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The Hartree-Fock approximation was applied to Ne2%, Si*® and Ar*® using different types
of two-body interactions. Wavefunctions withgood J were determined with the Peierls-Yoccoz
method and they were used to calculate energy levels and electric quadrupole transition
probabilities within the ground state band. The intrinsic excited states were calculated with
the Random Phase Approximation. From comparison with the available experimental data,
onefinds that the best resultsoccur for NeZ’ and when Kuo's renormalized effective two-body
interaction is used.

A aproximagéo de Hartree-Fock foi aplicada aos nicleosde Ne2°, Si%8 e 4r*¢ usando diferentes
tipos de interagdes de dois corpos. Foram determinadas fungdes de onda com bom niimero
quantico J pelo método de Peierls e Yoccoz; as mesmas foram utilizadas para calcular os
niveis de energia e as probabilidades de transicdo de quadrupolo elétrico entre niveis da
banda fundamental. Os estados excitados intrinsecos foram calculados com a "Random
Phase Approximation”. Da comparagdo com os dados experimentais disponiveis, verifica-se
que os melhores resultados ocorrem para 0 Ne?® e quando se usa a interagdo efetiva renor-
malizada de Kuo.

1. Introduction

In recent years, the Hartree-Fock (HF) approximation has been providing
a very powerful tool in the study of nuclear structure properties.

The Hartree-Fock wave function is not an eigenstate of the total angular
momentum operator and thereforeone has to project fromit wavefunctions
with good J. Once these wave functions are known, one can calculate
transition matrix elementsand expectation values of some relevant ope-
rators. Most o this formalism can ben found in two reference papers by
G. Ripka.

*Postal Address: Caixa Postal 5956, 01000 - Sdo Paulo SP.
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One knows that the formula

E, =Es+ AJJ + 1) (1-1
works very wel for some strongly deformed nuclei.
The existence of a rotational band suggests that the nucleus Hamiltonian

H could be divided into two parts, an intrinsic one H;, plus a rotational
term AJ?, such that

H =H-AJ (1-2)

If a wave function |¢’> is an eigenstate of H corresponding to the above
eigenvalue E,, it can be easily seen that a linear combination

6> = ;CJ |67 (1-3)

will be an eigenstate of the intrinsic Hamiltonian H;, but not of H, and
the states |¢”> will be a degenerate set of eigenstates of H;.

These states |¢*> can be projected from the intrinsic state |¢)» and their
degeneracy could be removed by adding to H; the rotational term AJ2.
The Hartree-Fock theory has been used to obtain an approximation to
the intrinsic state |¢).
We have caculated the energy levels d the lowest band as

E;=<(¢’

where. the states | ¢”> are projected from the Hartree-Fock wave function
lé> which gives the lowest expectation value of (1-2).

H, + AP2|¢") =<¢’'|H|¢"> + AJT + 1), (14

It becomes very important to know a value for the inertial parameter A.
In Section 3, we summarize the derivations o some formulas for this
parameter using the cranking moddl.

Thoulessand Valatin? (TV) were the first ones to point out the importance
of including field effectsin the moment d inertia calculation. Slight modi-
fications of their formula were introduced by Banerjee, de Oliveira and
Stephenson® (BDS). Recently, J. M. Cohenca and S. K. M. Wong et al.*
have independently suggested that another kind o self-consistency should
be considered as will be shown in Section 3. Low-lying excited states will
be formed by the superposition of configurationsin which one particle is
promoted to a previoudy non occupied level, leaving a hole. These par-
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ticle-hole excited states can be treated with the Tamm-Dancoff (TD) or
the Random Phase ApproximationS (RPA), which are built on the static
HF solution. The RPA equations can also be derived from the formalism
o the time dependent Hartree-Fock approximation®.

We have applied the Hartree-Fock theory and some subsequent approxi-
mations to the nucle of Ne2°, Si?® and Ar3®. In this calculation we con-
sider the nucleus of 0'® as an inert core, and the states available to the
extra-core particlesare confined to the s-d shell, only. Our aim is to obtain:
(@) the lowest band spectrum of energy by the projection method; (b) the
eectric quadrupole transition probabilities between these energy levels;
(c) the same lowest band spectrum using the rotational formulak, = E, +
+ 4J(J t 1),with theappropriatevalued themoment o inertia.# = 1/24;
(d) the low-lying one particle-one hole excited states belonging to different
bands. These results are obtained with some different types of effective
interactions and compared with the available experimental data We are
applying these calculations to nuclei in the s-d shell which are not strongly
deformed. Their low-lying energy levelsdo not constitute a pure rotational
spectrum. However, they still exhibit a good degree of deformation and
formula (1-1) might be approximately valid Besides, the difficulties in the
calculations can be better handled in the case of these low medium mass
nucle than for the heavy ones.

2. Summary of the Hartree-Fock Theory and the Projection Method

The determination of the Hartree-Fock single-particlestates, through the
solution of the HF equations, are well presented elsewhere.

