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The Hartree-Fock approximation was applied to Ne20, Siz8 and Ar36 using different types 
of two-body interactions. Wave functions with good J were determined with the Peierls-Yoccoz 
method and they were used to calculate energy levels and electric quadrupole transition 
probabilities within the ground state band. The intrinsic excited states were calculated with 
the Random Phase Approximation. From comparison with the available experimental data, 
one finds that the best results occur for NeZo and when Kuo's renormalized effective two-body 
interaction is used. 

A aproximação de Hartree-Fock foi aplicada aos núcleos de Ne20, Siz8 e Ar36 usando diferentes 
tipos de interações de dois corpos. Foram determinadas funções de onda com bom número 
quântico J pelo método de Peierls e Yoccoz; as mesmas foram utilizadas para calcular os 
níveis de energia e as probabilidades de transição de quadrupolo elétrico entre níveis da 
banda fundamental. Os estados excitados intrínsecos foram calculados com a "Random 
Phase Approximation". Da comparação com os dados experimentais disponíveis, verifica-se 
que os melhores resultados ocorrem para o IVeZ0 e quando se usa a interação efetiva renor- 
malizada de Kuo. 

1. Introduction 

In recent years, the Hartree-Fock (HF) approximation has bem providing 
a very powerful to01 in the study of nuclear structure properties. 

The Hartree-Fock wave function is not an eigenstate of the total angular 
momentum operator and therefore one has to project from it wave functions 
with good J. Once these wave functions are known, one can calculate 
transition matrix elements and expectation values of some relevant ope- 
rators. Most of this formalism can ben found in two reference papers by 
G. Ripkal. 
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One knows that the formula 

works very well for some strongly deformed nuclei. 

The existence of a rotational band suggests that the nucleus Hamiltonian 
H could be divided into two parts, an intrinsic one H i ,  plus a rotational 
term AJ2,  such that 

If a wave function I 4 J )  is an eigenstate of H corresponding to the above 
eigenvalue E,, it can be easily seen that a linear combination 

14) =CCJl4"> 
J 

(1-3) 

will be an eigenstate of the intrinsic Hamiltonian Hi ,  but not of H, and 
the states will be a degenerate sei of eigenstates of Hi. 

These states 14J) can be projected from the intrinsic state 14) and their 
degeneracy could be removed by adding to Hi the rotational term AJ2. 
The Hartree-Fock theory has been used to obtain an approximation to 
the intrinsic state 14). 

We have calculated the energy levels of the lowest band as 

where. the states 1 4 J )  are projected from the Hartree-Fock wave function 
14) which gives the lowest expectation value of (1-2). 

It becomes very important to know a value for the inertial parameter A. 
In Section 3 ,  we summarize the derivations of some formulas for this 
parameter using the cranking model. 

Thouless and Valatin2 (TV) were the first ones to point out the importance 
of including field effects in the moment of inertia calculation. Slight modi- 
fications of their formula were introduced by Banerjee, de Oliveira and 
Stephenson3 (BDS). Recently, J. M. Cohenca and S. K M. Wong et aL4 
have independently suggested that another kind of self-consistency should 
be considered as will be shown in Section 3. Low-lying excited states will 
be formed by the superposition of configurations in which one particle is 
promoted to a previously non occupied level, leaving a hole. These par- 



ticle-hole excited states can be treated with the Tamm-Dancoff (TD) or 
the Random Phase Approximations (RPA), which are built on the static 
HF solution. The RPA equations can also be derived from the formalism 
of the time dependent Hartree-Fock approximation6. 

We have applied the Hartree-Fock theory and some subsequent approxi- 
mations to the nuclei of NeZ0, Si2* and Ar36. In this calculation we con- 
sider the nucleus of 016 as an inert core, and the states available to the 
extra-core particles are confined to the s-d shell, only. Our aim is to obtain: 
(a) the lowest band spectrum of energy by the projection method; (b) the 
electric quadrupole transition probabilities between these energy levels; 
(c) the same lowest band spectrum using the rotational formula Ej = E, + 
+ AJ(J + I), with the appropriate value of the moment of inertia f = 1/2A; 
(d) the low-lying one particle-one hole excited states belonging to different 
bands. These results are obtained with some different types of effective 
interactions and compared with the available experimental data We are 
applying these calculations to nuclei in the s-d shell which are not strongly 
deformed. Their low-lying energy levels do not constitute a pure rotational 
spectrum. However, they still exhibit a good degree of deformation and 
formula (1-1) might be approximately valid Besides, the difiiculties in the 
calculations can be better handled in the case of these low medium mass 
nuclei than for the heavy ones. 

