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1 .  Introduction* 

The interest in hadronic collisions with final states of high multiplicity 
(n z+ 2 if n is the number of particles of the final state), is not new but 
has received an increasing attention in recent years. This is evident from 
a glance at the prominence given to this subject in international meetings 
and from the general activity in the field. 

The reasons for such an interest lies, first of all, in the experimental aspect 
of the problem. 

The present generation of accelerators, in fact, has already reached an energy 
at which the phenomena of multiparticle production plays a considerable 
role. The new generation of accelerators, on the other hand, shifting the 
center of research in this field from the energy domain of a few GeV to 
that of severa1 hundred GeV, will make available high quality data on the 
processes with many particles in the final state which will give us the link 
with the energy region where cosmic rays data are already known. 

From a theoretical point of view, aside from the general need of accounting 
for the impressive mass of existing data, the interest in these processes 

* In this survey, referentes and notes appear at the end of each chapter. , 
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lies in the realization that multiparticle production processes do not re- 
present a correction to two-body reactions as it would, for instance, be 
the case in nuclear physics. 

In the latter case, actually, many body processes do not appear to contain 
essentially new inforrnation on the dynamics of the problem. 

In the case of hadronic interactions, on the other hand, the experimental 
data teach us that, above 10 GeV/c (for the momentum p,,, of the incident 
particle in the laboratory system), the contribution of many-body events 
represents, roughly speaking 70% of the total cross section. Furthermore, 
the most prominent contribution to the elastic scattering (Pomeron exchan- 
ge) is, very likely, due to the shadow of a11 the inelastic channels through 
the mechanism of unitarity. 

Also for the latter reason, a better understanding of the dynamics gover- 
ning the production of many particles is essential in the field of high energy 
physics. From this point of view, it is very important to make a distinction 
between the events with n = 2 and n > 2, where n is the number of par- 
ticles in the final state. 

In the present paper, we will mainly concentrate our attention on the 
processes with n > 2 since these, as stated above, are the msst relevant 
ones in the energy region of the new accelerators and of cosmic rays. 

The difficulties in proceeding in this direction stem, essentially, from the 
large number of independent variables that one has to deal with when 
n particles are present in the final state (3n-4 variables) and in the cor- 
responding problem of organizing the existing data. The latter problem, 
evidently, originates from the lack of a true theory which could suggest 
in which direction one should move in this jungle of variables and which 
set of variables to select as the most signicative one. 

The above considerations have been taken into accont in the presentation 
of the material that follows, and have motivated the choice made in the 
discussion of the experimental data (Chapter 2). The alternative line of 
a complete review of the presently available information would have, in 
our opinion, obscured too much the situation. The same criterion has been 
followed in the analysis of the kinematical aspects of the problem, i.e., in 
the study of the phase space and also in the selection of the dynamical 
models. 



2. Review of the Experimental Data in the GeV Region for Hadronic 
Processes of High Multiplicity 

2.1 Total Cross Sections. 

The most recent data of the Serpukhov machinel seem to indicate that 
the total cross sections of n- , K -  and p on protons and deuterium remain 
practically constant in the energy domain corresponding to an incident 
momentum in the laboratory system (p,,, hereafter) between 20 and 
65 GeV/c (see Fig. 1 and Table I). If confirmed, these data put anew the 
problem of the validity of the Pomeranchuk theorems2. A related question 
is then whether or not the forward scattering amplitude becomes predo- 
minantly imaginary at high energy (as well known general arguments 
based on the unitarity condition would suggest), i.e., if 

(where ~ ' i s  the scattering amplitude and E the center of mass energy). 

Fig. 1 - Total cross-sections for n-, K - ,  p collisions on protons, deuterium and neutrons 
(From Ref. 1). 



I Total crosa-eectiona (mbl 
Momcntum 

(GeV/cl  8-P 
K -p * PP n -d K-d bd n n K-n pn 

Table I - Results for the measurements of total cross-sections for K - ,  K - ,  I> collisions on  
protons, deuterium and neutrons (From Ref. 1). 