Our Hartree-Fock wave function is expressed in a second quantization
notation as

|¢> =af af,....a] |0, 2-1)

where the states [i;), |i) ....|i) are the HF single-particle occupied
orbitals; |0 is the vaccuum state with respect to the fermion operators
a, and a,. The number of particles availableis N; if » < N, it refers to
an occupied orbital being denoted with the letters i, j; if # > N, it refers
to an unoccupied orbital m, n.

We use the Hamiltonian operator in the standard form

H=Z<p|th>af,aq+%z <pr!v|qs>a;afasaq, (2-2)
pq .

pqrs
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where the indices p, q,..., refer to any set of single-particle states, in parti-
cular to the HF s.p. states \?). The two body interaction matrix elements
are antisymmetrized.

In order to assure that the expectation value o H becomes a minimum,
it is necessary to impose the condition that

(lp-1h|H|$) =0, 2-3)
known as the Hartree-Fock condition.

One can calculate the expectation value of H in | ¢, obtaining

N
<q2<13H(If§> Z <ife] > + Z Cigig|v]iyiyy, (2-4)

i,d2=1

where the relation af |¢) =0 was used.

Ne 20
G Tri-Axial Axia Prolate Axia Oblate
- <H> <% 1€:)) @5 <H) Q%
K -37.79 -772 -3779 15.44 -29.19 -8.00
K, -34.23 790 -34.23 15.60 3012 -800
KLS -38.28 -7.86 -3828 15.70 -34.36 -800
S -3454 -7.82 -3454 1562 -3120 -8.00
D -3230 -7.80 -3230 1560 -2698 -800
Y -37.01 -7.83 -37.01 15.66 -2866 -800
528
K -14384 -8 -14384 2364  -14757 -2296
K, -14147  -1166 -14147 2332 -14417 -2304
KLS -14763  -1156 -147.63 2312 -150.77 -23.06
S -13461 -11.20 -13461 240  -13805 -264
D -13752  -1130 -13752 2280 -140.36 -2.74
Y -11962  -1070 -119.62 2060 -12063  -272
A r3 6
K -281.91 718  -27809 736 28191  -1434
K, -296.33 730 2212 746 -29633  -1458
KLS  -28921 690  -28615 734 28921  -1390
S -266.33 649  -26474 718 -26638  -1294
D -295.10 680  -29260 742 -29510 -1392
Y -209.29 620  -207.36 688 -20929 1242

Table | - The energies and expectation vaues of the mass quadrupole operator for the
Hartree-Fock ground states with different symmetries. The units are MeV and the oscillator

Iené;th parameter, respectively. They were calculated with various sets of G, reduced m. e
nd the labels refer to the two-body interactions described in Section 5.
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The expression (2-4) gives the Hartree-Fock energy of a system of N par-
ticles when the states |i) are chosen to give the lowest possible value of E

The eigenfunctions|¢;,x> o the total angular momentum are projected
from the Hartree-Fock wave function (2-1) using the Peerls-Yaccoz
method’:

274+1 1
| bhex> = 52— o ‘-dQ DIk (R)R) | g, (2-5)

where R stands for the Euler anglesa, 8, v,

R(Q) = e*ian e—-iﬁ.ly e—iy.lz, (2_6)

and
Dyx (R)=6;1 (IM |R(Q)| J'KD. (2-7)
Indices M and K are the projection of the total angular momentum on
the z-axis of the laboratory system and body system, respectively. The

nuclei we are investigating have axially symmetric HF solutions | ¢,
and C,x is a normalization constant.

[t can be verified! that an irreducible tensor operator will have the follo-
wing matrix €l ements between these projected states:

y 2J,+1
{rtx, |T¢(1k)| ¢}(422K2> Sy 2 (M, kq |J1 M1)Z(J2 K, kv|J, K})
2CJ;K1 CJ;K; v

J dpsin B d, (B)<bx, |7 TO 65, (2-9)
0

where
|Gl =22 f af sin B de (B)<Pe o™ 6>, (29)
0o .
and
dkm(B) = (IK [e7#7»| IM) = real. (2-10)
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Energy of the State |«
This energy is defined as the expectation.value

E) = <¢JMK IH| ¢{n<>

= —f—]“zz']c; 12 dBsin Bdky (B){px|e P> H|dg>,  (2-11)
o]

which is obtained from the expression (2-8) with k = g =0, and is inde-
pendent of M.
As we are interested in the lowest K = 0 band we have
f 4B sin B &by (B) o™ ™ H| o)
4]

f dB sin B dlo () <o |e= 7| o>
0

J dp sin B dgo (B) , Z,Zh (oo le™ %> 2p~21)<2p—2h |H| do>

0

= EHF + P
j dB sin f dgo (B) {0 Ie—iﬂlyl $o>
0

The Hartree-Fock condition eliminates the one particle-one hole contri-
butions from the above expansion.

