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The theory of the interaction between magnons ancl phonons i11 a ferromagnetic crystal sub- 
ject to time-dependent magnetic fields is developed by quantum mechanical methods. The 
theory has been previously developed only in semiclassical ternis and it revealed that under 
ccrtain wnditions one can convert completely a state of lattice vibration (phonons) into a 
state of magnetic excitation (magnons). The theory developed here is based on the quanti- 
zation of the magnetoelastic fields. With the Heisenberg equations of motion for the magnon, 
phonon and magnetoelastic excitation operators, it is shown that the results of the quantum 
theory are essentially the same as those previously obtained. In a time-dependent field, a 
magnetoelastic excitation has an invariant momentum but variable energy. When the field 
gradient at the crossover region is much smaller than a critical value, an initial elastic exci- 
tation can be completely converted into a magnetic excitation, or vice-versa It is shown 
further that if the system is initially in a coherent state, its coherence properties are main- 
tained regardless of the time-dependence of the field. 

Nêste trabalho estudamos quânticamente o problema da interação entre magnons e fonons, 
em um material ferromagnétiw submetido a um campo magnético externo variável no tempo. 
este problema foi estudado anteriormente no formalismo semi-clássico e seus resultados 
mostram, entre outros fenômenos, que em certas condições é possível converter compIeta- 
mente um estado de vibraç0es da rêde (fonons) em vibrações dos spins (magnons) e vice-versa 
A teoria aqui desenvolvida baseia-se no formalismo de quantização dos campos magnetoe- 
lásticos. Através das equações de Heisenberg para os operadores de magnons, de fonons e 
de excitações magnetoelásticas, mostra-se que a teoria quântica leva a resultados que são 
essencialmente os mesmos obtidos anteriormente. Em um campo dependente do tempo, uma 
excitação magnetoelástica propaga-se com momenturn constante e energia variável. Quando 
o gradiente do campo na região de cruzamento magnon-fonon é muito menor que um valor 
critico, uma excitação anteriormente elástica é convertida integralmente em excitação mag- 
nética e vice-versa Mostra-se também que se o sistema encontra-se inicialmente em um es- 
tado coerente, a coerência é mantida durante a variação do campo. 

*Supported in part by Banco Nacional de Desenvolvimento Econômico and Conselho Nacional 
de Pesquisas (Brazilian Govemment). This paper presents the material developed (by S. C. G.) 
in a thesis submitted to the Universidade Católica, as partia1 fullfilment of the requeriments 
for the degree of Mestre em Ciências. 

**Present address: Instituto de Física, Universidade Federal da Bahia, Salvador, Bahia. 
 o os tal Address: Rua Marquês de São Vicente, 2091263, 20000 - Rio de Janeiro GB. 



1. Introduction 

The problem of the propagation of waves in a medium whose parameters 
vary in time in a non harmonic fashion has received little attention in the 
past. One of the reasons for this fact is, perhaps, that the speed of electro- 
magnetic waves is very large, and this is the type of wave most used for 
studying prspagation phenomena. As a consequence, it is difficult to control 
the time variation of a material parameter during the short traveling time 
of a light wavepacket in a sample. With the understanding of the properties 
of slower types of wave excitations in solids, this problem began to attract 
some interest. The behavior of an electromagnetic wave in a medium with 
time-dependent dielectric constant and permeability has been consideredl. 
Recently it was investigated2 the more interesting case of a wave involving 
excitations of two different natures, namely that of a magnetoelastic wave 
propagating in a medium subject to a time-dependent magnetizing field. 
The theoretical analysis of this siiuation has bem carried out semiclas- 
sically2. Here we investigzte this process quantum mechanically. 

Spin waves, whose quanta are called magnons, can be excited in a ferro-, 
ferri-, or antiferromagnetic material under a static magnetic field, by 
means of a microwave magnetic field. Due to the magnetostrictive pro- 
perties of crystals, spin waves are usually coupled to elastic vibrations 
(phonons), resulting in what are called magnetoeiastic  aves^-^. These 
waves can be coherently excited in low-loss materials, with a velocity 
which is controlled by the magnetizing field, leading to important devic. 
applications. The possibility of their technological uses have resulted in 
the great attention they received recently. 

The propagation of magnetoelastic waves in a spatially varying magnetic 
field was studied theoretically by Schlomann and Joseph7. These authors 
have shown that these waves propagate in the field gradient with constant 
frequency, constant poffer flow, but variable momentum and wave number. 
They also showed that if a spin wavepacket traverses the crossover region 
(the region where the magnon and phonon wave numbers are comparable) 
very quickly, wost of the energy stays in the spin wave state. On the other 
hand, if t,he field gradient is very small, most energy is converted into the 
elastic state. They have actually demonstrated that the magnon-phonon 
conversion efficiency is a continuous function of the ratio between the 
field gradient and a "critica1 gradient". Experiments confirming the pos- 
sibility of converting a spin excitatiora into coherent lattice vibrations with 
a spatial gradient were realized sometime ago8, whereas the conversion 
efficiency as a fimciion of the gradient only recently has been measured9. 