2. Summary of the Ilartree-Fock Theory and the Projection Method 

The detemination of the Hartree-Fock single-particle states, through the 
solution of the HF equations, are well presented elsewherel. 

Our Hartree-Fock wave function is expressed in a second quantization 
notation as 

.L .L 14) = a;, a&. . . . O ) ,  (2-1) 

where the states 1 il) , 1 i,) . . . . I  i,) are the HF single-particle occupied 
orbitals; 10) is the vaccuum state with respect to the fermion operators 
ai and a,. The number .of particles available is N; if q I N, it refers to 
an occupied orbital being denoted with the letters i, j; if > N, it refers 
to an unoccupied orbital m, n. 

We use the Hamiltonian operator in the standard form 



where the indices p, q,. . . , refer to any set of single-particle states, in parti- 
cular to the HF s.p. states \?). The two body interaction matrix elements 
are antisymmetrized. 

In order to assure that the expectation value of H becomes a minimum, 
it is necessary to impose the condition that 

known as the Hartree-Fock condition. 

One can calculate the expectation value of H in I $>, obtaining 

where the relation a! 14) = O was used. 

~ e * '  

Tri-Axial Axial Prolate Axial Oblate 
GJT 

( H )  < Q 3  (H) t Q 3  ( H )  <Q3 
K -37.79 -7.72 -37.79 15.44 -29.19 -8.00 
K,  -34.23 -7.90 -34.23 15.60 -30.12 -8.00 

KLS -38.28 -7.86 -38.28 15.70 -34.36 -8.00 
S -34.54 -7.82 -34.54 15.62 -31.20 -8.00 
D -32.30 -7.80 -32.30 15.60 -26.98 -8.00 
Y -37.01 -7.83 -37.01 15.66 -28.66 -8.00 

K -143.84 -11.82 -143.84 23.64 -147.57 -22.96 
Kb -141.47 -11.66 -141.47 23.32 -144.17 -23.04 

KLS -147.63 -11.56 -147.63 23.12 -150.77 -23.06 
S -134.61 -11.20 -134.61 22.40 -138.05 -22.64 
D -137.52 -11.30 -137.52 22.60 -140.36 -22.74 
Y -119.62 -10.70 -119.62 20.60 -120.63 -22.72 

Ar36 

K -281.91 7.18 -278.09 7.36 -281.91 -14.34 
K ,  -296.33 7.30 -292.12 7.46 -296.33 -14.58 

KLS -289.21 6.90 -286.15 7.34 -289.21 -13.90 
S -266.38 6.49 -264.74 7.18 -266.38 -12.94 
D -295.10 6.80 -292.60 7.42 -295.10 -13.92 
Y -209.29 6.20 -207.36 6.88 -209.29 -12.42 

Table I - The energies and expectation values of the mass quadrupole operator for the 
Hartree-Fock ground states with different symmetries. The units are MeV and the oscillator 
length parameter, respectively. Tliey were calculated with various sets of GJT reduced m. e. 
and the labels refer to the two-body interactions described in Section 5. 



The expression (2-4) gives the Hartree-Fock energy of a system of N par- 
ticles when the states li) are chosen to give the lowest possible vaIue of E. 

The eigenfunctions I&&) of the total angular momentum are projected 
from the Hartree-Fock wave function (2-1) using the Peierls-Yaccoz 
method7 : 

2 J + 1  1 I &K) = 8;;r - DL: (R)  R(*) I d, ) ,  
CJK 

where R stands for the Euler angles a, P, y, 

R(Q) = ,- idz ,- i P J y  ,- i y J ,  
2 (2-6) 

and 

oJMK (R)  = djj,  ( JM I R(R) I J'K). (2-7) 

Indices M and K are the projection of the total angular momentum on 
the z-axis of the laboratory system and body system, respectively. The 
nuclei we are investigating have axially symmetric HF solutions I&), 
and C,, is a normalization constant. 

I t  can be verifiedl that an irreducible tensor operator will have the follo- 
wing matrix elements between these projected states: 

where 

and 

dJM(P) = ( J K  le-i8Jyl J M )  = real. (2- 10) 



Energy of the State 14Lx) 

This energy is defined as the expectation .value 

EJK = (&L IH I & K )  

which is obtained from the expression (2-8) with k = q = 0, and is inde- 
pendent of M. 

As we are interested in the lowest K = O band we have 

The Hartree-Fock condition eliminates the one particle-one hole contri- 
butions from the above expansion. 