B(E2) Transtions within the K = 0 Band

The €electric transition probability corresponding to the emission of a
photon o energy hw, angular momentum L, the nucleus going from an
initial state |i) to a final state |f), is

s (L+ 1) o2 J2L+1

Tz:f (L) — L[(ZL + I)”]2 A B(EL; i —»f), (2-14)
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Figure 1 - Projected HF spectra (full lines) of Ne2° using different types of two-body interac-
tions. The spin value is on the right of each level. The number in the bottom is the energy of
the lowest J* = 0* level relative to the 0 binding energy. The dashed levels were obtained
with the formula E = E + 4™ J(J + 1). In both cases we used the iterated A® values

of Table II. The energies are in MeV.

where k = w/c and B is the reduced matrix elements containing the ope-
rator which characterizes the transition from [iy = |@37,x-o> t0 | /> =
= | % .k=0y » Which is

|
57,51, % (<Ol Bluid - 213)
’ iM2q

2J, + 1
-5 |Z, i)z(lzé; F NS T

B(E2; J, = J,) =
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Figure 2 - HartreeFock spectra of Si*® calculated with different types of two-body
interactions. The energies are in MeV. See Figure 1 caption.
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Figure 3 - Energy levels of A4r*¢ calculated with the formula E, = E, + 4 J(J + 1),
The iterated A values are from Table II for different types of two-body interactions. The

energiesarein MeV.
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In the above equations, the expression (2-8) was again used with K; =
=K, =0, k =2 adong with the orthonormalization properties of the
Clebsch-Gordan coefficients. Since r? Y,, is a one-body operator, it will
be seen that

G(Jy, J,) = 22: (J202v|11v)jndﬂsianZ;W)><
0

v=-—2

x {<¢o ‘e_w”l D02 |"2 sz| doy +
2 <pale” | 1p=1h){1p—Ih|r? Yy, >} (2-17)

Ip-1h

3. Formulas for the Moment of Inertia

Consider the nucleus Hamiltonian H perturbed by a term —wJ, where
J, is the X- component of the total angular momentum and o is a small
paramater. If |¢> and |¢,,> denote the HF determinantal wave functions
corresponding to the ground state of H and

H =H-wlJ,, @-1)
respectively, they can be related by the Thouless Theorem? as
[¢o> = €59, (3-2)

where S isasum o 1 particle-1 hole terms, only, and does not depend on O.
The new Hamiltonian H, can be interpreted as representing a deformed
axialy symmetric nucleus subject to a small rotation about an axis per-
pendicular to the symmetry axis. Banerjee et al.> obtained the Thouless-
-Valatin equation for the operator S asfollows: first, they write the expec-
tation value of H, in |¢,> asa power seties in O using relations (3-1) and
(3-2), getting

w2
(ba|Ho| S0 = <& |H|$> + 5-<S|[S,[S, HI] + 2[S,J.] | ¢> + -,
(3-3)
since one can verify that the linear term vanishes.

To assure that the Lh.s. of equation (3-3) is a HF minimum, the coefficient
of o? is minimized with respect to variations of S, resulting the equation

2@ |[68,{[S. H] + 31145 + 64
+ <</)H:5S, [H,8]] + [S,[6S,H]] + [H,[S,681]1| ¢> = 0.
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(D

Gyr K K, KLS S D Y
JF - JE EXP. PHF Adiagb. PHF Adiab. PHF Adidb. PHF Adiab. PHF Adidb. PHF Adieb.
20t 178%25 177 (177 181 (18.1) 155 (155) 154 (154) 203 (203) 155 . (15.5)
4* 2% 219421 225 253 229 258 197 221 195 220 257 290 196 221
6* 4% 206+24 191 279 194 285 167 244 165 242 218 319 166 243
8t —6* 114 292 115 298 98 255 9.7 254 128 334 9.7 254

Table IT — B(E2) strengthsin Weisskopf units(W.U.) for the ground state band of Ne2°, R different types of two-body interactions. The expe
nmental data are from Rd. 22. The PHF column contains the values calculated with projected HF wave functions. In the other column
the resultsfrom the adiabatic rotationai model are shown. The number in parenthesisis normalized to the PHF vaue.

Ky

Gyr K KLS S D Y
oI\ EXP. PHF Adieb.  PHF Adieb. PHF Adigb  PHF Adisb. PHF Adich. PHF Adich.
2+ 50t 4+4 227 (27 229 (229) 246 (246 237 (237 241 (241) 239 (239)
4% 52+ 2045 307 324 308 328 332 352 320 339 327 383 322 341
6+ -4+ 302 357 304 360 326 388 3.5 372 320 378 317 376
8t 56+ 261 374 263 378 282 40.6 273 390 217 396 274 394
10+ - 8* 189 384 191 388 205 417 197 401 201 407 198 404
12+ - 10* 104 391 105 394 113 424 109 408 113 414 110 412
14% = 12+ 233 396 225 399 248 430 246 413 249 416 246 417

Table I — B(E?2) strengthsin W.U. for the ground state band & Si%. (See caption d Table II). The experimental data are from Ref. 23,



The term {¢ |[3S,[S, H]] |$> was smply added and subtracted; also the
tem <{¢|[H, [S,85]]|¢) was added, the latter being equal to zero due
to the Hartree-Fock condition (2-3), because the commutator [S, 8S] isan
1p—1h operator. As the positions of the three operators obey a circular
permutation, the sum o the commutators in the second bracket of (3-4)
vanishes. We are then left with

(o |[6S,41S, H] + I 31| ). (3-5)