2.2 Cross Sections for Inelastic Channels. 

It has been observed3 that the cross section for a given inelastic channel 
grows, with increasing momentum of the incident particle, from zero 
(at threshold) to a maximum, and then decreases toward zero as the mo- 
mentum goes to infinity. In Ref 3 an attempt has been made to separate 
the dynamical content of the inelastic cross sections from the dynamical 
part. This is done by defining the dynamical part of the cross section o* 
as normalized to the Lorentz invariant phase space (L.I.P.S.) for a11 the 
inelastic reactions that have been analyzed in rc' p, K' p, pp and pp coli- 
lisions, 

o 
6* = --- . 

L. I.P.S. 

It then follows that, as function of p,,, o* can be described3 by the simple 
power law (see Table 11) 

a* cc p ,  (2-2) 

where n increases with increasing multiplicity of the final state (see Fig. 2). 

2 4 6 8 
MULTIPLCITY -- 

Fig. 2 - Average values of the exponent n in eq. (2.2) for the reactions np and Kp as functions 
of the multiplicity (From Ref. 3). 

As can be seen from Fig. 2, Eq. (2-2) gives a better interpolation to the data 
corresponding to channel of high multiplicity as compared to the ones 
of low multiplicity. This can be attributed to the fact that, in the latter 
case, resonance production still plays an important role (whereas it becomes 
inessential in the regime of high multiplicity) and that this resonant effect 
has not been taken into account in removing the phase space contribution. 
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2.3 Topo!ogical Cross Sections (Charged Prongs) 

An interesting way of describing production processes is through the use 
of topological cross sections. In the case, the inelastic events are classified 
in terms of the total number of charged particles in the final state of a given 
reaction and the term topological cross section refers to the sum of a11 
those reactions which contribute to a given topology4. 

Some of the best data in what concerns topological cross sections are the 
Brookhaven data5 for pp collision where the events are analyzed with four 
or more charged particles in the final state in the interval of p,, between 
13 and 28.5 GeV/c (more precisely, at 12.88, 18.00, 21.08, 24.12 and 28.49 
GeV/c). The events are combinations of the various reactions 

pp -, pp + m(n" n-) + neutral pions, 

pp -, pn + n" + m(n+nT) + neutral pions, 

pp -, nn + 2n" + m(n+ R-) + neutral pions, 

with m 1. 

The results of these analyses for the topological cross sections (versus p,,,,) 
are given in Fig. 3 (see Fig. 4 for a comparison with the data of other 
experiments6). 

Some general conclusions can be drawn from the above data 

a) the topological cross sections for 4, 6, 8 charged prongs leve1 at cons- 
tant values with increasing p,,, (of course, it is an entirely open question 
whether or not they will eventually tend to zero as pLab -, CO); 

b) at 28.5 GeVlc the following relation holds 

c) the topological cross sections for higher multiplicity increase with 
p,,, (this is to be expected since in this case there is less energy available 
for each particle than in the case of lower multiplicity). 

On the basis of these observations, Wroblenski7 has proposed a pheno- 
menological formula giving a universal energy dependence of a11 the topo- 

149 



CHARGED PRONG CROSS SECT IONS 
FOR p-p I N T E R A C T I O N S  

LRL-BERKELEY DATA ( 8 0 " B N L  BUBBLE 
CHAMBER) 

&-----,--,------ 
-0 

4 PRONGS 
-&----+, 

/--- 

-0- 
6 PRONGS 

Q--CC 

/?= ,' 10 PRONGS 

LAB MOMENTUM (GeV/c) ---t 

Fig. 3 - Charged prong cross-sections for pp interactions at 12.88 GeV/c, 18.00 GeV/c, 
21.08 GeV/c, 24.12 GeV/c, 28.49 GeV/c bearn mornenta (Frorn Ref. 5 and 27). 



logical cross sections considered. In fact, plotting these cross sections as 
functions of the c.m. energy for pair of charged particles, one finds 

1 
O2(k+ i )  = 2 ó2k P4) 

(when the measurement is made at the same c.m. energy for pair). 

Fig. 4 - pp topological cross-sections as a function of the beam momentum and c.m. energy 
(From Ref. 7). 

Thus, at the present energies the data are suggestive of the "2-k law", 
namely, the production cross sections for creation of one, two, three,. . . 
pairs of charged particles are in the ratio 1 : 2-i  : 2 - 2  : . . . when measured 
at the same c.m. energy for pair of particles. 

This gives the empirical rule (k > 3) 

(see Fig. 5 and Fig. 6). 



