p2] A$@) - A&)), 

where A$ and A$ are already defined in the scalar interaction case. 

Boxes (ps): Their formulas coincide with the corresponding scalar ones with the substitution 
m+-rn.  

derives from Y,, with the substitution s + u (h:  A, B, C, D) 
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