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Our main purpose in this paper is to calculate the shape of spectral lines for gases taking 
into account simultaneously the reduction of the Doppler effect and the perturbation of the 
interna1 energy levels produced by molecular interactions. Considering both effects, we 
obtain a general expression for the line shape. This general result is applied in some particular 
cases. 

A principal finalidade dêste trabalho é calcular a forma de linhas espectrais em gases levando 
em conta simultâneamente a redução da largura Doppler e a perturbação dos níveis internos 
de energia provocadas por interações moleculares Considerando ambos os efeitos, obtivemos 
uma expressão geral para a forma da linhaeEste resultado geral é aplicado a alguns casos 
particulares. 

1. Introduction 

As is well knownls2, the main purpose of the line shape studies is to obtain 
information on the many-body behaviour and on the structure of a com- 
plex system. This information is obtained by relating the line shape, obtai- 
ned from spectroscopical measurements, to the statistical-mechanical cal- 
culations. 

Some theoretical works3v4 on the line shape have been performed by consi- 
dering general cluster expansions of the relaxation function. They give a 
good insight into the nature of the phenomenon, but for practical calcula- 
tions it is necessary to use models based on physical considerations, which 
allow one to extract from such expansions only that part which is relevant 
to the special physical situation and for which quantitative results may 
be evaluated. These special physical situations will be considered only in 
Section 3 and the general case in Section 2. 

~olecular '  interactions have two effects on lhe  shapes: (1) the Doppler 
width and recoil shift are reduced and (2) the lines are shifted and broa- 
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dened due to the perturbation of the internal energy levels. The reduction 
of the Doppler width and recoil shift in gases will be named Dicke Effect6 

or Mossbauer Effect7 in gases. 

Many authorss-" , using purely quantum mechanical methods, treated 
accurately the line shape problem for gases at low pressures and high 
temperatures. However, they considered only the perturbation of the 
internal energy levels. In a recent paper2, the Doppler contribution was 
obtained, but the reduction of the Doppler width was not considered. 
In our preceding paper12, we have briefly shown how to take into account, 
for gases at low pressures and high temperatures, both the Dicke effect 
and the perturbation of the internal energy levels. The reduction of the 
Doppler width in gases6*' was calculated neglecting the perturbation of 
the internal energy levels. 

Using the usual statistical-mechanical formalism and taking into account 
both the Dicke effect and the perturbation of the internal energy Ievels, 
a general expression for the line shape in gases is calculated in Section 2 
In Section 3, we apply the results of Section 2 in some special circums- 
tances. In this Section, we also discuss the main hypothesis assumed in 
the preceding paper12. 

2. Line Shape in a General Case 

Let us consider a system which is a mixture of two kinds of molecules, 
which we distinguish by the indices 1 and 2. We assume that only particles 
1 interact with the incident radiation field. This means that, in our theory, 
the molecules 2 have no resonance at the frequency of the incident radia- 
tion wave. The molecules l are called emitting or radiating and the 2 are 
called perturbing. 

If there is only one molecule of the type 1, the total Hamiltonian of the 
system may be written 

H = H o +  V + H R + H I R ,  (1) ' 

is the Hamiltonian of the free particles, T and G are the kinetic and internal 
energy operators, respectively, V the interaction between a11 molecules of 



the system, H, the Hamiltonian of the free radiation field and H,, = - d ,  -E 
the interaction between the radiation field E (electric or magnetic) with 
the dipole moment d, (electric or magnetic) of the emitting particle. 

When the intensity of the incident radiation field is too high, transitions 
among the molecular states are then induced at a rate that is not negligible 
compared with the collision rate, thus invalidating the assumption of 
thermal equilibrium. It can be ~ h o w n ' ~ , ' ~ , ' ~  that the broadening of an 
absorption line is not attributed to any intrinsic modifications of the line 
shape, but rather to a frequency dependent alteration of the energy leve1 
populations. This is known as "saturation effect". As we consider only 
weak radiation fields, this effect wiíl be neglected. 

