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Realizations of the dual absorptive model of Haran by the sum of a Regge recurrence in the 
direct channel are discussed and in particular a construction proposed by Ingraham is cri- 
ticized on the light of some general properties of Regge trajectories that follow from analy- 
ticity. 

Propriedades de trajetórias de Regge que são consequências de sua analiticidade são usadas 
para analisar construções de amplitudes duais com absorção (propostas por Harari) através 
da soma de ressonâncias localizadas sobre uma trajetória de Regge no canal direto. Em par- 
ticular, é feita uma crítica à construcão de Ingraham. 

1. Introductlon 

A decade of analysis of 4-particle processes, by Regge methods of increa- 
sing degree of sophistication' and models based on diffraction2 and on 
interna1 symmetries3 , suggested to Harari4 a synthetic model for 4-particle- 
non-diffractive scattering which gives the t-structure of the imaginary part 
of the amplitude at high energies in terms of some more-or-less known 
functions. 

The most natural way to build up such amplitudes would be to sum up 
resonances located on Regge trajectories in the s-channel. This has been 
explicitly performed by Ingraham5 who was able to show that the assump- 
tion of a single trajectory required its asymptotic behavior at high energies 
to depend linearly on the mass of the resonance, to be compareci with the 
linear dependence on s required by Veneziano type models. In this way, 
the correct t-distribution obtains and the resonances are not stable. 

Problems arise, however, when these features are confronted with recent 
results coming from analyticity and unitarity6 which enforce a close rela- 
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tion between the trajectory and width functions. It is shown that Ingraham's 
choice of a(s) (trajectory) and T(s) (width) is incompatible with analyticity. 

In Sec. 2, :he highlights of Harari's work4 are presented and Ingraham's 
mode15 is discussed. Sec. 3 reviews ihe results6 on resonance widths and 
applies them to the case of Ref. 5. 

2. Dual Absorptive Models 

Harari4 proposed a "qualitative theory" of 2-body scattering at high- 
energies which describes remarkably well the t-structure of the scattering 
amplitude by writing its imaginary part, in the center of mass system, as 

where f ,, is the diffractive part, structureless in t, and Im f ,  is the sum 
of resonances (or the exchange of Regge poles) in the direct channel, assu- 
med to depend on t through Bessel-like functions: 

where "JIA,q (z)" is a function which has the same zeroes, maxima and 
minima as JIAAl;(z). The process considered is a + b -+ c + d, and AIL = 

= Âc - Âd - Âa + Âb; R is a "radius of interaction" of about 1 fermi and 
P ( s )  is asymptotically constant. We restrict our attention to processes 
which involve the exchange of something different from the vacuum, 
called non-diffractive, so that we will be concerned with f,. Suffice it 
to say that the diffractive part is observed to be O (fi). The essential point 
in the discussion to follow is that (2-2) gives a t-structure independent of 
s, a fact well verified experimentally. 

To explicitly construct an amplitude of Harari's type, Ingraham assumed 
the resonances in the s-channel to lie on a Regge trajectory, and then 
studied the conditions under which the amplitude had the aspect of (2-2). 
We describe briefly his procedure, restricting the calculations to equal- 
mass spinless particles (IALI = O). The generalization, on the light of 
recent results on fermion trajectories7, brings nothing new. 

Start with the partial-wave expansion of f,  : 



s E 4(k2 -t M2), t = -2k2 (1 -coso), M being the mass of the externa1 
particles, and now assume each f, to be dominated by a resonance of 
a recurrence family of signature r :  

f J ( 4  = QJ (4 r, 
r, 7 (2-4) 

p,-i--& 
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where pJ and T, are mass and width of the resonance of spin J. In 
(2-3), the exchange potentials require the replacement P,(cosO)+ 
) [P, (cos O) + r P j  (- cos O)]. 8, (s) is a factor that allows for deviations 
from the Breit-Wigner form which could come in the high energy region, 
where many-particle resonating states play a role. In any case, O, (s) should 
approach 1 in the low energy region, where a Breit-Wigner form can be 
derived8. As the resonances lie on a trajectory, there is a relation between 
mass and spin. This is taken as 

which corresponds to 

J + $ = k , R  

for some "radius of interaction" R. k, is the CM momentum such that 
s, = 4(kJ + M2) = p:.  

This choice is favored by the semi-classical interpretation. In fact, at high 
energies, small impact parameters correspond mostly to production pro- 
cesses9, the 2-body channels being obtained by peripheral collisions of 
large, roughly constant, impact parameters. In this case, the angular mo- 
mentum is given by (2-6), R being the range of the forces, the maximum 
impact parameter allowed. It has been argued before1° that this does not 
imply that Regge trajectories should behave asymptotically as &. In 
fact, the leading trajectory could have a quite different asymptotic limit 
(for instance, linear), the interplay of a large number of nondominant 
tra'ectories giving rise to an "effective" angular momentum growing like 

S. However, the cleanest situation would certainly be that of a "para- J' 
bolic" Regge trajectory such as (2-6). 

Performing now a Sommerfeld-Watson transformation on (2-3), we get 

8 k  lc P, (- cos 8) + 7PJ ( C O ~  8) 
f =-  dJ(2J+  l)O(J,s)- 

sin nJ I (2-7) 