GoV ---c 

Fig. 5 - pp topological cross-sections as a function of the beam momentum and c.m. energy 
per pair of charged particles, 2E,,/n, n = prong number (From Ref. 7). 

On the other hand, from the data in Figs. 3 and 4, one sees that o4 tends 
to a maximum and then decreases very smoothly. From the 2-k  law, one 
tentatively concludes that a11 the topological cross sections tend to a 
limiting value. In fact, from the assumption that the 2 - k  law is valid, one 
would have that a11 the topological cross sections a,, a,, o, etc. must 
go to constant values. Should this not be the case, the total inelastic cross 
section would simply be given by o, since all the other cross sections would 
tend to zero with energy. If a limiting value is attained, one h&, on the 
other hand, 

These observations, however, deserve further investigation. In particular, 
the 2-k  law predicts a limiting constant value for the average multiplicity 
which does not seem to be in agreement with the experimental data (see 
Sec. 2-4). 

Thus, whereas the 2-k  law seems to be empirically well established at 
the present energies, doubts can be raised relatively to its attendibility 
at all energies. 



Fig. 6 - a - p  topological cross-sections as a function of the c.m. energy per pair of charged 
particles (From Ref.' 7). 

No. O£ 
Zharged Prongs 

2 

T o t a l  

6.5  

10.5 

S.  5 

2 .4  

0.45 

0.05 

+ - + -  
ppn n n n (0.38) 
H - + -  

A n n n  P (-0.2) 

+ - +  
ppn n n n-n+n- (0.115) 

Table 111 - Cross-sections for pp at 28.5 GeV/c. (Frorn Ref. 27). 



The results previously quoted (Refs. 5 and 7) agree with those of Ellis 
et aL8 and of Connolly et al.' at 28.5 GeV/c for the lab. momentum of the 
incident proton (see Table I11 where, together with the values of the topo- 
logical cross sections for 2, 4, . . . charged prongs, are given the individual 
cross sections for production of pairs of nf n- without no's in the single 
channels). 

Some conclusions which follow from Table I11 are in order: a) for p,,, 
between 10 and 30 GeV/c, 314 of the proton-proton total cross section 
are due to the channels with 2, 4 and 6 prongs; b) the individual cross 
sections (without no's in the final states) become negligible, with increa- 
sing multiplicity, as compared to the total cross section. 

2.4 Average Multiplicity as Function of Energy. 

The average multiplicity is defined as 

n =  1 
(n) = --- 

f cn 
n =  1 

where now o, denotes the cross section for production of n particles in 
the final state (and not the topological cross sections discussed previously). 
Certainly, (n) is function of energy and the experimental data (see below) 
suggest that it is a growing function of energy. 

The information on the energy dependence of (n) comes either from 
theoretical models or from the interpolation of the data connecting the 
cosmic-ray energy range with that of the accelerators. 

The various theoretical models suggest: 

A) Statistical models1° : (n) cc s1I4 

B) Multiperipheral m o d e l ~ " , ' ~  : (n) cc ln s 

C) Isobar models13: (n) K s1I2 

D) Wroblenski mode17: (n) cc const. 6 

where s is the squared c.m. energy. 
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In the energy interval covered by the present accelerators, it is very dif- 
ficult to distinguish between the various behaviors (2-8,l l)  even though 
the indications seem to point toward the suggestions of models of type 
A) or B). The data from the new generation of accelerators, however, will 
be necessary to clarify the situation. 

Concerning the interpolation between accelerator and cosmic ray data, 
one should be aware of the ambiguities inherent in the procedure of inter- 
polating between data of so different origin. We will, however, quote a 
few interpolating formulae that have been proposed by different groups. 

Mc Cusker and Peak14 suggest (in the range 16 5 E < 2800 GeV) 
N 

(n,)  e 4.1 In [EIln 1 61 (2- 12) 

(where n, is the number of secondaries and a11 units are in GeV). 

Yamada and Koshiba15 suggest either 

(n , )  2 4.4 In [E131 

or 

(n,) E 2.8 E1i4. 

These interpolations are to be compared with the more recent result of 
Jones et a1.16 (Echo Lake experiment) which give for the average multi- 
plicity of charged particles 

(n,)  = (1.41 IT .20) h Q + (2.04 + . 19), (2- 15) 

where Q is the c.m. energy available for each particle produced and the 
data refer to p p  collisions in the energy range between 90 and 800 GeV. 