The eigenfunctions and eigenvalues of the operator H, will be indicated 
by Iq(N,, . . . , Nk, . . .)) and Ãck Nk,  respectively, where N ,  is the num- 

k 

ber of photons with energy hkc = tio. 

Among a11 interna1 states of the emitting molecule, we separate those, 
here indicated by 1 $,), which participate in the transitions whose shapes 
we wish to analyse. Defining the operator h('), such that h(').l e,) = E, I $,), 
we write G") = h(') + G"". If we are interested, for instance, in the rota- 
tional transitions, h(') would be the rotational energy operator and I$,) 
the rotational energy states. 

We assume that the state 'of the molecular system can be described by 
I$,) 14Jr where Ir$,) takes into account a11 degrees of freedom of the 
molecular system excluding those of the operator h"). Of course, this is 
a zeroth-order qproximation wave function for the system; higher order 
approximations can be obtained -considering the interaction' potential 
between the emitting particles and using perturbation theory, which will 
be done in what follows. 

The time evolution operator of the total system, molecules and radiation 
a field, will be indicated by U(t, t'). It obeys the equation ih - U(t, t') = 
at 

= H U(t, t'). 

Putting, for simplicity, t' = O the transition probability dP:; between the 
states 



and IyJF (to)) = I $/ (to)) I 4, (to)) I v(. . . N k  + 1 .  . . , to)), in the time inter- 
val t - t' = to , is given by 

Indicating by Um, (t, t') the time evolution operator that obeys the equation 
ihaUm, (t, tf)/at = HmR Um, (t, t'), where HmR = H, + V + H , ,  we have: 

Let us write uLR(t0) U(to) in a different form Putting W = UmR U, we 
obtain 

Solving equation (5) by sueessive approximations, we obtain, considering 
only the first order t em in (E( : 

So, substituting (6) into (5), as the t em 1 gives no contribution, we get: 

Now, the vector potential A(r, t) is given by 

4nc2 h 
(ak  exp (- i o k  t + ik r) + c.c.} Ê , (8) 

where o, = kc, V, is the volume of the system and Ê is the polarization 
vector which is taken the same for aií plane waves. Only this simplest 



case will be considered in this paper. The extension of the treatment given 
to more general situations is, however, straightforward Thus, conside 
ring that H,, = -dl .E is the interaction between an electric dipole mo- 
ment and an electric field, and remembering that E = - ( l /c )  aA/at we 
obtain from equation (7): 

where the time evolution operator T obeys now the equation iha~(t;t')/at = 
= H ,  T(t,  t'), with H, = H, + V. 

Now we calculate the total average power emitted by the system with 
frequency between o and o + do in the time interval t o .  Taking into 
account the density of final states of the emitted photons, summing over 
all directions of emission, multiplying by the energy of each photon and 
dividing by to ,  equation (9) becomes: 

< I  i 1 ( 1  $ 1  F < < ' i  1 ( I o )  

where N(o)  d o  is the number of incident photons with frequency between 
o and o + do (we assume N(o) do % 1) and O(t) = T~ (t)dl exp (&.r1) T(t). 

Averaging .equation (10) over a11 posible initial states and summing over 
a11 posible final states of the system, we obtain the emitted power dI(o)/do: 

where the spectnun of the emitted or absorbed light F(w) is given by: 

1 
~ ( 0 )  = ZRi;; z P P  PI j '  dtl JIO dt exp [io(t - ' ) I  



where Z* =C ($, I exp (- Ph('))/ $,) is the partition function, j? = l/(rc,T), K, 
n 

the Boltzmann constant and T the absolute temperature of the gas. The 
density matrix p, is given by 

with Zo = (@,I exp [- P(Ho + V - h(')]/ +,), assuming that the per- 
m 

turbation of the interna1 states due to the interaction with the per- 
turbing molecules can be neglected in the density matrix. This means 
that to write equation (12) we assume that the total matrix density operator 
p =exp [-P(Ho + V)]/Z is diagonal in the energy representation 1 $,)I 4,). 
This approximation can be done in most cases since the perturbation of 
the states I$,) is sma1116. So, equation (12) can be written in a simpler 
form : 

In the limit of to -+ E, equation (13) becomes 

+ w  

ds exp ( i a s )  &s) = 
7L 

where 

4 ( ~ )  = Tr Ip6+ e(s)] 

and e+ e+ (S = O). 

