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Our main purpose in this paper is to calculate the shape o spectral lines for gases taking
into account simultaneously the reduction d the Doppler effect and the perturbation o the
internal energy levels produced by molecular interactions. Considering both effects, we
obtain a general expression for the line shape. Thisgeneral result is applied in some particular
Cases.

A principd finalidade déste trabalho é calcular a formade linhas espectraisem gaseslevando
am conta simultaneamente a redugdo dalargura Doppler e a perturbaggo dos niveisinternos
de energia provocadaspor interagdes molecul ares Considerandoambos os efeitos, obtivemos
uma expressdo gerd para a forma da linhaeEsteresultado gera ¢é aplicado a alguns casos
particulares.

1. Introduction

Asiswdl knownls2the main purpose o the line shape studies is to obtain
information on the many-body behaviour and on the structure of a com-
plex system. Thisinformation is obtained by relating the line shape, obtai-
ned from spectroscopical measurements, to the statistical-mechanical cal-
culations.

Some theoretical works3*# on the line shape have been performed by consi-
dering genera cluster expansions o the relaxation function. They give a
good insight into the nature o the phenomenon, but for practical caleula-
tionsit is necessary to use models based on physical considerations, which
alow one to extract from such expansionsonly that part which is relevant
to the special physical situation and for which quantitative results may
be evaluated. These specia physical situations will be considered only in
Section 3 and the general casein Section 2

Molecular® interactions have two effects on line shapes: (1) the Doppler
width and recoil shift are reduced and (2) the lines are shifted and broa-
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dened due to the perturbation o the internal energy levels. The reduction
of the Doppler width and recoil shift in gases will be named Dicke Effect®
or Mosshauer Effect” in gases.

Many authors®~*!, using purely quantum mechanica methods, treated
accurately the line shape problem for gases at low pressures and high
temperatures. However, they considered only the perturbation of the
internal energy leves. In a recent paper?, the Doppler contribution was
obtained, but the reduction of the Doppler width was not considered.
In our preceding paper'?, we have briefly shown how to take into account,
for gases a low pressures and high temperatures, both the Dicke effect
and the perturbation o the internal energy levds The reduction of the
Doppler width in gases®"' was calculated neglecting the perturbation of
the internal energy levds.

Using the usual statistical-mechanical formalism and taking into account
both the Dicke efect and the perturbation of the internal energy leves,
a general expression for the line shape in gasesis calculated in Section 2
In Section 3, we apply the results of Section 2 in some specia circums-
tances. In this Section, we also discuss the main hypothesis assumed in
the preceding paper!?.

2. Line Shape in a General Case

Let us consider a system which is a mixture of two kinds of molecules,
which we distinguish by theindices 1 and 2. We assume that only particles
linteract with the incident radiation field. This means that, in our theory,
the molecules 2 have no resonance at the frequency of the incident radia-
tion wave. The molecules | are caled emitting or radiating and the 2 are
called perturbing.

If there is only one molecule of the type 1, the total Hamiltonian o the
system may be written

H=Hy+V+Hg+H, o))
where
N2)
Ho=T® + GV + Y (TP + GP) = H, + H,, )
=1

is the Hamiltonian of thefree particles, T and G are thekinetic and internal
energy operators, respectively, V the interaction between all molecules of
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the system, H, the Hamiltonian o thefree radiation fiddand H,, = -d,'E
the interaction between the radiation field E (electric or magnetic) with
the dipole moment d, (electric or magnetic) of the emitting particle.

When the intensity o the incident radiation field is too high, transitions
among the molecular states are then induced at a rate that is not negligible
compared with the collison rate, thus invalidating the assumption of
thermal equilibrium. It can be shown!3:*4:15 that the broadening of an
absorption lineis not attributed to any intrinsic modifications o the line
shape, but rather to a frequency dependent alteration of the energy level
populations. This is known as "saturation effect”. As we consider only
weak radiation fidds, this effect will be neglected.