From the above considerations, it seems that rhe average multiplicity 
increases and that the logarithmjc growth (2-9) is preferred. 

It is worthwhile to mention that the 2 -k  law discussed in Sec. (2.3), if assumed 
valid at a11 energies, leads to a constant multiplicity of charged particles 
since17 



The previous considerations show that the average multiplicity is a para- 
meter which can be crucial in discriminating between the various theo- 
retical models, i.e., between the various dynamical assumptions which, 
through specific mechanisms for the description of strong interactions at 
high energy, Iead to the different predictions for (n) of the kinds previosly 
mentioned (Eqs. (2-8,l 1))18 . 

As a final observation, we notice that the fluctuations around the average 
number of particles emitted at a given energy are expected to be fairly 
large (for example, in the RNL experiment at 28.5 GeV/c an event with 
16 prongs has been seen among - 1500 collisions). This seems to be con- 
firmed by the cosmic ray data. For instance, between .5 and 2 TeV, the 
average multiplicity isl' 

In the same range, the variance (or dispersion) 

D2 = (n2> - (n)' (2- 1 8) 

2.5 Mdtiplicity Distribution 

Another important parameter in order to discriminate between the various 
models is the multiplicity distribution which gives the number of times 
that a given number of secondaries is produced in a high energy collision. 

Brandt19 has interpolated the data for ? I - p  (see Fig. 7 )  with a Poisson 
distribution 

(where (n) is the total average multiplicity) and he finds that this inter- 
polation compares favorably with the data at 4, 8, 10 and 16 GeV/c. 

The same kind of distribution obtains in statistical-like models1° and is 
assumed in multiperipheral Regge models''. 

Along this line, C.P. Wang has proposed a mode120 with a distribution 
essentially analogous to that of Ref. 19 but where the multiplicity refers 



Fig. 7 - Distributions of the number of secondary pions produced in n'p interactions com- 
pared to Poisson distributions (From Ref. 19). 

to the pairs of charged particles only and he obtains satisfactory agreement 
with the data. However, it has been pointed out by Czyzewski and Rybicki2' 
that the experimental data used in Ref 20 are of low quality so that the 
conclusions drawn should be taken with caution. Moreover, in Ref. 21 
it is concluded that a Poisson distribution is not consistent with good 
quality data. This is shown by introducing a parameter which is the ratio 
of the mean multiplicity and the dispersion of the distribution of charged 
prongs. More precisely, one defines 

where D has been defined in Eq. (2-18) and P(n,) is the experimental frac- 
tion of events with charged prongs. 

Fig. 8 shows the deviation of the experimental data from the predictions 
of the Poisson distribution. The disagreement is not surprising, however, 
if one remembers the remark made at the end of Sec. (2.4) and if one recalls 



TOTAL CMS OJERGY E(GeV) - 
Fig. 8 - The ratio of the average multiplicity (n,) to the dispersion (see eq. 2.18) of the prong 
number distribution as a function of c.m. energy. The curves represent ( n , ) / D  calcuiated 
from the Poisson distribution (From Ref. 21). 



that the dispersion predicted by a Poisson distribution is (n,) .  It is clear 
then that a large fluctuation like the one of Eq. (2.19) cannot be given by 
a Poisson distribution. 

Czyzewski and Rybicki observed also that the formula I 

interpolates very well a11 the data jn the distrjbutions for the varjous pro- 
duction processes in r' p and pp collisions at different energia (see Fig. 9). 
In Eq. (2.23), d is a free parameter ( E  1.8) and the formula itself is the 
generalization of what one would obtain from Eq. (2.20) when one replaces 
the factorial with a gamma function for non integer values of its argument. 

More recently, Horn and S i l ~ e r ~ ~  tackled the problem of calculating the 
statistical distribution of pions in a production process where the charge 
is conservedz3. They find 

where J ,  is the Bessel function of zero order. The corresponding expres- 
sion for the mean multiplicity (n) is 

( n )  = - í zJ l  (2iz) /J ,  (2iz) (2-25) 

which gives the relation between ( n )  and z. The agreement with the data 
is good but the data used are the same as in Ref. 20 so that the same criti- 
cisrn applies. 