A somewhat analogous situation, namely the propagation of magnetoe- 
Iastic waves in spatially uniform time-varying magnetic fidds, has also 
been investigated 2,10 both theoretically and experimentally. In this 
instance it was shown that propagation occurs at constant momentum 
and wave number, but variable energy and frequency. Magnon-phonon 
conversion at the crossover is also possible and the wnversion efficiency 
is a function of the time gradient of the field. The theoretical analysis of 
this situation was carríed out completely with the semiclassical formalism, 
which is based on the equations of motion for the magnetization4, l 1  
and the lattice displacement4. Obviously some questions are not answered 
in this treatment, in particular those related to the evolution of the cohe- 
rence of the quantum state during the magnon-phonon conversion. This 
paper is devoted to the quantum mechanical analysis of this situation. 

In Sec. 2, we review the transformatioris used to obtain magnon and phonon 
creation and annihilation operators which diagonalize the Hamiltonians 
for the magnetic and the elastic systems in the case of a static applied 
field. The magnetoelastic interaction Hamiltonian is also expressed in 
terms of these operators. 

In Sec. 3, the total magnon-phonon Hamiltonian is diagonalized and the 
possible states of the system are discussed. In Secs. 4 and 5, we consider 
the equations of motion and the invariant operators of the system under 
a time-dependent applied field. Sec. 6 is devoted to the solutions of the 
Heisenberg equations of motion of the magnon and phonon operators 
for the case of the time-dependent field, and to the calculation of the mo- 
mentum conversion efficiencies. Finally, in Sec. 7, we discuss the relations 
between the results of the quantum and semiclassical treatments of the 
problem. 

2. The Hamiltonian for the Magnon-Phonon System in the Case of a 
Static Magnetic Field 

The analysis presented in this paper applies to a simple Heisenberg ferro- 
magnetic cubic crystal, magnetized to saturation by a uniform magnetic 
field which is allowed to vary in time. In this section, the field is assumed 
to be static. The total Hamiltonian of the systern can be expressed in terms 
of the spin operator and the elastic displacement operator at each lattice 
site. In a first approximation, the ~amiltoni& c& be written as the sum 
of three parts, a magnetic component depending only on the spins, a pure 
elastic one, and a magnetoelastic t e m  depending on both the spin and 
t he elastic displacement. 



a) Quantization of the Spin Excitations 

The most important contributions of the spin system to the total Hamil- 
tonian arise from the interaction between individual spins with the externa1 
field (Zeeman interaction), and the exchange and dipolar interactions 
between neighboring spins. These components can be written as6 

where p is the Bohr magneton, Si is the spin at the lattice site i (in units 
of h), assumed to have g-factor of 2, J i j  is the exchange constant of spins 
Si and Sj and r, is their relative position vector. Hi is the applied field 
at site i, lying in the z-direction of a cartesian coordinate system. The 
electron spin is taken parallel to its magnetic moment, as assumed in 
most quantum treatments of spin waves. The Hamiltonian (2-1) can be 
cast into a diagonal form with a series of canonical transformations per- 
formed on the spin operators, which are known as the Holstein-Primakoff 
transformations 6 7  1 2 .  The first transformation is 

where a: and ai are creation and annihilation operators that satisfy the 
usual Bose commutation relations, and are also localized at the lattice 
site i. The collective excitation Bose operators are introduced by 

vrhere N is the number of spins and k denotes the wave vector of the exci- 
tation. In the indices, the vector sign is kept out for clarity of the notation. 
The summation in (2-5) extends over the whole Brillouin zone. The-para- 
meters u, and v, are given by6 

where 

tanh 2pk = I B, I /A,  



and, for a simple cubic lattice, with exchange only between nearest neigh- 
bors, in the long wavelength limit, A, and Bk are6 

Ak = Dk2 + 2pH + p4nM sin2 Qk, 
Bk = p4nM sin2 

Qk exp (- i243, 
(2-8) 

where D = 2SJa2, a is the lattice parameter, M is the saturation magne- 
tization and 6, and 4, are the polar and azymuthal angles of the wave 
vector, shown in Fig. 1. The inverse transformation is 

X 
Fig. 1 - Coordinate system and polarization vectors for wavevectors. 