The eigenfunctions and eigenvaues of the operator H, will be indicated
by [#(Ny, ..., N, ..)) and Y. Ak N,, respectively, where N is the num-
k

ber of photons with energy hkc = hw.

Among all internal states of the emitting molecule, we separate those,
here indicated by |i,>, which participate in the transitions whose shapes
wewish to anayse. Defining the operator A", such that KV |y,> = ¢,|¥,),
we write GV = B + "D If we are interested, for instance, in the rota-
tional transitions, K would be the rotational energy operator and |y,>
the rotational energy states.

We assume that the state'of the molecular system can be described by
¥, |#.p, Where |,,> takes into account all degrees o freedom of the

molecular system excluding those of the operator &V, Of course, this is
a zeroth-order -approximation wave function for the system; higher order
approximations can be obtained -considering the interaction' potential
between the emitting particles and using perturbation theory, which will
be done in what follows.

The time evolution operator of the total system, molecules and radiation
field, will be indicated by U(t,t). It obeys the equation ih%U(t,t’) =

al

= HU(t, 1).

Putting, for smplicity, t' = O the transition probability dP{f between the
states

I\Pil 0> = |'/’:>|¢1>|71( SN
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and |W,r (to)) = |[¥; o)) | dr t)>|n(... N, T 1...,t0)), in the time inter-
va t-t =t,, is given by
dPiIfF = K5 (to)K‘pf (o) [<n(.. . Ne+ 1... to)| U(to)| ;

: !’7( .. Nk"-)>’ ¢i>,¢1>’2 3)
where U(ty) = U(t,t' =0).

Indicating by U,z (t t) the timeevolution operator that obeys the equation
ihOU g (t, €)/0t = Unz (t,t), where H,g = H,t v + H, we have:

1f = K¢F K‘//f |<'1( N+ 1) Ung (to) Ulto).
|’1(Nk)>l'l’z>!¢l>|2 C))

Let us write Ulg (to) U(t,) in a different form Putting W = Uz U, we
obtain
W = U::RU + U:.RU =%U;1R(_HmRU + HU)
T
= FUmR HigUnr W. (5

Solving equation (5) by sucessive approximations, we obtain, considering
only the first order term in |E|:

to

Wit =1+ [ Ube© ox Uns 0 ©

0
So, substituting (6) into (5), as the term 1 gives no contribution, we get:

d,f—

J (e K K- Ny + 10| Uk 0 By U 9
A0t N DIp[epr . ()
Now, the vector potential Afr, t) is given by

(4nc*h .
A, t) = 2(2;‘:,,0/ {mepEimttikrtee)s, (g

whereo, = kc, ¥, is the volume o the system and E is the polarization
vector which is taken the same for all plane waves Only this simplest
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case will be considered in this paper. The extension o the treatment given
to more genera situations is, however, straightforward Thus, conside-
ring that H,z = -d, - E is the interaction between an electric dipole mo-
ment and an eectric field, and remembering that E = -(1/c) 0A/0t we
obtain from equation (7):

2, (N, + 1)

IF __
dPIf = STk

J dt exp (- iy 1) Cbe | Uy | T0)
0

2
‘dyexp (k1) TO) Y o> | . )

wherethe time evolutionoperator T obeysnow the equation ikdT (¢, t')/ot =
=H, Tet), with H, =H, T V.

Now we calculate the total average power emitted by the system with
frequency between o and @ + dw in the time interval ¢,. Taking into
account the density of fina states of the emitted photons, summing over
all directions o emission, multiplying by the energy of each photon and
dividing by t,, equation (9) becomes.

dPT  40* N)do 1 (°, (° o
I:(:f 4o ggw) @ ot L dt J; dt’ exp [iw(t-t)] -
Ko OO o Driyslo@): ¢,  (10)

where N(w) dw is the number of incident photons with frequency between
o and o+ dw (We assume N(w) b > 1) and 6(t) = T' (t)d, exp(&-r,) T(z).