B(E2) Transitions within the K = O Band 

The electric transition probability corresponding to the emission of a 
photon of energy h, angular momentum L, the nucleus going from an 
initial state 1 i )  to a final state 1 f), is 

871. (L + 1) e2 kzL+l  

(L) = L[(2L + I)!!]' A B(EL; i 4 f), (2- 14) 



E ZP K K b KLS S D Y 

Figure 1 - Projected HF spectra (full lines) of NeZ0 using different types of two-body interac- 
tions. The spin value is on the right of each level. The number in the bottom is the energy of 
the lowest J n  = 0' level relative to the 016 binding energy. The dashed levels were obtained 
with the formula E, = E, + A(") J(J + 1). In both cases we used the iterated A'"' values 
of Table 11. The energies are in MeV. 

where k = w/c and B is the reduced matrix elements containing the ope- 
rator which characterizes the transition from l i )  = I&,,=,) to I f) = 
= I&MIK=O), which is 



Figure 2 - Hartree-Fock spectra of Si2' calculated with different types of two-body 
interactions. The energies are in MeV. See Figure 1 caption. 
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Figure 3 - Energy levels of ~r~~ calculated with the formula E, = E, + A'"'J(J + 1). 
The iterated A("' values are from Table I1 for different types of two-body interactions. The 
energies are in MeV. 



In the above equations, the expression (2-8) was again used with K ,  = 
= K ,  = O, k = 2 along with the orthonormalization properties of the 
Clebsch-Gordan coefficients. Since r2 Y2, is a one-body operator, it will 
be seen that 

( 4 0  1 p -  l h ) ( l p -  l h  Ir2 Y2y 14,)). (2-17) 
l p-  l h  

3. Formulas for the Moment of Inertia 

Consider the nucleus Hamiltonian H perturbed by a term - w J ,  where 
J ,  is the x- component of the total angular momentum and o is a small 
paramater. If 1 4 )  and 14,) denote the HF determinantal wave functions 
corresponding to the ground state of H and 

H ,  = H - w J , ,  (3-1) 

respectively, they can be related by the Thouless Theorem2 as 

I4J = eUS I4h (3-2) 

where S is a sum of 1 particle-1 hole terms, only, and does not depend on o. 
The new Hamiltonian H ,  can be interpreted as representing a deformed 
axially symmetric nucleus subject to a small rotation about an axis per- 
pendicular to the symmetry axis. Banerjee et ~ 1 . ~  obtained the Thouless- 
-Valatin equation for the operator S as follows: first, they write the expec- 
tation value of H ,  in 14,) as a power seria in o using relations (3-1) and 
(3-2), getting 

To assure that the 1.h.s. of equation (3-3) is a HF minimum, the coefficient 
of 02 is minimized with respect to variations of S, resulting the equation 



K K ,  KLS S D Y 

E X P .  PHF Adiab. PHF Adiab. PHF Adiab. PHF Adiab. PHF Adiab. PHF Adiab. 

Table I1 - B(E2) strengths in Weisskopf units (W.U.) for the ground state band of NeZO, For different types of two-body interactions. The expe 
nmental data are from Ref. 22. The PHF column contains the values calculated with projected HF wave functions. In the other column 
the results from the adiabatic rotationai model are shown. The number in parenthesis is normalized to the PHF value. 

K Kb KLS S D Y 
- 

EXP.  PHF Adiab. PHF Adiab. PHF Adiab. PHF Adiab. PHF Adiab. PHF Adiab. 

14' + 12+ 23.3 39.6 22.5 39.9 24.8 43.0 24.6 41.3 24.9 41.6 24.6 41.7 
e 
w Table 111 - B(E2) strengths in W.U. for the ground state band of Siz8. (See caption of Table 11). The experimental data are from Ref. 23. 



The t e m  (4 I [6S, [S, H]] I 4) was simply added and subtracted; also the 
t e m  (4 I [H, [S,6S]] 19) was added, the latter being equal to zero due 
to the Hartree-Fock condition (2-3), because the commutator [S, GS] is an 
Ip- 1h operator. As the positions of the three operators obey a circular 
permutation, the sum of the commutators in the second bracket of (3-4) 
vanishes. We are then left with 

<O I [as, n s ,  H1 + J J 1  1 4). (3-5) 

Since 6s is an arbitrary l p-  lh operator, one gets the Thouless-Valatin 
equation for the operator S: 

< l ~ - l h I [ H , S l l O )  = ( l ~ - l h ) J x ] 4 ) .  (3-6) 

The only non-vanishing matrix elements of S are those between the occu- 
pieú states ( i) and unoccupieú states ( m). Using S as 

and the form (2-2) for the Hamiltonian, we get the following two equations 
corresponding to the explicit f o m  of Eq. (3-6): 

where the two-body interaction matrix elements are antisymmetrized. 