It is interesting to notice that the use of a Poisson distribution has' been 
criticized also from a theoretical point of ~ i e w ~ ~ .  Speciiically, one can 
show that models that predict Poisson distributed scattering processes are 
inconsistent with the requirement that total cross sections should asymp- 
totically become constant (or grow with energy) and violate general bounds 
if the multiplicity increases faster than a dilogarithmic function of energy. 

To see how this comes about, notice that, from Eq. (2.20) one has 

c,, = ãtot e-(+. (2-26j 



On the other hand, a bound by Martin25 requires that 
2 

Ptot 

Oel 
(2-27) 

where C is a (positive) constant and s, a scale parameter. 

Fig. 9 - Experimental prong number distributions X =  
0 

I_..) 
fitted by formula (2.23) (From Ref. 21). 
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Fig. 9 (cont.) 

Combining Eqs. (2.26, 27) one gets 

ln a,,, ,< 2 ln ln (s/s,) - (n) - ln C. (2-28) 

Thus if a,,, does not decrease with energy as s -+ co, we must have 

( n )  ,< 2 ln ln (s/s,) (2-29) 
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which, as previously discussed, is in contradiction with the experimental 
information on the rate of growth of ( n ) .  

2.6 Longitudinal and Trans~erse Momentum Distributions of Secondaries 

It has been shownZ6 that the angular distribution with respect to the 
momentum of one of the outgoing particles is factorizable as function of 
the longitudinal (p,)  and transverse (p,) components of the c.m. momen- 
tum. This implies that 

(see Fig. 10a) where p, p,  and p, refer to any of the outgoing particles. 

This observation follows from the consideration that the behavior of the 
curves given in Fig. 10a, for three different values of p ,  as function of p,, 
is essentially the same, 

In the same experimentZ6, measurements have been made for very small 
values of p,. A very narrow forward peak has thus been found for produc- 
tion of n+'s as well as of n-'S.  This peak can be simulated by 

d2 
õ - a e x p  [- 1 5p;].  

dQ d p  

Fig. 10b shows the behavior of the angular distribution in p, at fixed p,. 

Another set of data relative to the angular distributions as functions of 
p, and p ,  is given for pp c o l l i ~ i o n ~ ~ ~ ~  at 28.5 GeV//c (see Figs. 1 1,12) and 
for K; 27  at 12.7 GeV/c (see Fig. 13). 

From Figs. 10-13 and Table IV, useful information can be derived on 
the behavior with respect to pL and p, in the various c h a n n e l ~ ~ ~  : 

a) Properties with Respect to pL 

i) In the reactions 

p + p -i p + anything, 

K+ + p -+ K +  + anvthing, 



r PREUMINARY DATA 

THIS EXPERIMENT \ 
12.2 GeV/c 

RATNER ct. al. 

Fig. 10a - Angular distributions at fixed p ,  as function of pkm. for n' from the reaction 
pp -+ n'+anyfhing (From Ref. 26). See next page (cont. Fig. 1Oa). 



- - -  

p+p+-n ++ANYTHING 

PRELIMINARY DATA 

Fig. 10a (cont.) P;~[W/C] - 
the mean value ( p , )  of the outgoing proton and kaon respectively are 
larger than for the produced pions. 

ii) In the case of reaction (2.32), the mean value (p,) of the outgoing 
proton decreases with increasing multiplicity. 
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iii) For reaction (2.32) the p, distribution of the pions produced has a 
maximum at p, = 0. 

iv) The mean value (p,) of the outgoing pions decreases with increasing 
multiplicity. . L 

b) Properties with Respect to p, 

i) The distributions in p ,  have behaviors very similar for the various' 

PION PRODUCTION CROSS SECTION 
P* P-nt+ ANYTHING 

v n* i RATNER et a1 (1967) 
, 12.5 GeVlc 
n* CRABB et ai (1968) 
n', 12.5 GeV/c 

Fig. 10b - Angular distributions at fixed p im as function of p,  from the reaction pp + nt + 
anything (From Ref. 26). 



