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An example is given of a partial differential equation for scattering amplitudes leading to so- 
lutions with the charactenstics of dual models. 

Dá-se um exemplo de equações diferenciais a derivadas parciais para amplitudes de espa- 
lhamento cujas soluções têm características de modêlos duais. 

1. Introduction 

In this paper, we would like to outline a new attempt towards the cons- 
truction of dual models. The novelty of the approach consists in using 
partial differential equations to construct amplitudes which i) result from 
the interpolation of infinitely many resonances, ii) satisfy crossing, iii) are 
asymptotically Regge behaved in the forward (backward) direction of 
each relativistic channel and iv) are exponentially decreasing in the non- 
forward (non-backward) directions in the physical s, t, u regions. 

The approach has the inherent limitation represented by the dificulty 
of dealing with partial differential equations and, furthermore, possesses 
some of the defects shared by other approaches to dual models like a 
large arbitrariness in the formulation of the model. 

Due to this kind of limitations, we do not attempt here a very general 
construction of dual models through this new method, but we limit oursel- 
ves to giving a specific example of an equation whose solution satisfies 
the previously stated requirements of duality. 
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This kind of approach may turn out tq be too complicated to be useful 
in practice. We believe, however, that it is rather interesting particularly 
in that it shows the possibility of new ways towards the construction of 
dual rnodels. 

The starting point of our approach is a generalization sf an idea which 
was put forward severa1 years agol. 

In Ref. 1, the attempt was made to write down an equation which should 
reduce to the Legendre equation (i.e., giving an asymptotic Regge behavior) 
when one of the three Mandelstam variables is kept fixed (say t) and we 
take the asymptotic limit s --+ + oo and simultaneously u --+ - oo because 
of the constraint s + t + u = M (M being the sum of the squared masses 
of the four particles involved). This limit would correspond to having 
Regge behavior in the forward direction of the physical s-channel. 

Confining for simplicity our analysis to the consideration of an amplitude 
completely crossing symmetric in the three variables s, t, u, we want to 
give here an example of an equation whose solution has the following 
properties: i) Regge-like asymptotic behavior whenever one of the three 
variables is kept fixed and the other two go to + oo and - co respectively, 
ii) exponential decrease when a11 three variables go to & oo (in the physical 
regions of the s, t, u channels), iii) infinitely many resonances in each of 
the physical channels. 

The wanted equation must, necessarily, be a partia1 differential equation. 
Furthermore, if it has to reduce to the Legendre equation in the forward 
(backward) directions, it must be at least of second order and, for simplicity, 
we shall consider only linear equations. 

The equation we suggest is the following 

where -(- as means derivative with respect to t(u, s) along a line 
at a~ as 



s = const (t = const, u = const). In Eq. (I), c is a constant which (for 
reasons to be discussed later), we choose 2 M. 

Crossing symmetry in Eq. (1) is guaranteed if we takef, and gs to be sym- 
metric in the variables u, t and the solution A(s, t, u) will also be crossing 
symmetric if the boundary conditions are also crossing symmetric. 

What we want to show now is that, by appropriately choosing f, and 
gs, the previously stated properties (i, ii, iii) follow for A(s, t,u). 

A) Regge-Like Asymptotic Behavior 

In order to recover asymptotic Regge behavior when one of the variables 
is kept fixed and the other two go to + co and - co respectively, we con- 
sider the case 

t = fixed and negative, 
s + + w  

which corresponds to the asymptotic behavior in the forward direction 
for the s-channel. We impose that 

(where lim means the limit for one or severa1 variables going to infínity), 
S,t,U 

and that 
fo (4 = 4s)  L-4s) + 11, (3 )  

where u(s) is the Regge trajectory about which we assume the usuaI analy- 
ticity condition 

(with a, > O and O < ao I 1). Since, asymptotically, 

Eq. (3) implies 
lim fo (s) = a: s2 . 

S+cO 

Because of Eq. (21, the same limit obtains for f ,  (g,). 