Averaging equation (10)over all posible initial states and summing over
all posiblefind statesdf the system, we obtain the emitted power dI{w)/dew:

dl(w)/dw = 4“’43‘53’(“’) - F(o), 1)

where the spectrum of the emitted or absorbed light F(w) is given by:

Flw) = 2m LA f

0

dar j 0dt exp lio(t-1)]"
0

L [ |6 O W, ) Pr ¥, 0N WD b, (12)

where the density matrix p{! is given by
Pt = (| exp (- Bh‘”)] V>/Z,
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where Z, =Y <y, |exp (- prV)| ¥, is the partition function, B=1/xT), K

the Boltzmann constant and T the absolute temperature of the gas. The
density matrix p; is given by

P = <¢1!CXP [-B(H, + V_hm):” O/Zy,

with Z, = ¥ (¢, |exp [~ B(Ho T V- V]| $,,», assuming that the per-

m

turbation of the internal states |y;> due to the interaction with the per-
turbing molecules can be neglected in the density matrix. This means
that to write equatl on (12) we assume that the total matrix density operator
p=exp [~ B(H, T V)]/Z is diagona in the energy representation || Pr-
This approximation can be done in most cases since the perturbation of
the states |y, is small!®. So, equation (12) can be written in a simpler
form:

F(w) = i f dtJ dt exp [iw(t —t')] Tr [p6" (t) 6(t"]. (13)
]

In the limit of ¢, -~ oo, equation (13) becomes

Flw) = flﬁ -[ dsexp(ias) ¢(s) = —nl—ReJ ds exp (iws) &(s), (14)

0

where
o(s) = Tr[pd" - O(s)] (15
and " = 6° (s =0).

The time- correlation function ¢(s) can also be written as

P(s) = Z o0 (0] - iy ()] » (16)
where
(65 01 (a0 = 2 pr b [{<H: 167> - U |09 9D Y 1> - (17)
The natural lifetimes of the states have not been taken into account in the

above expresson. These can be easly introduced modifying dightly the
theoretical approach™" . In Sec. 3, these natural lifetimeswill be considered
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Up to now, we have considered only one emitting particle. However, to
take into account N radiating particles, it is enough to consider these
particles in the Hamiltonian H, = H, * V.

The spectrum F(w) defined by equations (14) and (15) gives the line shape
o trangtions taking into account both the Doppler effect and the pertur-
bation of the internal energy levels which participatein the observed tran-
stions. Our results can be applied to gases, liquids and solids. However,
as will be seen in next section, these results will be applied only for gases
in some special cases

3. Gases

With our generd equation (14), we shall study in this Section only gases
in some particular conditions.

In gases, there are both the trand ational modes o the individua molecules
and the collectivemotionsof the molecules. We shall distinguish two limi-
ting cases'® : (1) when we can spesk o individual molecule trandation
and (2) when we can pesk o collective sound waves The case (1) occurs
when the de Broglie wave length k/p is smdler than the inter-molecular
distance (V5/N)'? and the case (2) when h/p = (Vo/N)'2. If h/p~(V,/N)*?
neither o the two concepts can be applied.

The case (2) will be considered in a forthcoming paper. In this paper only
the limiting case (2) will be analysed: in this case we have the condition
p > h(N/V,)'? that is satisfied for sufiiciently high temperatura and
low pressures. Thisis a very smplifying hypothesis but nevertheess the
andysis o the equation (16) is still tremendoudy difficult. The problem
becomes a littlelessdifficult if thefollowing conditionsaressatisfied: (a) the
probability o three particlecollisonsis negligibleand (b) the ratio between
the averageduration o a collison and the average time between collisons
is vary smdl. When (&) and (b) arefulfilled, we have what is called *'impact
approximation™8:11,

We must note that the condition p > h(N/V,)!/® guarantees the transla-
tional motion and 1/T, > (N/V,) o0 the impact approximation®, where
v is the mean relative velocity between two particles, ¢ the collision cross-
section and T, the collison time

It can be shown!® that in theimpact approximation the interaction energy
between the molecules is negligible in comparison with their kinetic ener-
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gies This means that the system behaves as a perfect gas. In these condi-
tions, the trandational states of the molecules can be taken, asa very good
zeroth-order approximation, as plane waves and the time evolution ope-
rator can be substituted by products of S matrices for collisions between
two molecules.