Using (2-2)-(2-10) and the closure relation, one can show that the Hamil- 
tonian (2-1) becomes 

Xm = ~ho,(k)(c&,  + f), (2- 1 1) 
k 

vrhere higher order terms are neglected. ho, (k) is the magnon energy 
given by 

Ao, (k) = (A; - 1 Bk I2)ll2 = 

= (2pH + Dk2 i- p8zM sin2 €Jk)lI2 (2pH 4 Dk2)'I2 . (2-12) 

The form of the magnon Hamiltonian (2-11) is the source of a well-known 
and fruitful analogy between the mode amplitudes of the collective spin 
excitations and the coordinates of an assembly of one-dimensional har- 
monic sscillators. The operators c; and c, are interpreted as creation and 
annihilation operators of quanta of spin excitation, called magnons. The 
creation of a magnon corresponds to the flipping of a spin by one unit, 
and the flipping process propagates through the crystal instead of staying 
localized. In (2-ll), the terms involving three or more magnon operators 
which were neglected, represent magnon-magnon interactions which are 
responsible for relaxation mechanisms, saturation effects and other phe- 
nomena. 

None of the operators presented so far corresponds to an observable 
variable. In experiments one detects spin excitations by means of the mag- 
netization operator, which is introduced in a continuous description of 
the crystal through the relation M(r) = 2 p x S i / 8 ~  Here the summation 

i 

runs over the sites inside a small volume dV, around the point r, which 
contains many sites. Using (2-2), (2-3) and (2-5), we can express M in terms 
of the magnon operators. In the Heisenberg picture, the components 
transverse to the static field are, to first order in the magnon variables13 
(represented by small letters), 

m(r, t) = m(+) (r, t) + m(-I (r, t), 

where V is the volume of the crystal. The longitudinal component of M 
is M ,  = M - m, , where m, (m: + mY)/2M. 



b) Quantization of the Lattice Vibrations 

Let us consider that the ferromagnetic crystal is a continuous solid, elas- 
tically isotropic, with average mass density p. We also assume that it is 
a cubic crystal so that, within the linear approximation, the relation betvreen 
the stress tensor and the strain tensor involves only two different elastic 
constants14 , c,, and c,, . The elastic deformations of the solid are expressed 
in terms of the vector displacement R = r' -r, where r is the initial position 
of an atom or of a volume element, and r' is the position after deformation. 
The contributions of the elastic system to the Hamiltonian anse from the 
kinetic and potential energies. In the linear approximation, the elastic 
Hamiltonian can be wntten as15 

where the repeated indices indicate summation, and cr = c,, + c,, and 
fi = c,,. The cartesian coordinate system has its axes lying along the 
[I001 crystallographic directions. It is useful to introduce the canonical mo- 
mentum density through the relation r i i  = ~ P / R ,  = P R ~ ,  where 9' is the 
Lagrangian density. In order to obtain the collective excitation operators 
for the elastic system, we make the canonical transformation 

where = xi  . Ê@, p), and the Ê(k, p) are unitary polarization vectors 
defined for the wave vector k, illustrated in Fig. 1. This new basis is intro- 
duced because in an elastically isotropic crystal the eigensolutions of 
(2-14) may be rigorously classified as longitudinal or transverse. We choose 
i@, 3) as the longitudinal polarization vector. Notice that from hermiticity 

.L .A 

it follows that Q; = QY,  and Pi = PY,. 

The quantization of the elastic vibrations is made through the commuta- 
tion relations involving Ri(r) and ni(r). The only noncommuting pair is 
such that 

[Ri (r), Ilj (r')] = iMij 6(r - r'), (2- 16) 
which leads to 



As in the case of the spin excitations, one can fínd another canonical trans- 
formation which diagonalizes the elastic Hamiltonian. The transforma- 
tion is 

pho ( k )  ' I 2  
. = i [  2. ] (aik - ap - ,) 

where 

is the phonon frequency. With this transformation, the Hamiltonian (2- 14) 
becomes 

The new operators satisfy the commutation relations 

[aC, avk']  = O, d k ' ]  = 8kk' (2-21) 

and are interpreted as creation and annihilation operators of lattice vibra- 
tions, whose quanta are called phonons. In terms of these operators, the 
displacement and the momentum density operators are 

h 112 . 
Ri = ~ E i , & ) [ - - - - ]  (dke- ' ' r  + a,, eik' r )  

k,, 2P vop, 

c) The Magnetoelastic Interaction 

In Fig. 2, we show the dispersion curves for magnons and phonons. The 
curve for a magnon with a given direction of propagation 6 lies between 
the two parâbolic curves shown, and it is important to notice that the 
frequency depends on the intensity of the applied static field. For small 
values of the wave number, the frequency is of the order of o, - 2pH/h, 



Fig. 2 - Magnon and phonon dispersion curves. 