Under the above conditions, Eq. (1) becomes as s -+ i- co, at fixed t ,  

From Eq. (7) (and keeping Eqs. (2, 3) in mind), one can see that the follo- 
wing asymptotic solution obtains: 

This is the same solution admitted asymptotically by the Legendre equa- 
tion, i.e., by 

Thus, as s -+ co at fixed t, there exists a Regge-behaved solution of our 
equation. 

Because of the crossing properties previously mentioned, analogous beha- 
viors obtain whenever other forward and backward lirnits are taken; for 
instance as s -+ + oo at fíxed u,. 

B) Non-Forward Behavior 

In order to investigate the asymptotic behavior when a11 the three Man- 
delstam variables go to infínity (which we, loosely speaking, refer to as 
"non fonvard" behavior) it is convenient to use polar coordinates. Namely, 
we set 

where 



Fig. 1 - The polar coordinate system in the (s, t ,  u) plane, as defined by Eqs. (1 1) and (12). 

The choice of coordinates (11, 12) has the only advantage of maintaining 
the crossing properties in the asymptotic behavior p -+ co. So, for ins- 
tance, as p 4 co, the physical s-channel domain corresponds to 

n - -  n 
6 

cp I - , the physical u-channel to - 
6 

n 5n 
and the physical t-channel to - < cp i - (see Fig. 1). From Eqs. (1 1,12) 

2 - 6 
we have 

p = 5 (s2 f t2 + u2 - St - SU - tu)l'2 , 

cp = arctg , h - 4  
3s-M 

Notice that a straight-line passing through the origin of the polar system 
chosen, c:orresponds asymptotically to a line 8 = const where 6' is the c.m. 
scattering angle. 



Using Eqs. (1 1, 12, 13), in the limit p -+ co, Eq. (1) becomes 

where a, was defined in Eqs. (4, 5) and 
Pi = - sin cp, , 

if ai = cos cpi (see Eq. (12)). 

Eq. (14) admits the asymptotic solution 

A2 (p, cp) p z m ~  (eP( '+"P) ,  

where p ( q )  satisfies the equation 

Setting 

Ptd = a ,  a2 a3 dd, 
Eq. (17) becomes 

2 

(19) 

Analysing the solution of Eq. (19) in the physical region of the s-channel 

, one can see.that there exists a solution which is even and 

71 
positive for a11 values of Iql < - and such that 

6 

where k > O is an integration constant. 

238 



Fig. 2 - The behavior of p (q ) ,  the parameter of the exponential in Eq. (16), as cp varies. 

Since lim f i ,  p, f i3 = $ , q(q) diverges logarithmically to + co as cp tends 
v- +g 

to the boundary of the physical s-channel (forward and backward direc- 
tions). Because of Eq. (18), this implies that p(cp) is always positive in the 
physical s-channel with a maximum for cp = O and is monotonically 

772 
decreaising as we go from q = O to cp + + -. 6 
The same solution continues outside the physical s-channel to the unphy- 
sical regions and to the t-and u-channels according to the scheme of Fig. 2. 
This shows that if the boundary conditions are assumed such that the 
solution of Eq. (1) outside the forward (backward) direction is decreasing 
as p -+ co inside one of the physical regions, then i) the rate of decrease 
is exponential and ii) in the non-physical regions the same solution diverges 
exponentially. 

C) According to the previous results, we can attempt to impose boundary 
conditions of the form 

We then have: 
71 

i) cp =: f - (t = const or u = const), 
6 

A, - const. 
7L 

Since for cp = - we can always choose the polar system so that t be 
6 

very dose to zero where a(t) is positive, along the forward direction the 



solution (21) has Regge behavior. The same conclusions hold in the back- 
ward direction of the s-channel and, by crossing, in the forward and 
backward directions of the t-and u-channels as well. 

7t 
ii) cp # 1 -, then in the physical region 

6 

and A, becomes negligible as p -+ co since a, > O and a, < 0. 