In this case, the state of the emitting molecule is written as |¥,) =
= o >|¥) |py>, Wherep, isa plane wave and |, > includes the remaining
internal degrees of freedom. In these conditions, equation (16) becomes:

() = Z.:/l Z Pp, Y [(‘/’il’l |9+| '//ff’1>'
iy p1Pr
Y T O OTE Yip)laws  (19)

where the average [. . .],, is over the internal and trandational states of
the perturbing molecules and over the internal states |«;).

Introducing the projectors wzpilw' P> <py ¥ | and wzpa'!l/// PPV,
equation (18) takes the form:
Ps) = Z Z P RO RN W
e Ny
U7 NINOITS RS AT XA ARICTIZ ) P ()
In the case of non-overlapping lines®, we can replace
[-lo—[-Jo v, O,

and observe in different intervals o frequencies different spectra lines
due to the transitions |y;> — |¢,>. This means that the total spectrum
F(w) (seeequation (14))is given by the sum o independent contributions
of all pair of states|y;> and | that appear in equation (19). So, in prin-
ciple, it is enough to consider in this equation only one pair o states:
oneinitial state|y,> and onefina state |y ). In these conditions, equation

(19) becomes, defining U(s) as T(s) = @(p[—;—s(H1 +H )J U(s):
$ip (5)= iV exp(-iwy;s) 3. Y exp[-is(pi - p1)/2m Al.

p1Pt PipY

AN AN A DAL D
RZALACIPADROA HLCI A3 el

where w;, = (g; - £,)/h.
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Aswill beseen in what follows, the reduction of the Doppler width is given
essentialy by the term <y;p, |67 |py ¥, - <y, P1|0|Py ¥:> and the broa-
dening and shift of the line due to the perturbation o the internal states
given essentially by the tem

23 ALAICT ADRCA ALYCII AP

We see, however, from equation (20) that in the general case the contri-
butions of both effects to the line shape are strongly correlated. Since the
exact calculation of the correlation function ¢, (s) is extremely difficult,
we shall study only three particular cases o ¢;,(S): (8) when the pertur-
bation of the states |,> is negligible, (b) when the Doppler effect is negli-
gible and (c) when the perturbation of the interna states |y,> and the
reduction of the Doppler width are uncorrelated effects.

3a. Negligible Perturbation of the Internal States [y,

In this case, the equation (20) can be written approximately, considering
aso the natural half-width y;,, as:

¢if (s) = p{Pexp [- iw; s—7Y;s s] |<l/’f lal | ¢i>|2 )
“Cexp(-ik-r)exp(iker, ())>, (21)
whered, is the average dipole moment of the emitting molecule,

o =2 py [<py |exp (- ik - ry) exp (K 1 ()| P1)]ao s 22

where the average[. . .],, isonly over the trandational states of the perfur-
bing molecules,

exp(ik -1y (9) = exp (H' s/h) exp (ik-r,) exp (- iH'’ s/h),

N(2)

H=TO+Y TP+ 7,
i=1

and V the interaction potential between the emitting and perturbing
particles which is a function only of the distances between the interacting
particles. The potential ¥ is obtained averaging the: potential V, defined
in equation (1), over all interna states of the emitting and perturbing
particles.
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So, to obtain ¢, ()it isenough to cal culatethe correl ation function defined
in egquation (22). Taking k pardld to the x-axis, we can put eguation
(22) in a smpler form assuming that x; and x, (S) are random Gaussian
variables’ : 2

(exp (- ikxy) exp (ikx)> = e(p{'—'i e =% (> T+

kZ
+ ‘2‘[3‘1 s X1 (s)]} . (23)

Assuming also that the classcd treatment is sufficiently accurate to des-
cribethe mation, the condition[x, , x, ()] = 0 issatisfied. Since we assume
that the recoil shift is negligible, this approximation is satisfied” . In this
cax, (22) becomes:

. (2

N
<exp (- ikx,) exp (ikx; (9)) = @(pl _KE {(xy = X, (D)

So, our problem is solved if the correlation function ((x, - x,(s))*) is
obtained. Since trandational states o many particles are involved, this is
a vey difficult task. It would be easier if only collective motions (phonons)
were present as occurs in solids’.