Since 8§ is an arbitrary 1p- Ih operator, one gets the Thouless-Vaatin
equation for the operator S:

<1p-1k|[H,S]| $> = (1p-1h|J.| ). (3-6)

The only non-vanishing matrix elements of S are those between the occu-
pied states |i) and unoccupiel states [m). Using S as

§ = Z{'Spmia:tai—y;i ax:‘- am} (3'7)

and theform (2-2) for the Hamiltonian, we get the following two equations
corresponding to the explicit fom o Eg. (3-6):

Z{(sm—si) 5ij6mn + <m]|v‘ ln>} ynj + Z(mn|vl l]> y:‘_) = <m|Jx| i>’

nj nj

Z{(sm_gi)éijémn + <m]|U|ln>*} y:‘] + Z):(mnlv|l.]>* ‘Spnj = <I|Jx|m>7
nj n

(3-8)
where the two-body interaction matrix elements are antisymmetrized.
Using the relation (3-2), the HF condition (2-3) and (3-6) we may write
the change of the energy of the nucleus due to the perturbation as

AE =<¢,|H|$p,) ~<¢|H|d) = 3™ |[S,[S, HI]| 9>
=30’ < |[J,.5]|¢>.
By equating AE to 3.#w?, we obtain the Thouless-Vaatin formulafor the
1

inertial parameter A = XE which is

(3-9)

1

NI (3-10)

Ay =
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On the other hand, the inertial parameter is defined in Re. 3 as being
essentially the ratio of AE to the change o the expectation vaue o J?,
due to the perturbation,

_ _<o|[J. S1| o> .
s = 15,1711 .

The term <¢ |[S, J*]|¢)> does not contribute to A{J?) because the HF
wavefunction | ¢ isassumed to beinvariant under time reversal and it can
be shown that the operator Sis odd under this symmetry operation.

J. M. Cohenca® proposed that one should proceed iteratively to get the
inertial parameter through formulas (3-10) or (3-11). This same idea was
proposed by Ng, Trainor and Wong* which have used a formula due to
Skyrmefor theinertial parameter. Their suggestion is based on theargument
that the Hamiltonian H; = H - AJ would have a better chance to repre-
sent the nucleus intrinsic state. The procedure is the following: Once
some formulais chosen, calculate the first vaue A with the HF wave
function | ${0) obtained with theinitial Hamiltonian H{® = H - A®J?;in
particular, H® could be the origind H, (49 = 0. Next, construct the
new Hamiltonian HY = H- A" P which will generate the HF wave
function | ¢{">; wsing the same inertial parameter formula previoudy
chosen, calculate A% with H{" and | ¢{"). Repeat the process until some
vaue A™ becomes equal to 4~ Y, the one obtained previoudy.

To get the Inglisformulain this context, neglect the two-body matrix ele-
mentsin (3-8) and substitute the expression for &,,; into the formula(3-10),
resulting

jlng = 1 = ZZM}Z (3-12)

2 AIng mi —

The important contribution to the moment o inertia theory was brought
by Thoulessand Valatin, who have shown that the operator Sshould be the
solution d the complete equation (3-8). Once we use this correct solution
for S the formulas (3-10), (3-11) or the iterative calculation proposed in
the papers of Ref. 4, are equdly acceptable. We fed that the self-consis-
tency required in the iterative procedure should give a better result.
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A® =9 AM = ge— D
Gor BDS TV ING. BDS TV ING.
K 0.183 0.149 0.243 0.175 0175 0.232
K, 0.114 0.093 0.188 0.109 0.109 0.179
KLS 0.168 0.137 0.234 0.157 0.157 0.218
S 0.123 0.102 0.191 0.116 0.116 0.178
D 0.108 0.089 0.163 0.100 0.100 0.150
Y 0.192 0.159 0.314 0.173 0.173 0.277
SiZS
K 0.195 0175 0.251 0.187 0.187 0.233
K, 0.109 0.097 0.179 0.105 0.105 0.171
KLS 0.139 0.125 0.190 0.134 0.134 0.179
S 0.117 0.106 0.163 0.113 0113 0.154
D 0.097 0.087 0.152 0.092 0.092 0.145
Y 0113 0.103 0.191 0.111 0.111 0.183
Ar36

K 0.203 0.162 0.241 0.193 0.193 0.247
K, 0.123 0.008 0.185 0.118 0118 0.190
KLS 0.144 0114 0.170 0.140 0.140 0.179
S 0.123 0.098 0.137 0.118 0.118 0.147
D 0118 0.094 0.152 0.112 0.112 0.159
Y 0143 0.116 0.192 0.131 0.131 0.195

Table IV - Values, in MeV, of the inertial parameters 'for Ne?°, $i2® and Ar*¢ caculated
with the formulas presented in Section 3. The G T labels refer to the interactions described
in Section 5.

4. Low-lying Excited States. The RPA Equations

For an extensive and detailed discussion o this formalism, see Ref. 3.
We give here a brief summary containing only somed the formulas which
entered in the calculation.