and, for values of H - IkOe, o, lies in the microwave range (109 - 10" Hz). 
Because the velocity of elastic waves in a crystal is typically in the range 
105 - 106 cm/sec, their wave numbers at microwave frequencies are 
k - 104-105 cm-'. This implies that both transverse and longitudinal 
phonon curves intersect the magnon curves at low values of k (center of 
the Brillouin zone). Due to the magnetostrictive properties of a crystal, 
the elastic displacement is coupled to the spin. As a result, a spin wave 
with frequency close to the intersection region in Fig. 2 is strongly coupled 
to an elastic wave. This magnon-phonon interaction can be expressed by 
a phenomenological Hamiltonian, which is a function of M and R. For 
a cubic crystal, with the static field applied along one of the [I001 direo 
tions, the lowest order term of the interaction Hamiltonian is given by5p6 

where the repeated indices indicate summation with i # j, and b, is one 
of the magnetoelastic constants. Using the expansions (2-13) and (2-22), 
this Hamiltonian can be written in terms of the boson operators. We will 



assume that the wave vectors of interest lie on the xz plane of the cartesian 
system, and that Ê(k, 1) r 9.  The component of (2-23) quadratic in the 
boson operators is given by 

- kw;'I2 (uk-  vk) sin 26 (c ,  + 2,) (dk + a,- ,)  

- iko; ' I 2  (uk + uk) cos 0 (c,  - 21 ,) (a i ,  + a ,  - , ) I ,  (2-24) 

where w,, and w,, are the shear and longitudinal phonon frequencies. We 
shall now confine our attention only to waves propagating along the 
magnetic field (8 = O). The main reason for this assumption is that in this 
case the equations for the field variables are simple to solve. Besides, this 
is the most important situation in experiments because, due to focusing 
effects, z-directed magnetoelastic waves are easier to excite and control. 
One of the simplifications in this case results from the absence of the dipolar 
interaction in the spin system and, as a consequence, the ground state does 
not depend on the applied field16. Finally, it is important to note that 
the physical aspects of the general case are essentially the same inferred 
in this particular situation. 

Taking 6 = O in (2-24), we obtain 

Note that longitudinal phonons do not couple with magnons propagating 
along the magnetic fielde In order to simplify (2-25) further, we introduce 
creation and annihilation operators of transverse circularly polarized 
phonons 

Using the polarization index p as (+) or (-), it is easy to show that the elastic 
Hamiltonian (2-20) and the commutation relations (2-21) have the same 



form for the circular polarization operators (2-26). In terms of the new 
operators, the total Hamiltonian for the magnon-phonon system becomes 

= 1 hw, ( k )  é: ck + hmpr (k) a:p akP + 
k k#  

where 

3. Eigenstates of the Magnon-Phonon System 

In this section we study some properties of the normal mode collective 
excitations of a magnetoelastic crystal under a static magnetic field. The 
basic assumption of the last section is maintained, so that only z-directed 
spin waves coupled to shear elastic waves are considered. In order to sim- 
plify a little further the total Hamiltonian of the system, let us consider 
the equations of motion of the magnon and phonon operators in the 
Heisenberg representation. Using 

dA -=- i?A + ; [A,  SI], 
dt  at 

we obtain 

c: = io, c: + kLkA-' a&+, + kLk h-' a - , ( - ,  , 
+ 

(3-2) 
a&+, = i ~ ~ a ~ ( + , - k L ~ i i - ~  é:, 

q 
(3-3) 

i& -, = iwp a,( -, - kLk h-' c - ,  . (3-4) 

In the stationary state a11 operators have a exp(iwt) variation, and the 
magnetoelastic dispersion relation resulting from (3-2)-(3-4) is 

(o2 - w;) (O - Ok) -$Op 0; = o, (3-5) 

where 

o, = 2kLkh- ' ,  (3-6) 

which is a well-known result4. The dispersion curve is shown in Fig. 3, 
with the frequency splitting at the crossover region greatly exaggerated, 
because in usual situations this splitting is of the oider of 10-2 compared 



Fig. 3 - Magnetoelastic dispersion curves for z-directed waves. 

to the magnon frequency. Note that the two positive frequency branches 
in Fig. 3 correspond to positive circularly poIarized modes, propagating 
in the z-direction, whereas the negative branch corresponds to a negative 
circularly polarized wave in the opposite direction. The analysis of the 
equations of motion (3-2)-(3-4) shows that an excitation with frequency 
and wave number far from the crossover can have an almost pure magnon 
or phonon character. However, in the crossover region the normal modes 
are mixtures of magnetic and elastic excitations. The interesting pheno- 
menon that we investigate in this paper is the possible change of character 
of an excitation, from magnetic to elastic or vice-versa, caused by the 
time variation of the applied field. 