The correlation function {(x; - x,(s))*> has been obtained approximately
in somedifferent ways®-? but it will be calculated here with a new approach.

Indicating by = the mean free time between strong collisions (hard sphere
collisions) and T, the collison time, with t > T,, the particles can be
wnsidered asfreefor most o the time. Observing the motion o the emitt-
ing particle, we see that it behaves as a free particle which is periodicaly
disturbed, with peried 7, by random collisonswith perturbing molecules.

Le us now write the states of the emitting particle. Assuming that the
fluid is contained in a cubic box d volume ¥, = I? we take the x-axis
parale to one edge o the cube and the origin at the middle point of L.

After this wedivideL in N intervalsd length 1, where A is the meen free-
path aong the x-axis. This means that x goes from - N 4/2 to N 4/2.

The wave-function |m)y o the gmitting molecule in a k** interval will be
written as [m) = —~}_7e<p[~i(a-: xt 0,,)], where m is an integer and

6, a phase d the State caracteristicd the k" interval.
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As one can eadly verify, this wave function is symmetricat the endpoints

—[N -2k -1)] 4/2 and - (N - 2k) 4/2 of the k" interval.

With these wavefunctions the correlation function {(x; — x,(s))*> becomes:
(X1 =X1*> = 4 Y P | (X1 |* sin? [(E,, - E,.0) /201, (25)

mm'

where po = 5 (/2% W' expl-BE), 1 = my mymy + ms) the reduced
2 K2
mass of the emitting and perturbing molecules, E = AL and

Al2

(X D = _'lth‘—MZ dx; x, exp[-i2n(m-m) x,/A}.

In the limit of continuum states, equation (25) becomes, omitting the
indices 1 for simplicity:

+ o + o 4
((x - x(s)*> = (16/h2) [ dp p, [ dp’ (;f—,,)

sin*[(p-p) (o T p) s/4hp]

’ ’ ’ 2
An (PP p-p p-p
I:Sln <-7h— A)—(—zh—— ).) Cos (—é‘}‘i"" 1)]

where p and p are relative momenta, between emitting and perturbing
molecules, along the x-axis and p, is the density matrix in the momenta
space. Putting

sin? [(p-p) (p T p) s/4hu] = Sin? [(p- p) ps/2hu]

and defining the variable y = (p - p) p/hu, we obtain:

(- 582> = (16/nh) r dy H sin (1 s/2)]2_ f " dop, 0%
o .

0

2

; X X
[S n <Z7' A) - ()./217) Ccos <E A)
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where p,, is the density matrix in the velocity space. As can be easily veri-
fied this equation can be written approximately as

{(x~x(s))?> = (16 u,/in) Jw dx Ii% sin (y s/2)]2 . B{’i sin (y /2 u,c)}2
(1] .

- [ do(0) [sneso ], @)

Y

whereu, = 2k T/n u)'/? is the mean value of the modulusof the x-compo-
nent of the relative velocity and = = A/u, I A/t where 2 is the mean free

1/2
path and & = (%) is the mean relative velocity.

We shall consider now two particular cases o the equation (27):when the
emitting particle collides many times during the natural lifetime of the
level and when no collisions occur during the lifetime.