Consider an operator B,(t) satisfying the Heisenberg equation

5880

£ = [B(0), H]. 4-1)
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Assuming its time dependence to be of the usual form

By(t) = B,e™ ¥, (4-2)
eguation (4-1) becomes
B, , H =ho, B,. @é-3)
The ground-state wave function and energy should satisfy the equation
H\|¥65) = Eos|Ve.s>- (4-4)
From (4-3) and (4-4), it can be verified that
H B, |Ygs) = (Egs —hwy) By | Y652, 4-5)
and
H B} |¥.s> =(Ecs. + ho,) B |Vo.5). (4-6)

Assuming that the excitation energy hw; is real and positive, the definition
o the ground state must be completed with the condition that

B;|Ygsy =0 forall 4 (ho, >0). @7
The case hw; < 0 can be treatell analogously starting with the equation
for B;.

If B, isa one-body operator, by taking the matrix elements between the
HF state |4) and | $.> = aia; | > o both sides of equation (4-3), one
obtains
Z{"dﬂﬂ X; -+ gaﬂ Yfg'} =ha)AX§,
d , (4-8)
Z{'%:ﬁxﬁ—i—d:ﬁ Yﬁ} =—h0)1 Yi',
5 .

which can be more conveniently written as

oA y
EE)) e

These are the RPA equations, where

X: = <¢ IB).' ¢a>’ 4-10
Y2 = (| Bil ), @10
dwﬂ = (& —8,-) 6!’1’ 5mn + (in IV l m), (4-11)
Bp = ij|v|mn), (4-12)
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RPA TD
Y K KLS KLS Exp.

Band
number

4.16 6.67 5.72 5.78 6.72
10.56 10.02 9.12 9.19

12.57 12.15 11.56 11.60
13.79 12.69 13.16 13.21

10.30 9.79 9.07 9.10 9.95
12.62 12.11 11.73 11.78
15.41 15.62 15.17 15.19
6.52 7.63 7.39 7.40 743
9.68 9.09 892 8.92
14.25 14.09 13.47 13.49
10.73 11.12 10.26 10.30
10.55 10.65 9.61 9.61
11.10 11.22 10.42 10.55
13.92 13.07 12.37 12.37
14.10 13.52 12.90 12.99
10.03 9.14 8.65 8.68
10.76 10.88 9.92 9.96
1421 13.58 1292 12.96
15.61 15.85 14.87 14.90
9.71 8.57 7.87 7.90 10.27
11.09 11.31 10.35 10.36
15.85 16.32 15.14 15.15
10.74 10.88 9.80 9.80

Fh ok ek ok ek pak b bk et b it e D DO OO OO OOOOD

WNNNFE = mOQOOOCWNNNE === OO

Table V — RPA excitation energies hw,, in MeV, for Ne?® with the interactions (Y), (K)
and (KLS). The Tamm-Danwff approximation (6* wlumn) gives practically the same re-
sults except for the spunous state. The experimental data are from Nuclear Data Sheets (1961)
except for the level at 9.95 MeV [Ref. 22]. The first column contains the isotopic spin states.

and ¢,,, & correspond to the HF single particle unoccupied and occupied
States, respectively. The quantities «/,, and #,, have aready appeared
in the explicit form of the Thouless-Valatin equations (3-9).

The RPA ground-stateenergy is given by

Egpy = Egp -3} oA pp— Y. hwy), 4-13)

A>0
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Band

Number K Exp. K Exp
0 9.02 4.97 10.45
0 9.60 11.01
0 11.28 12.19
0 11.76 12.32
0 13.82 16.31
0 15.41 17.06
i 0 10.96
1 7.71 7.38 11.71
1 11.26 12.32
1 12.14 14.65
1 14.83 15.80
1 16.19 16.61
2 9.63 741 11.06 9.38
2 11.06 11.16
2 13.03 14.21
2 14.22 15.78
2 18.01 19.16
3 5.89 6.27 11.14 9.32
3 12.77 14.39 .
3 18.24 18.94
4 13.53 6.89 13.65

Table VI — RPA excitation energies hw,, in MeV, far Si*® using Kuos (K) interaction
The experimental data are from Ref. 27.

Band K ! oEx K =1 Ex
number P- P
0 6.21 433 9.34
0 7.69 9.43
0 10.95 13.24
0 11.83 13.61
1 0 7.84
1 8.10 5.83 9.47
1 11.75 13.00
1 12.54 14.05
2 5.28 495 1.97 6.61
11.41 13.41
1427 i 15.49

14.69 718 15.07

Table VII - RPA energiesin MeV for Ar3¢. See Table VI caption.

419



%0 that the correlations introduced by the RPA into the Hartree-Fock
ground-state can be measured by the energy difference

Egpa—Egr =- %(Z A oy~ AZO hw,), (4-14)
which can be proved to be negative.

B. Jancovici and D. H. Schiff® obtained this same expression using the
Hill - Whedler - Griffin Method of Generator Coordinates.