From (3-2)-(3-4) one can fínd that, in the stationary state, the expectation 
values of the positive and negative circularly polarized phonon operators 
are related by 

W - O  
<a:(-))  = + <ai(+)> 2 

which shows that, in a large portion of the two upper branches of the dis- 
persion diagram, the influente of the negative circularly polarized phonons 
is small. Therefore, we can neglect the negative phonon operators in (2-27). 
Dropping the (+) index in the phonon operators left, we can write the 
Hamiltonian as 

2 = C [Ao, c: c, + Aw, a: a, i- i4 t20, (c: ak - a: C& 
k 

(3-8) 

This Hamiltonian can be diagonalized by new operators obtained from 
linear combinations of the magnon and the phonon operators, 

where 

and @cI = ) (w, - o,,,), ob = (3-10) 

The transformation (3-9) is such that the new operators satisfy the boson 
commutation relations 

[Ak, A:,] = [Bk , B:,] = Skk', 

[Ak, Bk'] = [ A ~ ,  B:.] = 0, (3- 1 1) 

[Ak 7 Av] = [Bk 7 &] = 0, 

and the Hamiltonian becomes 

2 = E [ho, (k) A: A, + hw, (k) B: BJ , (3- 12) 
k . 

where 



which are the normal mode frequencies corresponding to the two upper 
branches of Fig. 3. These frequencies can also be obtained from (3-5) by 
elimination of the negative root. Eqs. (3-9)-(3-12) lead to the interpretation 
of A: and Bf, being the creation operators of quanta of collective magne- 
toelastic excitations, with energy ho, and hoB, A, and B, are the annihi- 
lation operators. Note that far from the crossover region, i.e., when the 
difference between the magnon and the phonon frequencies is much larger 
than the splitting of the two branches ( 1  o, - o, 1 > a,), we have the fol- 
lowing limits: 

op > 0, OA-' o, and o,+ o, 
( B k  + 0) 

(3-14) 
Ak + a, Bk + Ck 

Um > mp oA + o, and o, + o, 
Ak -+ - ick Bk -+ - ia,. 

(3- 15) 
(a, + 01 

The stationary states of the Hamiltonian (3-12) may be obtained by applying 
integral powers of the creation operators to the vacuum state. The single 
mode states can be written in normalized form as 

It is not difficult to show that the mean occupation numbers of magnons 
and phonons in these states are given by 

which are in agreement with the limits (3-14) and (3-15). Note also that, 
as a i  + Pi  = 1, the mean number of magnons plus the mean number of 
phonons in any state is the total number of the magnetoelastic quanta in 
that state. 

The stationary states (3-16) can also be expanded in terms of the pure 
magnon and the pure phonon eigenstates. The magnetic eigenstates des- 
cribe systems with well defined number of magnons and uncertain phase. 
They have been used in nearly ali quantum treatments of thermodynamic 
properties, relaxation mechanisms and magnon interaction processes in 
ferromagnets. On the other hand, they do not correspond to the macros- 



copic spin waves used in the semiclassical treatments. This is clear from 
the fact that the first order components of the transverse magnetization 
(2-13) have zero expectation values in the stationary states. In addition, 
a system that behave nearly classically should involve a large and uncertain 
number of magnons, with well defined phases. It has been indicatedl7*l8 
that in order to establish a correspondence between classical and quantum 
spin waves one should use the concept of coherent magnon states, defined 
by analogy to the photon coherent states19. In the same way we introduce 
the magnetoelastic coherent states. The single mode coherent states are 
defined as the eigenstates of the annihilation operators 

They can be expanded in terms of the eigenstates of the Hamiltonian 

where u stands for uA or u ,  

4. The Magnon-Phonon Interaction in a Time-Dependent Magnetic Field 

In this section, we assume that the ferromagnetic lattice is subject to an 
uniform magnetic field which varies in time. In order to understand one 
of the important aspects of this situation, let us assume that prior to an 
instant of time t, the field is constant, between t, and t, it increases mono- 
tonicaily in time, and after t, it remains constant, at a larger value than 
before. We assume also that, prior to t, , a magnetoelastic wave with 
essentially pure phonon character was propagating in the crystal, with 
the frequency and wave number illustrated in Fig. 4. We now ask what 
happens to this phonon excitation as the magnetic field increases (resulting 
in a motion of the magnon curve), and what the final state is after t ,  . As 
will be shown later, the wave number of the excitation remains constant 
during the process, because the field is spatially uniform. As a result, as 
the field changes the frequency of the excitation changes and goes through 
the crossover region, Therefore, the final state will be a superposition of 
states in the same branch as the initial and final states in the other branch, 
i.e., a superposition of magnon and phonon states. The conversion from 
a pure phonon excitation produced in Yttrium Iron Garnet by a piezoelec- 
tric iransducer into a magnetic excitation, detected by the current induced 
on a nearby fine wire, has been observed2. The magnon-phonon conver- 



Fig. 4 - Behavior of an initially phonon excitation in a time varying magnetic field. 



sion efficiency, which will be defined later, has also been measured as a 
function of the time rate of change of the fieldg . In the following sections, 
we study the evolution of the quantum system in this process. 