The time,correlation function 4(s) can also be written as 

The natural lifetimes of the states have not been taken into account in the 
above expression. These can be easily introduced modifying slightly the 
theoretical approach" . In Sec. 3, these natural lifetimes will be considered 



Up to now, we have considered only one emitting particle. However, to 
take into account N(') radiating particles, it is enough to consider these 
particles in the Hamiltonian H, = H, + V. 

The spectrum F ( o )  defined by equations (14) and (15) gives the line shape 
of transitions taking into account both the Doppler effect and the pertur- 
bation of the interna1 energy levels which participate in the observed tran- 
sitions. Our results can be applied to gases, liquids and solids. However, 
as will be seen in next section, these results will be applied only for gases 
in some special cases. 

3. Gases 

With our general equation (14), we shall study in this Section only gases 
in some particular conditions. 

In gases, there are both the translational modes of the individual molecules 
and the collective motions of the molecules. We shall distinguish two limi- 
ting cases18 : (1) when we can speak of individual molecule translation 
and (2) when we can speak of collective sound waves. The case (1) occurs 
when the de Broglie wave length hlp is smaller than the inter-molecular 
distante (Vo/N)113 and the case (2) when h/p » (VO/N)'l3. If hlp-(v0/N)'l3 
neither of the two concepts can be applied. 

The case (2) will be considered in a forthwming paper. In this paper only 
the limiting case (1) will be analysed: in this case we have the condition 
p > h(N/Vo)'i3 that is satisfied for sufiiciently high temperatura and 
low pressures. This is a very simplifying hypothesis but nevertheless the 
analysis of the equation (16) is stiU tremendously difficult. The problem 
becomes a little less difficult if the following conditions are satisfied: (a) the 
probability of three particle collisions is negligible and (b) the ratio between 
the average duration of a collision and the average time between collisions 
is very small. When (a) and (b) are fulfilled, we have what is called "impact 
appro~imation"~.~ . 

We must note that the condition p > h(N/V,,)'I3 guarantees the transla- 
tional motion and l/Tc B (N/Vo) sü the impact approximation8 , where 
ü is the mean relative velocity between two particles, 0 the collision cross- 
section and Tc the collision time. 

It can be shownlg that in the impact approximation the interaction energy 
between the molecules is negligible in comparison with their kinetic ener- 



gies. This means that the system behaves as a perfect gas. In these cundi- 
tions, the translational states of the moieculb can be taken, as a very good 
zeroth-order approximation, as plane waves and the time evolution ope- 
rator can be substituted by products of S matrices for collisions between 
two molecules. 

In this case, the state of the emitting molecule is written as I V,)  = 
= lal)l+)Ip,), where p1 is a plane wave and Ia,) includes the remaining 
internal degrees of freedom. In these conditions, equation (16) becomes: 

where the average [. . .IA, is over the internal and translational states of 
the perturbing molecules and over the internal states Ia,). 