Ne3° S8 Ar?®
GJT ER PA ECDRR. ER PA ECORR. ERPA ECoRR.
K -40.58 -2.79 -15224 -4.67 - 28500 -3.09
K, -3590 -167 -147.00 -2.83 -298.08 -175
KLS -40.76 -248 -15453 -3.76 -291.54 -2.33
N -36.32 -178 -1411 -306 -268.33 ~-19%
D -34.04 =174 -143.43 -3.07 -297.13 -203
Y -39.68 -2.67 -124.78 -4.15 -211.13 -204

Table VIIT - RPA ground state energies and the correlation energies for Ne?°, Si*® and
Ar®S calculated with different interactions. All values are in MeV.

5. The Interactions

In order to perform the calculation, one must know the fwo-body matrix
elements o the nucleon-nucleon interaction in the nucleus. Usualy they
are written in the basis of the harmonic oscillator single-particle wave
functions, If theinteraction is rotational invariant and charge independent,
they can be expressed as

umyty jamyt, [v|j3m3r3j4m4r4) = 1% (im; jom; ,JM) X
TT,
X (jamg jamy ‘ JM) (%11 %fz | TT) (37337, l TT)

x [(1 4 6;,,) (1 + 6;,;)1 Gyr Griz s J3Ja)

In this paper, we use six types of interactions that enter in the calculation
as different sets of the quantity G,r, which are known as the antisymme-
trized and normalized particle-particle reduced matrix eements of the
interaction. These G, can be taken as the effective interactions determi-
ne- from realistic two-body forces that fit the nucleon-nucleon scattering
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data The techniques involved in the determination of the effective inte-
raction are the ones developed by Brueckner and others in 'the theory of
nuclear matter. Thefirst quantltatlve caculationsd these matrix elements
were performed by Kuo and Brown®, and Kuo!® using the Hamada-Johns-
ton potential Their resultswere restricted to thes-dshell and thistruncation
o the shell-model space implied that renormalization corrections should
be taken into account. Kuo's effective-interaction matrix elements are the
sum Of G,,,, plus these corrections; we used them in this calculation and
the results appear under the label (K).

Recently, Kirson and Zamick'! have shown that when someof these renor-
malization effects are consistently calculated in all orders, their fina con-
tribution becomes very small compared to G,,,.. Therefore, we also per-
formed the calculation using Kuo's bare reaction matrix (X,).

Two other sets o bare effective-interaction matrix elements were used:
One was obtained by S Kahana, H. C. Leeand C. K. Scott'? (KLS)from
a non-local but separable potential, similar to the one of Tabakin.

Recently, J Demos!? solved Brueckner's G-matrix equation starting from
Reds soft-core two-body potential. We also used this effective interaction
as G,y matrix edements and the results have the label (D).

Next, it was possible to use as G, the Sussex (S) matrix elements derived
by Elliott et al.'4. They were obtained directly from the scattering phase
shifts without specifying an explicit form for the two-body potential. The
Sussex matrix elements were transformed into the j- coupling represen-
tation by C. Abulafio!> and we have used them in this latter form.

Finally, a much simpler interaction was used, namely a Y ukawa (Y) cen-
tral force with a range of 14 fm. The parameters of the exchange mixture
were adjusted*® to fit the low-lying level spectra of 0'® and F*8. The
strengths in the various space spin states are: triplet-even, -43.0 MeV;
snglet-even, - 315 MeV; triplet-odd, 17.8 MeV; singlet odd, 374 MeV.

O all setsof matrix elements, only the one o Kuo (X) includes renorma-
lization corrections.

6. Results and Discussions

In Table I, we show the Hartree-Fock energies corresponding to three
choices of symmetry solutions; each symmetry was built in & the beginning
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o theiterative process and carried through each step o theiteration. The
same energy value may occur for two symmetry choices; when this happe-
ned we have aways worked with the axidly symmetric solution having
the lowest energy. Therefore, Ne?? is prolate, Si?® and Ar3® are oblate
with axial symmetry, as it has been known since the work of Bar-Touv
and Kelson”. We also display the expectation values of the mass qua-

drupole operator @, = 1‘;” r? Y, in the HF ground-state, expressed in

units of the oscillator-length parameter.

The single-particle shell model energies ¢;; = ¢;d;; were taken from the
experimental spectra of 0*° and 0'” neglecting Coulomb energy diffe-
rences. All energies are measured in MeV relative to the 0! binding ener-
gy, which is supposed to behave as an inert core. The matrix elements of
the two-body interaction were described in Section 5. With (K) and (K3)
we designate Kuo's effective interaction, the first containing renorma-
lization corrections while the second is the bare G-matrix. Next, we have
Kahana, Lee and Scott (KLS) separable potential, then the Sussex (),
Demos (D) and Yukawa (Y) two-body matrix elements;, none o these
last four include renormalization effects

Oscillator radial wave functions that have a length parameter b = \/

were used. The value o w should change according to the mass number
However, Kuo's (K) and Demoss (D) matrix elements were available to
us only for fixed vaues o fio, 14.0 MeV (b = 1.72 fm) and 13.25 MeV
(b = 1.77fm), respectively. In each case the same set of G;4 was used for
Ne?°, Si%% and Ar®®. The other four types of reduced matrix elements
could be obtained for any desired vaue o %w which was fixed acwrding
to the formula fio =41 A~ MeV, giving 15.1 MeV, 135 MeV and
12.4 MeV for each o those nuclei in that sarne order.