The Hamiltonian of the system with H(t) as an explicit function of time, 
can be obtained directly from (2-27) by letting o, be a function of time. 
Note that in the case of z-directed waves, o, = (2pH + Dk2)/h, so that 
o, is proportional to H(t). Therefore, with the assumptions made in Sec. 3, 
we can write 

1 
( t )  c-: c, + ho, a', a, i- - ho, (i: a, - a: c,) 

2 I 
= C [ho, (t) A; A, + ho, (t) B: B,] . 

k 
(4-1) 

The equations of motion for the magnon and the phonon operators can 
be obtained from (3-1) and (4-1). As none of the transformations used to 
define c, and a, involve time-dependent quantities, these operators are 
not explicit functions of time. Therefore we have 

The equations of motion for the normal-mode magnetoelastic operators 
can be obtained from (3-9) and (4-2), or directly from the diagonal operator 
(4-1). In this case, one has to note that the partia1 derivatives of the operators 
with respect to time are not zero. We have 

. 0 
A: = io, (t) A: + i - Bk , B: = iw, ( t )  B: + i - A: (4-3) 2 2 

where 9 = 2 arc cos PLK)~]~'~ ---- and 

Equations (4-2) have the same form as the semiclassical equations2 for 
the transformed magnetization and elastic displacement variables, whereas 
(4-3) are the same as for the normal-mode magnetoelastic variables. Notice 
that if aH/dt  = 0,9 is zero and the equations for A, and Bk are not coupled 



to each other. In this case the states corresponding to the two branches 
of the dispersion diagram of Fig. 3 are orthogonal to each other at a11 
instants of time. However, if 8 # 0, one can couple the excitations of the 
two branches and the situation illustrated in Fig. 4 is plausible. 

The foregoing equations have been formulated in the Heisenberg picture, 
which is characterized by the time-dependent operators, 'and by a time 
independent state vector. Therefore, if the system is initially in a state for 
which the expectation values of the magnon and the phonon operators 
are not zero, the time evolution of the expectation values are governed 
by Eqs. (4-2) and (4-3). As a consequence, a quantum mechanical analysis 
of this process in terms only of the expectation values of the operators 
will give the same results as the previous classical treatment2. Our aim, 
however, is to obtain also some information about the system with respect 
to the time evolution of its possible states of excitation. 

5. Explicit Time-Dependent Invariants 

The invariance properties of a system play a large role in Quantum as 
well as in Classical Mechanics. In the problem we are considering, an 
invariant with respect to time is expected to play two important roles. 
First, for the situation illustrated in Fig. 4, we have to define a magnon- 
phonon conversion efficiency in terms of a quantity which is conserved 
in the process. As the system is not conservative, the efficiency cannot 
be defined as the ratio between the energies of the two states. Second, it 
is possible to study the evolution of the state of a system with a time- 
dependent Hamiltonian, by means of a simple theory20 based on the 
expansion of the state in terms of the eigenstates of invariant operators. 

In the semiclassical theory of the magnetoelastic crystal in a time varying 
magnetic field, it was found that, due to the spatially uniformity of the 
field, a quantity identified as the quasi-momentum density of the system 
was conserved2. The momentum density which was found was the sum 
of the spin-wave and the elastic-wave momenta We construct the quantum 
momentum density operators for magnons and phonons by replacing, in 
the classical expressions, the magnetization and the elastic displacement 
by the corresponding operators. 



The total momentum of the system is 

and, with the aid of the commutation relations for the magnon and phonon 
operators, ir can be shown that 

P = 1 hk (c; c, + ai a,), 

provided that terms with three or more operators are discarded. Eq. (5-4) 
has the expected form for the momentum of an elementary excitation in 
solids. In addition, the total momentum of magnons and phonons is equal 
to the total momentum of the quanta of the magnetoelastic system: 

We can see also that the momentum for each k-mode is proportional 
to the occupafion number of quanta of the mode. The equation of motion 
for P(t) is 

dP dP 1 
-- = - + - [P, #]. 

dt at ih 

The commutator which appears in (5-6) is zero, a conclusion easily drawn 
from the expressions of c@ and P in terms of the normal-mode magne- 
toelastic operators, (3-12) and (5-5). The partia1 derivative of P with respect 
to time is also zero, which can be proved with the aid of (4-3), or directly 
from (5-4), because a, and c, are not explicit functions of time. Therefore, 
d ~ / d t  = O and P is an explicit time-dependent invariant. Notice further 
that it is a Hermitian operator. Under the assumptions we are considering, 
the total number of quanta is also conserved. This latter property is true 
only because the "reflected particles" represented by the operator a- ,  
in (3-2)-(34) l ~ e r e  neplected. However, thd ~o:iclusion for ? holds true 
in general. FinalPy, one can see that as the modes with diffsrent k are not 
couplecl by the time variation of the inagnetic field, the wave vector of 
an excitation is also conserved. 