LONGITUMNAL MOMENTUM pp AT 28.5 W c  

PL(p)(GeV/c) --, P ~ ~ A ( G ~ v ~ )  - 
Fjg. 11 - Center-of-mass longitudinal distributions for protons and a' from the reactions 

P P - + P P " + " -  
pp -+ pp n + n - n + n -  

pp -+ ppn 'n-n 'n -nf  n- ,  

at 28.5 GeV/c (From Ref. 27) 



TRANSVERSE MOMENTUM pp AT 28.5 GeV/c 

Fig. 12 - Center-of-mas~ transverse momentum distributions for protons and n' from reac- 
tions pp -t ppn'n- pp + p p n + n - n + K  pp -t ppn 'n-n 'n-n+n-  

at 28.5 GeV/c. (From Ref. 27). 



kinds of outgoing particles (contrary to what happens for the v, distri- 
butions). 

ii) (p,) increases very slowly with increasing multiplicity (actually, it 
stays nearly constant for the pions whereas a slight increase is noticed 
for the proton). 

iii) The mean value (pT) is relatively independent of the energy of the 
incident particle. 

These observations relative to ( p , )  support the observation that in the 
c.m. system the particles produced are distributed in two narrow cones 
along the forward and backward directions. In the laboratory system, this 
corresponds to having two cones, a narrow one along the direction of 
flight of the incident particle (the forward cone of the c.m.) and a diffuse 
one (the backward cone of the c.m.). 

The different behaviors of rhe outgoing proton (or kaon) as compared 
to the other particles produced (mostly pions), lead to the suggestion that 
the former should be considered as "leading particles". This is consistent 
with the observed smallness of the inelasticity (i.e., the fraction of energy 
which the incident particle looses in the production process). For instance, 
at E,,,, i 30 GeV (where E,,,, is the total center of mass energy), we have 
for the mean value of the c.m. energy of a produced p i ~ n ~ ~  

The above ratio is a slowly varying function of E,,,, (consistent with Ecl,c,). 
On the other hand, for the outgoing proton, we have 

Other information can be obtained5 from the analysis of the p, and p, 
distributions of an outgoing pion for a given charge configuration in the 
final state at a given incident momentum. These distributions, normalized 
to the total number of tracks N,,,, are interpolated by 

dN/dp, =(4/3)N,,, z - ' / ~  UT 512 PT 312 ~ ~ P ( - ~ T P T )  (2-36) 

and 

~ N P P L  = Nmt a, exP (- a, PL). (2-37) 
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Fig. 13 - Center-of-mass longitudinal, p,, and transverse, p,, distributions for proton, K +  , 
n' in the reaction K+  p + K + n" n- xf  n- p, at 12.7 GeV/c (From Ref. 27). 



Fig. 14 - Fits 
Dependence 
Ref. 5). 

the p ,  and p, distributions for n- and R +  produced in pp 
fitted parameter on beam momentum and multiplicitic 

collisions (o, b, c, 4. 
:s (e. f, g. h). (From 



The distribution in p, is suggested by a description of the production 
process in terms of a thermodynamical model. The parameters a, and 
a, in Eqs. (2.36, 37) vary with the multiplicity and with the energy. The 
situation is illustrated in Fig. 14. 

Table IV - Average values of p, and p, in pp at 28.5 GeV/c and in K'p at 12.7 GeV/c (From 
Ref. 27). 

2.7 Pionization. 

Another important experimental aspect of hadronic interactions of high 
multiplicity which we finally wish to discuss briefly, concerns the relative 
abundance of the different kinds of particle produced. As already mentioned 
previously, it is well known that the production of pions represents the 
most relevant part of these processes. 

Fig. 15a gives the variation of N , - / N , -  and of Np/N, -  as function of 
the incident beam momentum. The data refer to small angle proton-alu- 
minum collisions with an incident energy of about 70 GeV (Serpukhov-Cern 
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collaboratim). Fig. 15b gives the same quantities as function of the inci- 
dent beam momentum divided by the maximum momentum p,,, kine- 
matically aliowed to the heaviest particle (K- and p) at various energies. 

70 GeV \ 

Gev 4 
A :O GeV 1 

Fig. 15a - Particle ratios R, measured at 70 GeV incident energy, versus beam laboratory- 
momentum. (From Ref. 29). 

Fig. 15b - Particle ratios versus beam laboratory-momentum divided by the kinematically 
allowed maximum momentum of the heavier particle, K -  and P respectively. (From Ref. 29). 