Let us see then what happens when the emitting particle collides many
times during the lifetime 1/y of the state. This means that 1/y » <. Thisis
equivalent to assume in the equation (27)the limit s/ > 1 in the function
[Sin ()

n/
U,

] which can be considered different from zero only in the inter-

va between O and = t/s. Since in thisinterval the function (sin? 8)/6? can
be taken equal to 1, we obtain:

;- x50 = 2u2ts =2Ds, (28)

where D =2 ¢ I =1 is the diffusion coefficient

In this case, equation (21)becomes, using equations (24)and (28):
Oifls) = l(‘//fl d, W/z> ‘2 exp [ is (W iy, —i k* D)},
which will give the line shape F(w), defined by equation (14):

(i + @* D/c?) )
(U—wif)z + (y'f + w2 D/CZ)Z

Flo) = - 1<y 1 o

362



Since the diffusion coefficient D = ~—/1 o( ; , where P is the pressure of
the gas of perturbing molecules, we see that when P increases the half-
width decreases. This is the Mosshauer Effect in gases or Dicke Effect®”.

V4
We must observethat the Doppler contribution C:—z D to thewidth,for a gi-

ven pressure, becomes bigger when the frequency o of the emitted photon
increases. Thisis essentialy the effect of the recoil of the emitting molecule
in the emission of a photon with frequency o.

For high pressures, when the three particle collisions are as frequent as
the two particle collisions, the impact approximation is not satisfied. In
this case the result seen in equation (28) is not valid and another approxi-
mation mus be usad to calculate ((x— x(s))*>.

Let us now seewhat happens if during the lifetime 1/y the emitting particle
does not collide. This means that = > 1/y, which occurs, for instance,
when the pressure is so small that the particle is practically free during
the lifetime 1/y. In these conditions, the contribution o ((x — x(s))*)> can
be caculated taking the limit ¢ — co:

, _ _2u} sin 0 sin(0s/7) |?
tm ety =25 o (50 m (R

= (u. s)* = (8s)*/3. 29

In this case, the line shape F(w) defined in equation (14) becomes, using
(22), (24) and (29):

1/2 2 2
e f(w-wy\'mpc
Fle) = 2(0( T) exp[ ( w ) 4KZBT:|’

which is, approximately, a Gaussian with half-width

Aa)’ ~ ¢ 2KB'T 1z
if = w \ np

In the particular case of self-perturbations, the half-width is given by

, e (4xpT\Y?
Awir &= — [ B2} |
a)if ﬂ.'ml
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3b. Negligible Doppler Effect

If the Doppler efect is negligible, wecan putk =0in 8 =d, exp(ik-r,).
Thus, equation (20) becomes:

Gigls) = Pi(”e’_‘P(“iwif s) Z pﬁ,‘,’ 992’ [KW;"MW’D lz ’

1 4% 7]

<M |<Pz I{(‘/’f‘ U%(S)I ‘//f> <l/’.| U(S)I ‘//i>}|l’1>lpz>]u
= pV expl-iw;, 8) |[<¥, |y [¥D P X o, 05

pLp2

Py l(l’z | [(Wf I Uf(s)‘ '/’f)(d’: ! U(S)| ¥i>law [Px) l p,> (30)

whered, isthe averagedipolemoment d the emitting particle, p, thelinear
momentum o the perturbing molecule and the average [. . .1, means an
average only over the interna states of the perturbing molecules and the
states |, of the emitting one.

Usingtherelativemomentum|q) = 4~ 32 exp(iq - R/h) between theemitting
and perturbing particles, where R is the relative distance between them,
equation (30) takes the form:

¢if(s) = p{» exp(—i w;y s) |<¢f| d, |¢;> |2 :
Y P Lallv | UT )Y > <yl US| ¥ Tao | @) -

In the impact approximation " it becomes

bis () = POy |dy [ W) |2 exp [ is(wy, + Siy —i Awi)]

where the ghift 7, and the haf-width Awj; are linearly proportional to
the pressure P. Infig 1 of reference (12), the half-width due to the pertur-
bation of the internal energy leves is represented by a dashed line.