Using the relation (3-2), the HF condition (2-3) and (3-6) we may write 
the change of the energy of the nucleus due to the perturbation as 

By equating AE to &Fw2, we obtain the Thouless-Valatin formula for the 
1 

inertial parameter A = -, which is 
2 3  



On the other hand, the inertial parameter is defined in Ref. 3 as being 
essentially the ratio of AE to the change of the expectation value of J2, 
due to the perturbation, 

The tem <4 I [S, J2] 14) does not contribute to A ( J ~ )  because the HF 
wave function I 4) is assumed to be invariant under time reversal and it can 
be shown that the operator S is odd under this symmetry operation. 

J. M. Cohenca4 proposed that one should proceed iteratively to get the 
inertial parameter through formulas (3-10) or (3-11). This same idea was 
proposed by Ng, Trainor and Wong4 which have used a formula due to 
Skyrme for the inertial parameter. Their suggestion is based on the argument 
that the Hamiltonian Hi = H - AJ2 would have a better chance to repre- 
sent the nucleus intrinsic state. The procedure is the following: Once 
some formula is chosen, calculate the first value A") with the HF wave 
function I 41')) obtained with the initial Hamiltonian H!') = H - A'O'J~; in 
particular, H!') could be the original H, (A(') = O). Next, construct the 
new Hamiltonian H!') = H- A(') J2 which will generate the HF wave 
function 1 $I;')); ushg the same inertial parameter formula previously 
chosen, calculate A(2) with H!') and I 4f1)). Repeat the process until some 
value A(") becomes equal to A("-'), the one obtained previously. 

To get the Inglis formula in this context, neglect the two-body matrix ele- 
ments in (3-8) and substitute the expression for gmi into the formula (3-10), 
resulting 

The important contribution to the moment of inertia theory was brought 
by Thouless and Valatin, who have shown that the operator S should be the 
solution of the complete equation (3-8). Once we use this correct solution 
for S, the formulas (3-10), (3-11) or the iterative calculation proposed in 
the papers of Ref. 4, are equally acceptable. We feel that the self-consis- 
tency required in the iterative procedure should give a better result. 



NeZO 

A'"' = 0 A(") = A("- 1) 

G ~ T  BDS T V  ING. BDS T V  ING. 

K 0.183 0.149 0.243 0.175 0.175 0.232 
K ,  0.114 0.093 0.188 0.109 0.109 0.179 

K L S  0.168 0.137 0.234 0.157 0.157 0.218 
S 0.123 0.102 0.191 0.116 0.116 0.178 
D 0.108 0.089 0.163 0.100 0.100 0.150 
Y 0.192 0.159 0.314 0.173 0.173 0.277 

K 0.195 0.175 0.251 0.187 0.187 0.233 
K ,  0.109 0.097 0.179 0.105 0.105 0.171 

K L S  0.139 0.125 0.190 0.134 0.134 0.179 
S 0.117 0.106 0.163 0.113 0.113 0.154 
D 0.097 0.087 0.152 0.092 0.092 0.145 
Y 0.113 0.103 0.191 0.111 0.111 0.183 

K 0.203 0.162 0.241 0.193 0.193 0.247 
K ,  0.123 0.098 0.185 0.118 0.118 0.190 

KLS 0.144 0.114 0.170 0.140 0.140 0.179 
S 0.123 0.098 0.137 0.118 0.118 0.147 
D 0.118 0.094 0.152 0.112 0.112 0.159 
Y 0.143 0.116 0.192 0.131 0.131 0.195 

Table IV - Values, in MeV, of the inertial parameters 'for NeZO, Si2' and Ar36 calculated 
with the formulas presented in Section 3. The GJT labels refer to the interactions described 
in Section 5. 

4. Low-lying Excited States. The RPA Equations 

For an extensive and detailed discussion of this formalism, see Ref. 5. 
We give here a brief summary containing only some of the formulas which 
entered in the calculation. 