Introducing the projectors C I tj' p;) (p; +' 1 and C I pí) (pí @' 1, 
*'pí *"PY 

equation (18) takes the form: 

In the case of non-overlapping lines8, we can replace 

and observe in different intervals of frequencies different spectral lines 
due to the transitions 1 iji) + I ij,). This means that the total spectrum 
F(w) (see equation (14)) is given by  the sum of independent contributions 
of a11 pair of states I $i) and 1 + J )  that appear in equation (19). So, in prin- 
ciple, it is enough to consider in this equation only one pair of states: 
one initial state 1 $,) and one final state I ij,). In these conditions, equation - 7 

(19) becomes, defining U(s) as T ( s )  = exp + H,) U(s) : J 
4, (s)  = pj" exp (- iwiJ, s)  1 C exp C- is (P: -p:)/2m, A].  

pia1 pípi  

where wiJ - (ei - eJ)/ii. 



As will be seen in what follows, the reduction of the Doppler width is given 
essentially by the t e m  (+i p, 1 8'1 p, +,) p; 1 8 I p;' $i) and the broa- 
dening and shift of the line due to the perturbation of the internal states 
given essentially by the t e m  

We see, however, from equation (20) that in the general case the contri- 
butions of both effects to the line shape are strongly correlated. Since the 
exact calculation of the correlation function $ir (s) is extremely difficult, 
we shall study only three particular cases of 4, (s): (a) when the pertur- 
bation of the states I +,) is negligible, (b) when the Doppler effect is negli- 
gible and (c) when the perturbation of the internal states I$,) and the 
reduction of the Doppler width are uncorrelated effects. 

3a. Negligible Perturbation of the Interna1 States I$,:) 

In this case, the equation (20) can be written approximately, considering 
also the natural half-width yir, as: 

(exp (- ik r,) exp (ik r, (s))> , (21) 

where d, is the average dipole moment of the emitting molecule, 

where the average [. . .I,, is only over the translational states of the pertur- 
bing molecules, 

exp (ik - r, (s)) = exp (iH' s/@ exp (ik r ,) exp (- iH' s/h), 

and V the interaction potential between the emitting and perturbing 
particles which is a function only of the distances between the interacting 
particles. The potential V is obtained averaging the. potential V, defined 
in equation (I), over a11 internal states of the emitting and perturbing 
particles. 



So, to obtain (s) it is enough to calculate the correlation function defined 
in equation (22). Taking k parallel to the x-axis, we can put equation 
(22) in a simpler form assuming that x, and x, (s) are random Gaussian 
variables7 : 

(exp (- ikx,) exp (ikx,)) = exp { T  - - ((x, - x, (s))') + 

Assuming also that the classical treatment is suficiently accurate to des- 
cribe the motion, the condition [x, , x, (s)] = O is satisfied. Since we assume 
that the recoil shift is negligible, this approximation is satisfid7. In this 
case, (22) becomes : 

(exp (- ikx,) exp (ikx, (s))) = exp ((x, - x, (s))') . (24) I 
So, our problem is solved if the correlation function ((x, -x,(s))') is 
obtained. Since: translational states of many particles are involved, this is 
a very dificult task. It would be easier if only collective motions (phonons) 
were present as occurs in solids7. 

The correlation function ((x, - x,(s))') has been obtained approximately 
in some differernt ~ a y s ~ , ~  but it wiil be calculated here with a new approach. 

Indicating by t the mean free time between strong collisions (hard sphere 
collisions) and Tc the collision time, with t % Tc, the particles can be 
wnsidered as free for most of the time. Observing the motion of the emitt- 
ing particle, we see that it behaves as a free particle which is periodically 
disturbed, with period z, by random collisions with perturbing molecules. 

Let us now write the states of the emitting particle. Assuming that the 
fíuid is contained in a cubic box of volume V. = L? we take the x-axis 
parallel to one edge of the cube and the origin at the middle point of L. 
After this, we divide L in N intervals of length 1, where 1 is the mean free- 
path along the x-axis. This means that x goes from - N 42 to N 112. 

The wave-function Im) of the emitting molecule in a V h  interval will be 
1 2nm 

written as I m) = exp [- i (- x + &)] , where n is an integer and 1 
9, a phase of the state caracteristic of the Edh interval. 