In conclusion, 

A(& t ) ~ ~  Ai , 

A(s, t)- A, . 
P - m  

i+'i<g 

D) Poles of the Amplitude 

The previous results depend only on the form of Eq. (1) and on the asymp- 
totic behavior of f,, g,, etc. We can now proceed to specify a form for 
f, and g, which, while preserving the asymptotic limit (2) in every direction 
of the physical regions of the s, t, u channels, be also such that the amplitude 
possesses an iniinity of resonances in each channel. Whereas there must 
exist a large number (presumably infinite) of forms for f,, g, that satisfy 
these requirements, we will show that there exists at least one. We choose 

and $(z) is the logarithmic derivative of T(z): 



First we notice that, as required, f, and g, are symmetric by interchange 
of u and t. 

Secondly, from Eq. (27), when z + -n, 

lim ( z  + n)' pZ ( 2 )  = 1, 
z-t-n 

thus f i  and g, have double poles whenever one of the Regge trajectories 
(a(s), a(t) or a(u)) is equal to 2(n + 1) with n = 0, 1,2,. . . . For instance, 

lim (- a(t) + 2 ~ ) ~  fs =-4d2(t) (t - C) (U - C). 
a(t)-t2(n+ 1) 

(30) 

More exactly, 

lim (t-tn)2fs=-4(t-c)(u-c), (a(tn)=2n+2), 
a(t)+2(n+ 1) 

lim (U - u,)' fs = - 4(t - c) (u - c), (a(u,) = 2n + 2), (31) 
a(u)-tZ(n+ 1) 

4 -(t2+u2)  
lim (s - snIz .L = e 

a(s)-rZ(n+ 1) 
, (a(%) = 2n + 21, 

and analogously for f, and S, (the similar relations for g,, g,, g, follow 
at once from Eqs. (25, 26, 31)). 

Thirdly, remembering that 

, ( z  # real negative), 

and using Eq. (27) we have 

Thus, with the exclusion of a(s), a(t) or a(u) real and positive, we see that 
the lirnits (2) hold. Since, because of the analyticity conditions (4) imposed 
on the Regge trajectory, in the Mandelstarn plane, none of the a's can 
be rea.1 and positive, the limits (2) hold uniformly in the entire s, t, u plane 
and a11 the previous results remain valid. 



Considering now Eq. (1) in the neighborhood of a pole s - s,, we have 
(if t and u are not equal to c): 

where v = t - u. Thus, near a pole, A(s, v) must be either of the form 

h, 6 ,  v) A - -  
S-S, ' 

where h, (s, v) is regular for s = s, or of the form 

A L, (s, v) (S - sJ2 . (36) 

It is easy to convince oneself that if either t = c or u = c, there are no 
poles. The points s = s, and t = c (or u = c) lie, however, outside the 
physical regions. 

Solutions of the form (35), i.e., amplitudes with an infinity of resonances 
in each of the physical regions thus may exist. Inserting Eq. (35) into 
Eq. (I), we have for the residue 

where 

with the solution 

h, (s, v) = k, (v) exp 
2 

where k, (v) is a function of v only. 



From I",. (39) we see that i) if the boundary conditions are assumed that 
k, (v) is a real positive function, then the residues of a11 the infinitely many 
resonances (poles in the second sheet) are positive and ii) ancestors appear. 
This last point follows from the observation that the t, u dependence of 
the exponential in Eq. (39) cannot be killed by the v dependence of k, (v). 

The investigation of the singularites other than poles of the solution of 
our eqiiation is extremely difficult due to its nature. Quite generally, howe- 
ver, we can expect branch points whenever the Regge trajectories have 
branch point singularities (starting at s = M or t = M or u = M). Due 
to the exponentially increasing behavior of the solution in the unphysical 
regions, customary analyticity properties (like Mandelstam representa- 
tion) are ruled out. 

3. Conclusions 

In this paper we have shown an example of partia1 differential equation 
by which one can meet the requirements of a dual model. The main draw- 
back of the approach consists in the extreme complexity of a problem in 
which one has to deal with this kind of equations. 

Like ini other approaches, one of the nice features of this attempt to cons- 
truct clual models from differential equations is the flexibility provided 
by this method of which the one illustrated here is only an example. 
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