Consider an operator Ba(t) satisfying the Heisenberg equation 

ih" aa (t) = [Ba(t), H] .  
at 



Assuming its time dependence to be of the usual form 

B,(t) = B, e-'@"', (4-2) 

equation (4-1) becomes 

[B, , H] = ho, B, . (4-3) 

The ground-state wave function and energy should satisfy the equation 

H I @c.,.) = EG.S I @c.s>. (4-4) 

From (4-3) and (4-4), it can be verified that 

H BÁ I @G.s.) = ( E ~ . ~ .  - h o ~ )  B~ I @G.s.)> (4-5) 

and 

H B: I @G.s.) + B: I @G.s.). (4-6) 

Assuming that the excitation energy ho, is real and positive, the definition 
of the ground state must be completed with the condition that 

B 1 ) = O, for a11 1, (ho, > 0). (4-7) 

The case ho, c O can be treateú analogously starting with the equation 
for B: . 

If B, is a one-body operator, by taking the matrix elements between the 
HF state I 4) and I 4.) = aLai I 4) of both sides of equation (4-3), one 
obtains 

which can be more conveniently written as 

These are the RPA equations, where 

daB = (E, - ci) dij 6,, + (in 1 v I mj), (4- 1 1) 



Band 
RPA TD 

number 
Y K KLS KLS Exp. 

Table V - RPA excitation energia h o ,  , in MeV, for NeZO with the interactions (Y), (K) 
and (KLS). The Tamm-Danwff approximation (6" wlumn) gives practically the same r e  
sults except for the spunous state. The experimental data are from Nuclear Data Sheets (1961) 
except for the leve1 at 9.95 MeV [Ref. 221. The first wlumn wntains the isotopic spin states. 

and L, correspond to the HF single particle unoccupied and occupied 
states, respectively. The quantities dqB and a, have already appeared 
in the explicit form of the Thouless-Valatin equations (3-8). 

The RPA ground-state energy ís gíven by 



T = O  T =  1 
Band 

K Exp. K Exp. 
Number 

Table VI - RPA excitation energies hwl, in MeV, for Si2' using Kuos (K) interaction 
The experimental data are from Ref. 27. 

T = O  T =  1 
Band K Exp. K Exp. 

number 

Table Vi i  - RPA energies in MeV for Ar36. See Table VI caption. 



so that the correlations introduced by the RPA into the Hartree-Fock 
ground-state can be measured by the energy difference 

which can be proved to be negative. 

B. Jancovici and D. H. SchifB obtained this same expression using the 
Hill - Wheeler - Griffm Method of Generator Coordinates. 

NeZO Si2" Ar36 

G,T E R P A  ECORR. ER P A  ECORR. ERPA  eco^^. 
K -40.58 -2.79 - 152.24 -4.67 - 285.00 - 3.09 

K b  - 35.90 - 1.67 - 147.00 -2.83 -298.08 - 1.75 
KLS -40.76 - 2.48 - 154.53 -3.76 -291.54 -2.33 
S - 36.32 - 1.78 - 141.11 - 3.06 -268.33 - 1.95 
D -34.04 -1.74 -143.43 -3.07 -297.13 - 2.03 
Y - 39.68 -2.67 -124.78 -4.15 -211.13 - 2.04 

Table VIii - RPA ground state energia and the correlation energia for Ne20, Si2' and 
Ar" calculated with different interactions. All valua are in MeV. 

5. The Interactions 

In order to perform the calculation, one must know the fwo-body matrix 
elements of the nucleon-nucleon interaction in the nucleus. Usually they 
are written in the basis of the harmonic oscillator single-particle wave 
functions, If the interaction is rotational invariant and charge independent, 
they can be expressed as 

In this paper, we use six types of interactions that enter in the calculation 
as different sets of the quantity GJT, which are known as the antisymme- 
trized and normalized particle-particle reduced matrix elements of the 
interaction. These G,, can be taken as the effective interactions determi- 
ne - from realistic two-body forces that fit the nucleon-nudeon scattering 



data The techniques involved in the determination of the effective inte- 
raction are the ones developed by Brueckner and others in 'the theory of 
nuclear matter. The first quantitative calculations of these matrix elements 
were performed by Kuo and Brown

g
, and Kuo10 using the Hamada-Johns- 

ton potential Their results were restricted to the s-d shell and this truncation 
of the shell-model space implied that renormalization corrections should 
be taken into account. Kuo's effective-interaction matrix elements are the 
sum of G,,, plus these corrections; we used them in this calculation and 
the results appear under the label (K). 

Recently, Kirson and ~amick" have shown that when some of t 'hm renor- 
malization effects are consistently calculated in a11 orders, their final con- 
tribution becomes very small compared to G,, . Therefore, we also per- 
formed the calculation using Kuo's bare reaction matrix (K,). 

Two other sets of bare effective-interaction matrix elements were used: 
One was obtained by S. Kahana, H. C. Lee and C. K. Scott12 (KLS) from 
a non-local but separable potential, similar to the one of Tabakin. 