6. Solutions of the Ileisenberg Equations: the Magnon-Phonsn Conversion 
Efficiency 

This section is devoted to the presentation of the solutions of the Heisen- 
berg equations of motion introduced in Sec. 4. As mentioned previously, 



Eqs. (4-2) and (4-3) have the same form as the corresponding semiclassical 
equations, and therefore we can apply here the solutions already known. 

Although Eqs. (4-2) and (4-3) are operator equations, their linear character 
means that they can be solved in terms of c-numbers linear equations. 
The solutions to the coupled equations (4-2) may be written in the form 

c; ( t)  = q(t) c: (to) + p(t) a: (to), 
ai ( t)  = s(t) c; (to) + r(t) a: (to), (6-1) 

where the momentum invariance implies that 

and t he initial conditions are 

In the c-number functions introduced we have omitted the index k to 
simplify the notation. From (4-2) and (6-I), we obtain for two of the 
functions: 

Similarly, for Eq. (4-3) we have: 

A: ( t )  = x(t) A: (to) + w(t) B; (to), 
B; (t) = y(t) A; (to) + z(t) B; (to) (6-5) 

where 

and 

Analogously we obtain: 

e 
x(t) = io, ( t)  x(t) + i - V@), 

2 - 
a y(t) = ioa ( t )  y(t) + i - x(t). 2 

Some of the functions introduced in (6-1) and (6-5) have special signifi- 
cance. To see this let us assume, for example, that at the instant to we have 



in the system a pure magnon excitation characterized by a state I$o), 
with mean momentum gm = (4b0 I Ak c: c, I 4b0) = AkE. Obviously, this is 
only an approximation because it is not possible to have a magnon exci- 
tation without some phonon admixture. However, if k is very far from 
the crossover region, this approximation may be very good. If after to 
the applied field varies in time, there will be some momentum transfer 
to phonon excitations, as revealed by the second of Eqs. (6-1). As the sum 
of the magnon and the phonon mean momenta is conserved, it is con- 
venient to define a conversion efiiciency from the magnon to the phonon 
state as the ratio between the mean momenta in the two states. Therefore, 
using (5-4), (6-1) and the fact that (I), 1 ak 1 tjo> = 1 a: akl $0) = O, 
we find 

v m p  (t) = g p  (tMm (to) = 1 s(t) l 2  . (6-9) 

Notice that this is valid for any magnon state I*,). Analogously, we see 
that if the system is initially in a phonon state, the phonon-magnon con- 
version efiiciency is given by l p  1 2 .  In the same way, we can define a mo- 
mentum conversion factor for the two magnetoelastic normal-mode exci- 
tations, which represents the transfer of momentum between the two 
branches of Fig. 3. It can be shown that 

which are valid for conditions analogous to those used to derive (6-9), 
i.e., to obtain (6-10) we assume that the system is initially in a pure A state, 
and for (6-11) it is initially in a pure B state. 

The systems of linear equations (6-4) and (6-8) cannot be solved for a 
general time dependence of the applied field. However, it is possible to 
find their solution for particular cases of interest. In the case of a slowly 
varying field (the slowness condition will be specified later), i.e., in an 
adiabatic approximation, it is convenient to work with Eqs. (4-3) and (649, 
because in this case the coupling between the A and B modes is small. 
Consider, for instance, that in this approximation we have the situation 
depicted in Fig. 4. The system is initially in a phonon state in branch A 
and the field increases so that the frequency goes through the crossover 
region. The phonon-magnon conversion eficiency js therefore given by 
1 - ) y(t) l2 . The solution of ( 6 4 ,  in the limit where 2pHF e o: , is identical 
to the solution of the semiclassical equations2. In this case, one finds 



where is the field gradient at the instant the frequency goes through 
the crossover point, and 

is a critica1 field gradient evalyated ai the wave number of the excitation. 

Another situation of interest is that of the sudden change of the field, 
characterized by the condition 2 , u ~ / h  > a:. In this case the coupling 
between modes A and B is strong, so that their concept as quasi-normal 
modes loses its meaning. In this case, however, the coupling between the 
magnon and phonon operators is small, and Eqs. (4-2) and (6-4) can be 
solved approximately. Again, considering the situation of Fig. 4, we see 
that the phonon-magnon conversion efficiency is given by I p(t) l 2  , where 
p(t) is a solution of the equations for p and r which are identical to (6-4). 
The analogy with the semiclassical case gives immediately2 

Finally, we note that Doane20 has integrated semiclassical equations 
identical to (6-4) exactly, under the assumption that the magnetic field 
has a time variation H(t) = H, + 6H tanh (olt/2). This is a rounded step- 

Fig. 5 - Variation of the field with a tanh (o(t/2) time dependénce. 