Some general conclusions on the ratios N , - / N , -  and Np/N , -  between 
the number of particles of different kinds produced can be drawnZ9 (see 
Figs. 15a,b and Table V): 

i) they decrease considerably with increasing momenta (two orders of 
magnitude in an interval of 20GeV/c); 

ii) in the angular interval considered, they are independent of the angle; 

iii) plotted vs. the variable plp,,,, they 1Óok similar3' in the limit p -+ p,,, 
for collisions at 70 GeV and at 19.2 GeV; deviations are observed for 
P/P,,, I .6. 
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Table V - Particle ratios and n- production cross-sections as a function of secondary mo- 
mentum (P) and production angle (e) for severa1 incident proton energies E,, (lab. system) 
(From Ref. 29). 

References and Notes to Chapter 2 

1. Serpukhov-Cern collaboration, Phys. Letters 30B, 500 (1969) and paper presented at 
the Kiev Conference (1970). 
2. Since the Serpukhov data (Ref. 1) on total cross sections for negatively charged par- 
ticles on proton and deuterium, many theoretical papers have appeared commenting, on 
the one hand, on the various mechanisms by which one could explain the apparent vio- 
lation of asymptotic theorems and, on the other hand, on the implications of the pos- 
sible violation of such theorems. A discussion on these points is, clearly, outside the scope 
of the present survey. 
3. T. Hofmokl and A. Wroblenski, Phys. Letters 31B, 391 (1970). 
4. In this Section we denote by a,, the topological cross section for production of 2k charged 
particles. In the following, the notation a,: will also be used to denote the single production 
reaction for creation of n particles (charged or not) in the final state. 
5. D. B. Smith, R. J. Sprafka and J. A. Anderson, Phys. Rev. Letters 23, 1064 (1969). 
6. Almeida et al., Phys. Rev. 174,1638 (1968); Holmgsen et al., Nuovo Cimento 57A, 20 (1968); 
Bodini et al., Nuovo Cimento 57A, 475 (1968); Alexander et al., Phys. Rev. 154, 1284 (1967); 
Eisner et al., Phys. Rev. 138B, 670 (1965); Hart et al., Phys. Rev. 125, 747 (1962); Pickup et al., 
Phys. Rev. 125, 2091 (1962); Yekutieli et al., Nuc. Phys. B18, 305 (1970). 



7. A. Wroblenski, Phys. Letters 32B, 145 (1970). 
8. W. E. Ellis et al., BNL 13544 (1970). 
9. Connolly et a/., BNL 13694 (1970). 
10. See for instance E. Fermi., Prog. Theor. Phys. 5, 570 (1950); for a complete review, see 
Hagedorn et a/., "Atlas o f . .  .", Cern preprint (1970). 
11. D. Amati, S. Fubini and A. Stanghellini, Nuovo Cimento 26, 896 (1962) and L. Ber- 
tocchi, S. Fubini gnd M. Tonin, Nuovo Cimento 25, 626 (1962). 
12. G. F. Chew and R. Pignotti, Phys. Rev. 176,2112 (1968). 
13. See, for instance, Y. Pal and B. Peters, Mat. Fys. Medd. Dan. Vid. Selks. 33, 3 (1964). 
14. C. B. A. McCusker and L. S. Peak, Nuovo Cimento 31, 525 (1964). 
15. S. Yamada and M. Koshiba, Phys. Rev. 157, 1279 (1967). 
16. L. W. Jones et al., U M  H E  70-15 (1970). 
17. Actually, in Eq. (2.16) the coniribution of O, has been neglected both in the numerator 
as well as in the denominator. As a single contribution is expected to be negligible as com- 
pared to the sum of all the others, this should not alter considerabl- the result. As a correction 
in Eq. i2.16), one gets 