The projection calcul ation was performed with the Peerls-Y occoz method,
for Ne2° and Si*® and the results for the spectrum o energy are shown
in Fig. 1and Fig 2. Weworked with theintrinsicHamiltonian H; =H- 4" J*
obtaining the energy expectation values

E; ={¢’|H|¢"> =<{¢’[H,|¢"> + AW J(J + 1), (6-1)

where 4“ is the inertial parameter reached after few iterations (n = 3, 4)
with either TV or BDS formulas. One can find in the literature a great
number of papers showing this kind of result for a variety of forms of
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the two-body interaction!®. While for Ne2° the results can be considered
good, it has been known that the Hartree-Fock approximation for S

provides an intrinsic wave function which seems to be too deformed; in
this case, the calculated spectrum of energy tends to be largely compressed
compared to the experimental one. Not all interactions we used are able
to provide a good comparison with experiment, even for Ne*°. The best
fit is obtained with Kuo's (K) G-matrix including renormalization correc-
tions; the (KLS) interaction gives a reasonably good fitting and surpri-
sngly enough, a simple central force(Y) worked better than most of them
With Kuo's bare G-matrix (K) the spectrum is not reproduced, justifying
the inctusion of core polarization graphs which should compensate the
effects of the space truncation.

On the other hand, it seemsthat the effectiveinteraction obtained from the
separable potential (KLS) contains most of the relevant effects, asa direct
solution of the reaction matrix equations. The reduced matrix elements
of the interactionsindicated by (K,), (S and (D) are equally bad from the
point of view of this calculation.

Works on the independent pair model*® have reached the conclusion that
low-energy nuclear dynamics is mostly governed by the atractive well
This could justify the good agreement with experimental results obtained
with asimple Y ukawaforce.

As for Si?%, only the renormalized two-body interaction of Kuo worked
reasonably well. The ones which did not work wel for Ne?® are till bad
in this case and even the (KLS) and (Y) interactions gave a compressed
spectrum.

The energy levels represented with dashed lines were calculated with the
rotational expression E; = E, + A® J(Jt 1), where A = 12 x moment
of inertia) was taken from Table II. They are expressed in MeV. In Fig, 3
we have the energy spectrum of Ar3¢ determined exclusively by this proce-
dure. Initially, theinertial paramater wascalculated with the original Hamil-
tonian H using the expression o Thouless and Valatin (TV) and of Ba
nerjee, de Oliveiraand Stephenson (BDS), formulas (3-10) and (3-11), res-
pectively; it was straightforward to proceed iteratively, as proposed in Ref.
4, to obtain a sdlf-consistent valuefor A. TableII is divided into two parts:
on the left, we have the results coming directly from H, that is, the first
output in the iterative process which started with 49 = Q on the right,
there are values which appeared after three or four steps o iteration with
the intrinsic Hamiltonian H{ = H- A™ J?, as described in Section 3

423



Both formulas (TV) and (BDS) converge simultaneously to a common
A™ vaue, and we can notice that this convergence valueis closer to A)s .
Also, it can be verified that the rotational levels do not differ very much
when we use either AG)s or A% . Furthermore, these rotational spectra
in dashed lines are close to those calculated with the Peierls-Y occoz pro-
jection method. Although the techniquesare apparently different, they are
based upon the same sdf consistent (Hartree-Fock) description of the nu-
cleus as a starting point. These results are indicative that using the HF
approximation the various prescriptions to get the nuclear low-energy
levels are amost equivalent. Recently, Friedman and Wilets?® studied
the " Formal aspects of nuclear moment o inertia theory" showing that
the crancking model and the projection method give similar results for
the moment of inertia (for low J and large (J?)), provided that the cran-
king method is used self-consistently. Here, self-consistency means that
we should take into account the two-body interaction terms in Eq. (3-8),
which represent the change in the sdf-consistent field produced by the
rotation. The importance of these terms was first pointed out by Thouless®
in contraposition to the old Inglis formula. In Table II, we aso display
thevauesd theinertial parameter calculated with the Inglisformula(3-12).

Once the spectrum o energy is calculated, its agreement or not with the
experimental data is a different matter. In our case, it depends (a) on how
the HF wave function was calculated, more specificaly on the fact that
the single-particle space of states was restricted to levels between 016
and Ca*°, and (b) on the kind of two-body interaction used. In fact, we
could expect®! that by enlarging the harmonic oscillator space o single-
-particle states the calculated spectrum of energy would be improved.
However, we did not have at hand the interaction matrix elementscoupling
different major shells. By doing a restricted Hartree-Fock calculation, we
found the various spectra described in Figures 1, 2 and 3, suggesting
that the renormalized matrix elements o Kuo (K) give the best fit to expe-
riment.