Recently, J. DemosI3 solved Brueckner's G-matrix equation starting from 
Reid's soft-core two-body potential. We also used this effective interaction 
as GJT matrix elements and the results have the label (D); 

Next, it was possible to use as GJT the Sussex (S) matrix elements derived 
by Elliott et al.14. They were obtained directly from the scattering phase 
shifts without specifying an explicit form for the two-body potential. The 
Sussex matrix elements were transformed into the j-j coupling represen- 
tation by C. Abulafio15 and we have used them in this latter form. 

Finally, a much simpler interactiòn was used, namely a Yukawa (Y) cen- 
tral force with a range of 1.4 fm. The parameters of the exchange mixture 
were adjusted16 to fit the low-lying leve1 spectra of 0'' and F ' ~ .  The 
strengths in the various space spin states are: triplet-even, -43.0 MeV; 
singlet-even, - 31.5 MeV; triplet-odd, 17.8 MeV; singlet odd, 37.4 MeV. 

Of a11 sets of matrix elements, only the one of Kuo ( K )  includes renorma- 
lization corrections. 

6. Results and Discussions 

In Table I, we show the Hartree-Fock energies corresponding to three 
choices of symmetry solutions; each symmetry was built in at the beginning 



of the iterative process and carried through each step of the iteration. The 
same energy value may occur for two symmetry choices; when this happe- 
ned we have always worked with the axially symmetric solution having 
the lowest energy. Therefore, ~e~~ is prolate, si2* and ~r~~ are oblate 
with axial symmetry, as it has bem known since the work of Bar-Touv 
and Kelson". We also display the expectation values of the mass qua- 

drupole operator Q2, = r2 Y2, in the HF ground-state, expressed in 

units of the oscillator-length parameter. 

The single-particle shell model energies E, = 6, were taken from the 
experimental spectra of 015 and 017 neglecting Coulomb energy diffe- 
rences. AI1 energies are measured in MeV relative to the 016 binding ener- 
gy, which is supposed to behave as an inerí core. The matrix elements of 
the two-body interaction were described in Section 5. With (K) and (K,) 
we designate Kuo's effective interaction, the first containing renorma- 
lization corrections while the second is the bare G-matrix. Next, we have 
Kahana, Lee and Scott (KLS) separable potential, then the Sussex (S), 
Demos (D) and Yukawa (Y) two-body matrix elements; none of these 
last four include renormalization effects. 

Oscillator radial wave functions that have a length parameter b = mw J "  
were used. The value of o should change according to the mass number. 
However, Kuo's (K) and Demos's (D) matrix elements were available to 
us only for fixed values of fio, 14.0 MeV (b = 1.72 fm) and 13.25 MeV 
(b = 1.77 fm), respectively. In each case the same set of G,, was used for 
Ne20, Si2' and Ar36. The other four types of reduced matrix elements 
could be obtained for any desired value of tio which was fixed acwrding 
to the formula fio = 41 A-lI3 MeV, giving 15.1 MeV, 13.5 MeV and 
12.4 MeV for each of those nuclei in that sarne order. 

The projection calculation was performed with the Peierls-Yoccoz method, 
for Ne20 and Si2' and the results for the spectrum of enecgy are shown 
in Fig. 1 andFig. 2. We worked with the intrinsic Hamiltonian Hi =H- A(")JL 
obtaining the energy expectation values 

where A(") is the inertial parameter reached after few iterations (n = 3, 4) 
with either TV or BDS formulas. One can find in the literature a great 
number of papers showing this kind of result for a variety of forms of 



the two-body interaction18. While for Ne20 the results can be considered 
good, it has been known that the Hartree-Fock approximation for Si2' 
provida an intrinsic wave function which seems to be too deformed; in 
this case, the calculated spectrum of energy tends to be largely compressed 
compared to the experimental one. Not a11 interactions we used are able 
to provide a good comparison with experiment, even for NeZO. The best 
fit is obtained with Kuo's (K) G-matrix including renormalization correo 
tions; the (KLS) interaction gives a reasonably good fitting and surpri- 
singly enough, a simple central force (Y) worked better than most of them 
With Kuo's bare G-matrix (K,,) the spectrum is not reproduced, justifying 
the inclusion of core polarization graphs which should compensate the 
effects of the space truncation. 

On the other hand, it seems that the effective interaction obtained from the 
separable potential (KLS) contains most of the relevant effects, as a direct 
solution of the reaction matrix equations. The reduced matrix elements 
of the interactions indicated by (K,), (S) and (D) are equally bad from the 
point of view of this calculation. 