As one can easily verify, this wave function is symmetric at the endpoints 
- [N - 2(k - I)] A/2 and - (N - 2k) A/2 of the ]Ch interval. 

With these wavefunctions the correlation function ((x, - x,(s))~) becomes: 

((x - x1 (s))~) = 4 1 p, I ( ~ 1 ) ~ ~ '  1 sin2 [ (E,  - E,,) s/2h], (25) 
mmr 

h 
where p, = - (B/2n p)'I2 exp(- B E,), p = m, m2/(m, + m,) the reduced IZ . . 

m2 h2 

mass of the emitting and perturbing molecules, E, = - 2pA2 and 

dx, x, exp [- i 2n(m - m') xl/r2]. 

In the limit of continuum states, equation (25) becomes, omitting the 
indices 1 for simplicity : 

((x - x(s))~) = (1 6/hA) I-+; dP P p  C dpr (&J 
sin2 [(p - p') (p + p') s/4hp]. 

where p and p' are relative momenta, between emitting and perturbing 
molecules, along the x-axis and p, is the density matrix in the momenta 
space. Put ting 

sin2 [(p - p') (p + p') s/4hp] z sin2 [(p - p') ps/2hp] 

and defining the variable x = (p - p') p/@, we obtain: 

2 

[sin (k A) - ( ~ 1 2 ~ )  cos (k A)] , 



where p, is the density matrix in the velocity space. As can be easily veri- 
fied this equation can be written approximately as 

sin 6 
= (2 u:/n) (Ty [+ sin ( t ~ s / z ) Y ,  

where u, = ( 2 1 ~ ~ -  j i ) ' I2 is the mean value of the modulus of the x-compo- 
nent of the relative velocity and z z Â/u, r Á/ü where Á is the mean free 

8 K,T ' I 2  
path and % = (?) is the mean relative velocity. 

We shall consider now two particular cases of the equation (27): when the 
emitting particle collides many times during the natural lifetime of the 
leve1 and when no collisions occur during the lifetime. 

Let us see then what happens when the emitting particle collides many 
times during the lifetime l/y of the state. This means that l/y 9 z. This is 
equivalent to assume in the equation (27) the limit s/z B 1 in the function 

sin (6s/z) 
which csn be considered different from zero only in the inter- 

val between O and n 71s. Since in this interval the function (sin2 6)/02 can 
be taken equal to 1, we obtain: 

- 
v - 

where D = u; z r -A is the diffusion coefficient. 
3 

In this case, equation (21) becomes, using equations (24) and (28): 

which will give the line shape F(w), defined by equation (14): 



- 
1 

Since the diffusion coefficient D = s< -, where P is the pressure of 
3 P 

the gas of perturbing molecules, we see that when P increases the half- 
width decreases. This is the Mossbauer Effect in gases or Dicke E f f e ~ t ~ . ~ .  

uL 
We must observe that the Doppler contribution D to the width, for a gi- 

ven pressure, becomes bigger when the frequency o of the emitted photon 
increases. This is essentially the effect of the recoil of the emitting molecule 
in the emission of a photon with frequency o. 

For high pressures, when the three particle collisions are as frequent as 
the two particle collisions, the impact approximation is not satisfied. In 
this case the result seen in equation (28) is not valid and another approxi- 
mation mus be used to calculate ((x- ~ ( s ) ) ~ ) .  

Let us now see what happens if during the lifetime l/y the emitting particle 
does not collide. This means that z % l/y, which occurs, for instance, 
when the pressure is so small that the particle is practically free during 
the lifetime l/y. In these conditions, the contribution of ((x - x(s))') can 
be calculated taking the limit z -+ co : 

= (u, s ) ~  = (ÜS)~/~. 