D(J)  = p(J)-  ir12 - Js,  where C encloses the points J = 0 ,1 ,2 , .  . . . Dis- 
torting C to the contour ReJ  = - 112 plus an infinite semicircle to the 
right, picking up the pole at J = a,  the zero of D(J), one has 

f = f pele + f br<ckgrour:d 

with 

71 P, (- cos O )  + zP, (cos O) 
f p,l, = - - (2a + 1 )  R(a) O(a, s) 

4k sin na 

The position of the pole and the residue R(@) are 

1 T R w  - 
a cz kR-- + i-- - 

2 4k 
- aR 3 ia,, w = Jk-, 

I-0 
where (ZkZ) was neglected. In the Regge limit, í3 = f i / k  -+ O, the 

approximation P, (cos O )  J ,  (a  + i) O can be used. With the hypothesis 
that (a,  f i ~ k ) ~  and aI/(aR + 1) are very small, the amplitude is finally 
written as 

I L  
Im f - - - (2a -+ 1 )  R (a )  O(a, s) Im S ( a ) .  

4k  

T COS 71aR $. C O S ~  7161, 
where Zm S, (a)  = (z sin na,  - i sinh na,). 

sinh2 naI + sin2 na,  

Using now (2-9), it is seen that the dominant term is precisely of the form 
J o  (R A), giving a t-strncture which is s-independent. This is Ingraham's 
argument to choose "parabolic trajectories". It is important to observe 
that we are in the domain of high energies, so that a11 the assumptions 
made are asymptotic. 

There is now the need of determining the behavior of r(s), Being constrained 
by (2-1 I), it must be O(!?), O < E < 1. Now, as we will see below, there is 
a connvction, coming from analyticity, between the asymptotic behavior 
of the trajectory and that of the width. Ingraham chose the width to be 



y constant, which is consistent with the approximation (2-11) and also 
with the results from analyticity. However, parabolic trajectories are 
queer objects, as it will become clear soon. 

With the choice (2-12) and with 

which is strongly suggested by the asymptotic behavior of B(s) in (2-2) 
and by the convergence conditions of (2-3), the final expression for the 
leading term in the energy is given by 

A comment is due here on the method. Resonances were introduced as 
Breit-Wigner partial-wave amplitudes with a width r which is a function 
of S. By looking at (2-X), we recsgnize in the denominator the term sin na 
which, as a goes near a physical value of the angular momentum, gives 

a 
rise to a Breit-Wigner denominator with = -2, where the prime 

JS~R 
denotes differentiation with respect to S. This width function must, of course, 
be consistent with the introduced in the partia1 wave amplitude. We 
show here that this is in fact the case, provided there is a relation between 
the mass of the resonance and its spin (in other words, that the resonances 
lie on a trajectory). The denominator of (2-4) vanishes when p(J) = 

+ irJ/2. Cal1 p- '  the inverse function of p(J). We have 

J = p- l (J; t- irJ/2). 

Assuming rJ/2 to be much smaller than A, a Taylor expansion gives 

It follows that 

r, - Im J --  - - .  
I m J  

2 d d '  
-ReJ 2 & % R e ~  
d JS 

as it should. 



3. Resonance widths 

A connection between the asymptotic behaviors of Regge trajectories and 
resonance widths follows from the use of the analyticity properties of the 
trajectories which are assumed (mesonic trajectories) to be real analytic 
in the s-plane cut along the real axis from the physical threshold to infinity. 
Though fermionic trajectories have a different domain of analyticity, 
the results we will obtain are true also for them provided they are exchange 
degenerate7, what seems to be the case for all known trajectories. We 
review here briefly the results for the reader's convenience, referring, for 
more details, to Refs. 6 and 7. We assume that the trajectory does not 
grow as fast as an exponential along any direction of the upper halfplane 
and that the function a(s)/(-s)" has constant limits as s -+ f co along the 
real axis (E is a real positive number). The Phragmèn-Lindeloffs theorem 
then asserts that the limits must be equal. So, if 

a(s) - A ,  lim - - 
s+ - ao (- s)& 

with A real, because of the analyticity, we must have 

lim a(s) = - ~ e - ' " '  9 . 
s-+ao 

Consequently, for large s, 

aR (s) = - A COS (?TE) SE , 
a, (s) = A sin (m) s" , 

and 

so that the width function is asymptotically linear in the mass of the inter- 
polated resonances. This is, in fact, the behavior assumed by Ingi-aham, 
so that everything seems consistent. However, let us examine in detail 
the case E = 112. Eq. (3-3) then tells us that either a, (s) - O or else that 
it is dominated by a power of s lower than 112. Both cases are to be dis- 
carded, for then (2-1 1) will not give an s-independent t-structure, as required 
by experiment. 

As a possible way out let us look for a trajectory that behaving asymp- 
totically in a different way as a whole, still has a O (&) real part above 



threshold. A little thought shows that there is, indeed, such a trajectory. 
Consider a trajectory which behaves, for large negative s, as 

- A J(- s) ln (- s). 

For large positive s we will then have 

a(s) = iA (ln s - in), 
a,(s) =.A&, 
a, (s) = A 6 ln S. 

It follows that 

This is suficient to show that the approximations necessary to get (2-ll), 

vil., (&y, (a, &)'/k2 and a,/(a, + 1) very small, are not true at 

high energies, so that (2-1 1) does not follow. 

4. Conclusion 

We conclude that parabolic trajectories do not provide, contrary to a 
common belief, a mechanism to cancel out the s-dependence of the t-struc- 
ture of 2-body non-diffractive high-energy scattering amplitudes. 
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