Works on the independent pair modellg have reached the conclusion that 
low-energy nuclear dynamics is mostly governed by the atractive welL 
This could justify the good agreement with experimental results obtained 
with a simple Yukawa force. 

As for si2', only the renormalized two-body interaction of Kuo worked 
reasonably well. The ones which did not work well for ~e~~ are still bad 
in this case and even the (KLS) and (Y) interactions gave a compressed 
spect rum. 

The energy levels represented with dashed lines were calculated with the 
rotational expression E j  = E, + A(") J(J  + I), where A = 1/(2 x moment 
of inertia) was taken from Table 11. They are expressed in MeV. In Fig. 3, 
we have the energy spectrum of Ar36 determined exclusively by this proce- 
dure. Initially, the inertial paramater was calculated with the original Hamil- 
tonian H using the expression of Thouless and Valatin (TV) and of Ba- 
nerjee, de Oliveira and Stephenson (BDS), formulas (3-10) and (3-ll), res- 
pectively; it was straightforward to proceed iteratively, as proposed in Ref 
4, to obtain a self-consistent value for A. Table I1 is divided into two parts: 
on the left, we have the results coming directly from H, that is, the firsi 
output in the iterative process which started with Ato' = O; on the right, 
there are values which appeared after three or four steps of iteration with 
the intrinsic Hamiltonian H?) = H-  A(") J2, as described in Section 3. 



Both formulas (TV) and (BDS) converge simultaneously to a common 
A'") value, and we can notice that this convergence value is closer to A$),s. 
Also, it can be verified that the rotational levels do not differ very much 
when we use either A$'& or A($. Furthermore, these rotational spectra 
in dashed lines are close to those calculated with the Peierls-Yoccoz pro- 
jection method. Although the techniques are apparently different, they are 
based upon the same self consistent (Hartree-Fock) description of the nu- 
cleus as a starting point. These results are indicative that using the HF 
approximation the various prescriptions to get the nuclear low-energy 
levels are almost equivalent. Recently, Friedman and WiletsZ0 studied 
the "Formal aspects of nuclear moment of inertia theory" showing that 
the crancking model and the projection method give similar results for 
the moment of inertia (for low J and large (J2)), provided that the cran- 
king method is used self-consistently. Here, self-consistency means that 
we should take into account the two-body interaction terms in Eq. (3-S), 
which represent the change in the self-consistent field produced by the 
rotation. The importance of these terms was first pointed out by ~ h o u l e s s ~  
in contraposition to the old Inglis formula. In Table 11, we also display 
the values of the inertial parameter calculated with the Inglis formula (3-12). 

Once the spectrum of energy is calculated, its agreement or not with the 
experimental data is a different matter. In our case, it depends (a) on how 
the HF wave function was calculated, more specifically on the fact that 
the single-particle space of states was restricted to levels between 016 
and Ca40, and (b) on the kind of two-body interaction used. In fact, we 
could expect21 that by enlarging the harmonic oscillator space of single- 
-particle states the calculated spectrum of energy would be improved. 
However, we did not have at hand the interaction matrix elements coupling 
different major shells. By doing a restricted Hartree-Fock calculation, we 
found the various spectra described in Figures 1, 2 and 3, suggesting 
that the renormalized matrix elements of Kuo (K) give the best fit to expe- 
riment. 

In Tables I11 and IV, we show the electric-quadrupole reduced transition 
strengths in Weisskopf units (W.U.) for the ground state band of ~e~~ 
and Si2', respectively. For each type of two-body interaction, the calcula- 
tion was performed with the HF wave functions determined with the 
Peierls-Yoccoz projection method. The value of 0.5 for the effective charge 
was chosen for both nuclei. The experimental data on Ne20 are those of 
Hausser et a1.22, and for Si28 we are comparing our theoretical results with 
the experimental figures given by M. M. Aleonard et ~ 1 . ~ ~ .  A11 interactions 
secm to give very similar results so that the electric quadrupole transitions 



may not be the ideal thing to look at in order to decide which is the best 
set of GJT matrix elements. For instance, with (K) or (K,), the results are 
practically the same and this could suggest that renormalization correo 
tions might not be so important. E. C. Halbert et did an extensive shell 
model calculation in the s-d shell. They also found that the B(E2) values 
within the ground state bands are essentially the same, using different 
interactions. Their value for the 2' -+ 0' transition in Ne20 is 15.0 W.U. 
with Kuo's renormalized interaction (K), and effective charge equal to 0.5. 
For Ne30 ,  we also observe that the strength of the 6' 4 4' transition is 
weaker than that of the 4' -+ 2' transition. This has been verified in a11 
our cases, in good agreement with experiment. In spite of the calculated 
transitions being too close to each other, we could still say for ~e~~ that 
the (K) interaction gives the most favorable results. They also agree well 
with the SU, calculation of M. Harvey2'. 