In this case, the line shape F(o) defined in equation (14) becomes, using 
(22), (24) and (29): 

which is, approximately, a Gaussian with half-width 

In the particular case of self-perturbati,ons, the half-width is given by 

c 4xBT ' I 2  Ao. ~f --(-) - . 
wif 'JCml 



3b. Negligible Doppler Effect 

If the Doppler effect is negligible, we can put k = O in 8 = dl exp (i k r,). 
Thus, equation (20) becomes: 

where d, is the average dipole moment of the emitting particle, p, the linear 
momentum of the perturbing molecule and the average C.. .IAu means an 
average only over the internal states of the perturbing molecules and the 
states Iai) of the emitting one. 

Using the relative momentum I q) = h- 3/2 exp(iq R/h) between the emitting 
and perturbing particles, where R is the relative distance between them, 
equation (30) takes the form: 

where the shift Sf; and the half-width Awf; are linearly proportional to 
the pressure P. In fig. 1 of reference (12), the half-width due to the pertur- 
bation of the internal energy levels is represented by a dashed line. 

A typical behaviour2' of the line width as function of P is shown in fig. 112, 
in which we consider the pressure axis divided in three regions. In region 1, 
the perturbation effect of the collisions on the internal states of the emitting 
molecules is very small. The effect of collisions in this region is practically 
a reduction of the Doppler width only. In region 2, Aw is almost indepen- 
dent of P and reaches its minimum value. In region 3, Ao depends linearly 
on P. In this region the Dicke effect is negligible, and we may consider 
only the perturbations of the internal energy levels. 

The line shift, within the experimental error, is always proportional to 
P21*23. AS will be shown below, our theoretical predictions agree with 
these experimental results. 



3c. Uncorrelated Contributions of the Dicke Effect and of the Perturbations 
of the Interna1 Energy Levels 

Since p, - 9, = h k = pf -p; , equation (20) can be wntten as 

that becomes, remembering that in the impact approximation the inte- 
raction energy V(R) of the emitting particle with the perturbing ones is 
negligible in comparison with the kinetic energia of the particles and that 
O depends only of the emitting particle, 

where the average [. . .I,, is only over the translational states of the per- 
turbing molecules, exp (i k r,($) = exp (i H' s/h) . exp (i k . r,) exp (- i H' s/h) 

NiZ I 

and H' = T( l )  + T' / )  + V.  Assuming that the momentum I h k ( is much 
j=  1 

smaller than the average momentum of the molecules, we have: 

As we have seen in (3.a) and (3.b), the Dicke effect and the pertufbation of 
the interna1 energy levels are given essentially by the factors [. . .I,, and 
[. . .IAv, respectively. 

Since the factor [. . .I,, is real (r, and r,(s) commute), it does not contri- 
bute to the shift. The other factor [. . .IA, predicts a line shift linearly pro- 
portional to the pressure, in agreement with the experimental results. 



The shift and width of the line due to the perturbation of the internal 
energy levels in the impact approximation depends only on the number 
of collisions per unit time. This means that it depends on the density of 
perturbing molecules and on the relative velocity between the emitting and 
perturbing particles. It .does not depend on the translational motion of 
the emitting molecule as occurs with the Dicke Effect. The same shift and 
width obtained with an emitting particle in motion can be obtained with 
this particle at rest. 

If therefore m, 9 m,, the emitting particle in the bracket [. . .I,, can be 
taken as at rest since the average relative velocity ü = (8 ~ , T , h ~ ) ' ' ~ ' z  
z (8 I~,T/Tc m2)'I2 = ü2 . Thus, equation (31) becomes : 

where Ao;/ is due to the Dicke effect aiid S::; and Ao;; to the perturbation 
of the internal states, according to the convention adopted in Secs. (3.a) 
and (3.b). The shift Si; and the half-width are calculated putting - - 
V = V 2 .  

In this approximation therefore, the reduction of the Doppler width and 
the perturbation of the internal energy levels are uncorrelated effects. 
The total half-width Aoif is given by Aoif  = Ao;/ + A o $ .  This par- 
ticular case is illustrated in fig. 1 of Ref. (12). 
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