In Tables I1I and 1V, we show the e ectric-quadrupol e reduced transition
strengths in Weisskopf units (W.U.) for the ground state band of Ne*°
and Si%8, respectively. For each type of two-body interaction, the calcula-
tion was performed with the HF wave functions determined with the
Peierls-Y occoz projection method. The value d 05 for the effective charge
was chosen for both nuclei. The experimental data on Ne?° are those of
Hausser et al.22, and for Si*® we are comparing our theoretical resultswith
the experimental figuresgiven by M. M. Aleonard et al.23. All interactions
seem to give very similar results so that the electric quadrupol e transitions
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may not be the ideal thing to look &t in order to decide which is the best
st of G, matrix eements. For instance, with (K) or (K,), the results are
practicaly the same and this could suggest that renormalization correc-
tionsmight not be so important. E C. Halbert et al.?* did an extensiveshell
model calculation in the s-d shell. They adso found that the B(E2) values
within the ground state bands are essentially the same, using different
interactions. Their vaue for the 2* — 0* transition in Ne2° is 15.0 W.U.
with Kuo's renormalized interaction (K), and effective charge equal to 0.5.
For Ne?°, we also observe that the strength o the 6* — 4* transition is
weaker than that o the 4* — 2* transition. This has been verified in all
our cases, in good agreement with experiment. In spite o the calculated
transitions being too close to each other, we could still say for Ne?° that
the (K) interaction gives the most favorable results. They aso agree well
with the SU; calculation o M. Harvey?®.

In the case o Si?® the results are practicaly the same for all interactions
used and too far from the experimenta data The SU, vaues obtained by
Harvey?® are 31.95 W.U. for the 2* — 0" transition and 43.10 W.U. for
the4* — 2* transition. In our calculationwith the Hartree-Fock projected
wave functions, the vaues are haf-way between the experimenta data
and those obtained in the SU5 scheme. In the adiabatic rotational model,
the reduced transition probability is proportional to the sguare o the
Clebsh-Gordan coefficient (J,020]J,0), for transitions within the lowest
K =0 band. The resulting values will increase with the angular momentum
o the states involved and this is not what happensin the SU, or in the
Peierls-Yoccoz projection method.

For the study of excited states, we solved the RPA eguation (4-9) to obtain
the energy #w, of each mode of excitation, for the vanous band quantum
number K. Each excited state is dso characterized by the isotopic spin
quantum number T. Considering that the G, matrix elements( K) ,(KLS)
and (Y) were the ones that gave better energy levels for the ground state
band o Ne2°, we reproduce in Table V the RPA results corresponding
to these two-body interactions. The energies are in MeV.

The Tamm-Dancoff approximation treatment of the nuclear excited states,
practicaly gives the same energies, as it has been previoudy verified?s.
The only difference occurs for the first state with band quantum number
K = 1, which is spurious. One advantage of the RPA treatment is to make
the separation o thisspurious state possible; it comesout with zero energy.
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To illustrate this point, we show in Table V the Tamm-Dancoff results
obtained with the (KLS) interaction. This situation is common to all
three nuclel with any interaction that we have used.

From a given collection of experimental energy levels with the same J
value, not beonging to the ground state band, we picked out the one with
the lowest energy and compared it with our lowest theoretical excited
energy levd o the same K =J band The experimental energies were
taken from Ref. 27. Evidence for theexistence of aJ™ = 1* leve at 9.95 MeV
was given in Ref. 22. There is, of course, some arbitrariness in the choice
d these experimental energy levels as one does not know whether they
redly are band heads.

In the caseof Ne?°, we have a reasonably good agreement with experiments
for all three types of two-body interactions. The only large discrepancy
occurs for the first 0* excited level obtained with the Yukawa (Y) force
as being at 4.16 MeV when thefirst 0* levd is redly at 6.72 MeV. Again,
the best fitting seems to occur for Kuo's (K) renormalized two-body matrix
elements.

On the other hand, in the cases o S2 and Ar*® the comparison with the
availabledatais equally poor for all typesaf interactions. In Tables VI and
VII, we display the results obtained with the (K) interaction, only.

The correlations which are present in the RPA ground state, modifying
the previous Hartree-Fock description, are measured as the energy diffe-
rence between the two ground states according to Eq. (4-14). We show in
Table VIII these correlation energies for Ne?°, S2 and Ar*¢. Thesevalues
are of the same order of magnitude for dl three nuclel, but S shows
more correlations in its GS

In most cases, the effectiveinteractions denved from the realistic two-body
potentials are constructed in a convenient configuration space of two-
-particles. After obtaining a set of two-body matrix elementsin this case,
it is assumed that they are independent of the number of valence nucleons
and one uses them to calculate the properties of nuclei having more than
two nucleons outside the core. This is a usual procedure in standard shell
model treatments?4.

The sets of G, matrix elements that we used were determined for the
A =18 nuclei (A = mass number).
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As the number o particles outside the 0'¢ core increases, the calculations
involving theuse of thesesamematrix elementsshould become lessaccurate.
In our case, the results for Ne?° are better than for Si?® and Ar3S, when
we take as G, ; the sets (K), (KLS) or (Y). Concerning these last two nuclei,
athough the comparison with the experimental data has become worse,
the renormalized effective interaction of Kuo (K) still gives more reaso-
nable results.

All results we found depended also on the fact that our calculation invol-
ved only one major shell; if possible, in order to make the treatment more
general, the Hartree-Fock calculation should be performed with mgjor
shell mixing.
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