A typica behaviour?® of thelinewidth asfunction d Pisshowninfig 1'2,
in which we consider the pressure axis divided in three regions. In region 1,
the perturbation effect of thecollisonson theinternal statesdf the emitting
moleculesis very small. The éfect of collisonsin this region is practicaly
a reduction of the Doppler width only. In region 2, Aw is dmost indepen-
dent of P and reachesits minimum vaue. In region 3, A0 depends linearly
on P. In this region the Dicke dfect is negligible, and we may consider
only the perturbationsdf the internal energy leves.

The line shift, within the experimental error, is aways proportional to
P21:23 As will be shown beow, our theoretical predictions agree with
these experimental results.
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3¢, Uncorrelated Contributions o the Dicke Effect and o the Perturbations
o the Internal Energy Levels

Sincep, -§; = hk = pf-p;, equation (20) can be wntten as
¢ij(s) = Pgl)eXP(—iwif 5) Z Pg) [('//z |<P1 I 0 ll-’1>|¢f> :

p1py
PPy

¥y |<By | exp (is p}/2my h) 0 exp (—ispi/2my ) |[p )| ¥ -

Yy Kpl "hkl UT(S) |P1>' ¥ <Y |<P1 + hkl U(S)|P1>|'/’i>]Au
that becomes, remembering that in the impact approximation the inte-
raction energy V(R) o the emitting particle with the perturbing ones is

negligiblein comparison with the kinetic energies  the particlesand that
0 dependsonly of the emitting particle,

i{s) = piV exp (—i wyy S)I('/’fl d, l'/’;) P _Z Py

[<py lexP ik- rx)l I—’1><]_’1 ]eXP (k- r:(s))l PO lo

[<Us Koy - B UG [P |, <0: <Py + k[ UG [P | ¥id]ao
where the average [. . 1., is only over the trandational states o the per-
turbing moleculeﬁe(p(i k-ry(s) = exp(i H s/hy.exp(ik.r,) exp(-i H s/m)

and H' =T® + Z T + 7. Assuming that themomentum | hk| is much

smdller than the average momentum of the molecules, we have:
¢if(s) = p{V |<'//f| d, l'ﬁ-) |2 exp(-iws):
: Z P;ll) [<p: | exp(-ik-ry)exp(ik-rs)) | Piolaw:
P1

Koy [<Ws U |0 < | US| ¥ 1) o - &3

Aswe have seen in (3.8) and (3.b), the Dicke effect and the perturbation of
the internal energy levels are given essentidly by the factors]...],, and

[.. ], respectively.

Since the factor [...],, is red (r, and ry(s) commute), it does not contri-
bute to the shift. The other factor [...],, predicts a line shift linearly pro-
portional to the pressure, in agreement with the experimental results.

365



The shift and width o the line due to the perturbation o the internal
energy leves in the impact approximation depends only on the number
of callisions per unit time. This means that it dependson the density o
perturbing molecules and on the relative velocity between the emitting and
perturbing particles. It -does not depend on the tranglational motion of
the emitting molecule as occurs with the Dicke Effect. The same shift and
width obtained with an emitting particle in motion can be obtained- with
this particle at rest.

If therefore m, > m,, the emitting particle in the bracket [...],, can be
taken as at rest since the average relative velocity b = (8 kpT/m p)*/? =
=~ (BxgT/nmy)'/* =5,. Thus, equation (31) becomes:

¢if(s) = pV |<‘//f| &1 W’z) |2 Cexp(-ik-ry)exp(i k'l'1(_5))> :
-exp [-is (o, + Siy~iAwjy)] =
= p{V |<'//jla1 |‘/’i>|2'eXP {—is[w;; + S —ilAwi; + Awi))]},

where Aw}, is due to the Dicke effect and S;; and Aw;; to the perturbation
o theinternal states, according to the convention adopted in Secs. (3.8)
and (3.b). The shift S;; and the half-width Aw;, are caculated putting

V=l72.

In this approximation therefore, the reduction o the Doppler width and
the perturbation o the internal energy levels are uncorrelated effects.
The total haf-width Aw;; is given by Aw;, = Awj, T Aw};. This par-
ticular case is illustrated in fig. 1 o Re. (12).
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