In the case of Si28 the results are practically the same for a11 interactions 
used and too far from the experimental data The SU, values obtained by 
Harvey2' are 31.95 W.U. for the 2+ -+ 0' transition and 43.10 W.U. for 
the 4' + 2' transition. In our calculation with the Hartree-Fock projected 
wave functions, the values are half-way between the experimental data 
and those obtained in the SU, scheme. In the adiabatic rotational model, 
the reduced transition probability is proportional to the square of the 
Clebsh-Gordan coefficient (5,020 1 J,-O), for transitions within the lowest 
K = O band. The resulting values will increase with the angular momentum 
of the states involved and this is not what happens in the SU, or in the 
Peierls -Yoccoz projection method. 

For the study of excited states, we solved the RPA equation (4-9) to obtain 
the energy hw, of each mode of excitation, for the vanous band quantum 
number K. Each excited state is also characterized by the isotopic spin 
quantum number T. Considering that the G j ,  matrix elements (K), (KLS) 
and (Y) were the ones that gave better energy levels for the grouríd state 
band of Ne20, we reproduce in Table V the RPA results corresponding 
to these two-body interactions. The energies are in MeV. 

The Tamm-Dancoff approximation treatment of the nuclear excited states, 
practically gives the same energies, as it has been previously verified2! 
The only difference occurs for the first state with band quantum number 
K = 1, whích is spurious. One advantage of the RPA treatment is to make 
the separation of this spurious state possible; it comes out with zero energy. 



To illustrate this point, we show in Table V the Tamm-Dancoff results 
obtained with the (KLS) interaction. This situation is common to a11 
three nuclei with any interaction that we have used. 

From a given collection of experimental energy levels with the same J 
value, not belonging to the ground state band, we picked out the one with 
the lowest energy and compared it with our lowest theoretical excited 
energy level of the same K = J band The experimental energies were 
taken from Ref. 27. Evidence for the existence of a J" = 1' level at 9.95 MeV 
was given in Ref 22. There is, of course, some arbitrariness in the choice 
of these experimental energy levels as one does not know whether they 
really are band heads. 

In the case of ~ e ~ ' ,  we have a reasonably good agreement with experiments 
for a11 three types of two-body interactions. The only large discrepancy 
occurs for the first 0' excited level obtained with the Yukawa (Y) force 
as being at 4.16 MeV when the first 0' level is really at 6.72 MeV. Again, 
the best fitting seems to occur for Kuo's (K) renormalized two-body matrix 
elements. 

On the other hand, in the cases of Si2' and Ar36 the comparison with the 
available data is equally poor for a11 types of interactions. In Tables VI and 
VII, we display the results obtained with the (K) interaction, only. 

The correlations which are present in the RPA ground state, modifying 
the previous Hartree-Fock description, are measured as the energy diffe- 
rence between the two ground states according to Eq. (4-14). We show in 
Table VI11 these correlation energies for Ne20, Si2' and Ar36.  These values 
are of the same order of magnitude for all three nuclei, but Si2' shows 
more correlations in its GS. 

In most cases, the effective interactions denved from the realistic two-body 
potentials are constructed in a convenient configuration space of two- 
-particles. After obtaining a set of two-body matrix elements in this case, 
it is assumed that they are independent of the number of valence nucleons 
and one uses them to calculate the properties of nuclei having more than 
two nucleons outside the core. This is a usual procedure in standard sheil 
model t r e a t m e n t ~ ~ ~ .  

The sets of G,, matrix elements that we used were determined for the 
A = 18 nuclei (A = mass number). 



As the number of particles outside the 016 core increases, the calculations 
involving the use of these same matrix elements should become less accurate. 
In our case, the results for NeZO are better than for Si28 and Ar36, when 
we take as GJT the sets (K), (KLS) or (Y). Concerning these last two nuclei, 
although the comparison with the experimental data has become worse, 
the renormalized effective interaction of Kuo (K) still gives more reaso- 
nable results. 

A11 results we found depended also on the fact that our calculation invol- 
ved only one major shell; if possible, in order to make the treatment more 
general, the Hartree-Fock calculation should be performed with major 
shell mixing. 
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