like variation, just of the type necessary to produce the conversion illus- 
trated in Fig. 4. In Fig. 5 we show a plot of the time variation assumed. 
~ o a n e ~ '  showed that Eqs. (6-4) can be transformed into a hypergeometric 
equation exactly soluble in this case. For the same situation previously 
considered, it can be shown that the phonon-magnon conversion efficiency, 
d e h e d  as the ratio between the magnon momentum at t -+ co and the 
phonon momentum at t -r -co, is given exactly by 

Fig. 6 shows plots of the phonon-magnon conversion eficiencies gpressed 
by Eqs. (6-12), (6-14) and (6-15), valid.respectively for H < Hcrir ,  H H,,& 
and H - tanh (at/2). The condition H e H,,, is called the strong magnon- 

Fig. 6 - Phonon-magnon conversion efficiency as a function of the field gradient at the 
crossover. 



phonon coupling situation, because in this case there is little transfer of 
momentum between the two magnetoelastic normal modes, and therefore 
as the frequency passes the crossover there is a large conversion from an 
elastic excitation into a magnetic excitation. The opposite situation, where 
H » H,,, , represents a weak magnon-phonon coupling, because in this 
case there is a large transfer of momentum between the two normal modes. 

7. Conclusion: Cornparison between Qwantum and Semiclassical Theories 

In the previous sections we have analyzed the behavior of a ferromagnetic 
crystal in a time-dependent magnetic field, with respect to the interaction 
between its phonon and magnon excitations. In particular we have been 
interested in the process whereby an initially phonon excitation is par- 
tially converted into a magnon excitation by means of a proper field varia- 
tion. As nsted in Sec. 6, the Heisenberg equations of motion for the 
creation and annihilation operators are identical to the classical equations 
for the variables derived from the magnetization and the elastic displa- 
cement vectors. As a result, the calculation of the expectation values of 
the operators of interest, including the phonon-magnon conversion effici- 
ency, by means of quantum mechanical methods, leads to the same 
solutions obtained by semiclassical treatments In this respect, the only 
difference between the present treatment and the semiclassical one is that 
here the excitations are quantized. However, one advantage of the present 
analysis is that the various transformations made to obtain the boson 
operators form a natural approach in quantum theory, whereas analogous 
transformations made in the classical treatment bear no physical meaning, 
and were performed with the sole purpose of simplifying the equations. 

There are some aspects of the problem, however, which cannot be explained 
in semiclassical terms. One of them is the amplification of the zero point 
(vacuum) oscillations, which is a source of quantum noise. This effect did 
not arise in our study because in the magnetic Hamiltonian we neglected 
the dipolar interaction, which is responsible for the coupling between the 
longitudinal field variation and the magnetic v a ~ u u m ' ~ .  Another one is 
that of the precision of the measurement of the expectation value of an 
observable. To investigate this point, let us consider the situation where 
the system is initially in a "pure" phonon state (J/,). Due to a time varia- 
tion of the applied field, the system may end up in a "pure" magnon state. 
As shown in Sec. 6, the conversion effíciency is given by l p 1 2 ,  and this 
result is valid for any initial state which has a nonzero mean momentum. 
It çan be, for instance, a stationary state of the Hamiltonian, or a coherent 



state. The stationary states have zero expectation values for the magne- 
tization and the elastic displacement, and therefore there is no good reason 
for studying the precision of their measurements. The coherent states, 
on the other hand, are the states most closely related to the classical pro- 
perties of a system. Furthermore, it has been s h ~ w n l ~ , ~ ~  previously that 
in experiments, a macroscopic excitation of the system results in the creation 
of coherent states. Hence, let us consider that the system is initially in 
a coherent phonon state, which is the type expected to be generated by 
a piezoelectric transducer in typical ultrasonics experiments. In other 
words, 

IS /O)=I~ ,k ) ,  where a,Iu,k)=ulu,k). 

Before the field starts changing in time, the variance of the operator 
(ai + ak), which is related to the displacement operator, is given by 

From this result, it is possible to show that the product of the variances 
of (ai + a3 and of its canonical conjugate is given by h2/4, which is the 
minimum value allovved by the uncertainty principie. This is a well known 
property of coherent stateslg. An indication of the time evolution of the 
coherence of the system, and consequently of the precision of measure- 
ments, is given by the time dependence of the variances of obsemables. 
Using the Heisenberg equations of motion (6-1) and the commuting pro- 
perties of the magnon and phonon operators, we find that for an initial 
coherent phonon state we have 

A2 [ai (t) + a, (t)] = 1, 
a2 [c; (t) i- c, (t)] = 1. (7-2) 

Therefore, a system described by a Hamiltonian of the type (4-I), which 
is initially in a coherent state, maintains its coherence properties regardless 
of the time dependence of the field. This result emphasizes the conclusion 
that, under the assumptions made in this paper, nothing essentially new 
arises from the quanbization of the fíelds in a magnetoelastic system under 
a time dependent magnetic field. 

The authors are grateful to Prof. Nicim Zagury for very helpful discussions. 
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