m 

(n , )  = 6 - 4õ2/ 1 õ,, 5 6. 
k - 2  

18. It maq also happen, of course, that none of the models previously mentioned give a fair 
description OS the actual phenomena and thai the structure OS the dynamics of strong interac- 
tions at high energies will still be different. 
19. S. Brandt, paper 775 presented at the 1968 Vienna Conference. 
20. C .  P. Wang, Phys. Rev. 180, 1463 (1969). 
21. Proceedings of the "Colloquiiim on H i g h  Multiplicity Hadronic Interactions": École 
Polytechnique, Paris (1970); see review paper by A. Wroblenski. 
22. D. Horn and D. Silver, Phys. Rev. D2, 2082 (1970). 
23. For a different approach to the same problem see Ch. 4, Sec. e (to appear in Part I1 of 
this survey). 
24. G. Kaiser, Cambridge preprint HEP 70-8 (1970). 
25. A. Martin, Nuovo Cimento 29, 993 (1963). 
26. J. L. Day et al., Phys. Rev. Letters 23, 1055 (1969). 
27. R. Panvini, BNL 14126 (see also Ref. 5 of the literature quoted in this paper). 
28. F. Turkot, Proceedings of the "Topical Conference of High Energy Collisions of Hadrons': 
Cern (1968). 
29. Serpukhov-Cern Collaboration, Phys. Letters 29B, 48 (1969). 
30. J. A. Allaby et al., paper presented at the 14th International Conference on High Energy 
Physics; Vienna 1968 (Geneva 1968). 

3. Recent Devehpments in the Study of the Phase Space 

3.1 Introduction 

A collision with n particles in the final state 

A + B + 1 + 2 +  . . . +  n (3-1) 

is characterized by 311 variables associated with the momenia of the final 
state particles. The energy-momentum conser~ation reduces to 311 - 4 t he 



number of independent variables. As n increases, the kinematical situation 
becomes thus exiremelj involved due to the large number of variables 
that one has to consider. 

For a uniform distribution of evenis, i.e., in the absence of dynamics, pro- 
cess (3-1) is described by the phase space 4, .  In faci, if there is no dyna- 
mical mechanism at work. the transition probability dP, of reaciion (3-1) 
is simply proportional to the corresponding volume element of the rela- 
tivisticalIy invariant phase space given by 

The full transition probability 

deviates from the phase space because of the matrix element modulus 
I M l2 where a11 the dynamics is concentrated. 

In the following, we shall have to consider the properties of the phase 
space on the one hand and the various theoretical models suggested to 
describe I M l 2  on the other hand. The first problem will be briefly consi- 
dered in the present chapter whereas the discussion of 1 M l 2  will represent 
the main subject to be discussed in Part 11. 

The correlation between the kinematics and the dynamics of a given pro- 
cess will consist in expressing both in terms of the same set of variables 
conveniently chosen so as to furnish information on the possible dyna- 
mical structure of the process itself. 

For this reason, we prefer, in the following of this chapter, to concentrate 
on some of the most general properties of the phase space rather than 
entering in details into the lengthy calculations which are customary when 
treating this subject. These formal developments, in fact, while available 
in the many review papers existing in the literature', would unnecessarily 
obscure the physical situation. 

Thus, we will consider here fírst of a11 the problem of the energy dependence 
of the phase space. This will allow us to subtract from the experimental 
cross sections their kinematical energy dependence. Secondly, we shall 



discuss some of the representations used to describe the phase space cho- 
osing those that are more useful for their dynamical implications, i.e., 
those that are more likely to give us the clue to read the dynamics of the 
distributions of events. 

3.2 Energy Dependence of the Phase Space 

In the c.m. system, the phase space integral that gives the energy depen- 
dente of reaction (3.1) in the absence of dynamics, takes the form 

where E,.,. = E, + E,. For given values of the masses mj of the outgoing 
particles, 4, is function of E,,,, only. 

It is found' that, at threshold where E:,,, = mi2 + m? (m;,  m; being the 
masses of the incoming particles) one has 

whereas, at high energies 

We remember that the invariant form of the phase space integrals can 
be written in terms of recurrence relations between the integrals of spaces 
of different dimensions. This is very useful in order to simplify the explicit 
calculations. 

We notice that the energy dependence of the phase space integrals grows 
as a power of E,,. which increases with the number of particles in the final 
state. The rate of decrease to such a behavior of the cross sections obtained 
by dividing by the flux of the incoming particle F is only a factor of E:,,. 
Thus, in the high energy limit, 



3.3 Representations of the Phase Space 

The 3n- 4 independent momenta variables can be used to construct new 
sets of Lorentz'invariant variables by forming scalar products of four- 
momenta or linear combinations of them2. This set of variables, however, 
does not seem very useful for making comparisons with the experiments3. 
From this point of view, other representations are more convenient which, 
together with relativistically invariant variables, introduce angular varia- 
bles4 (see also P. Nyborg, Ref. 1). 

Among the representations of the latter kind, we will discuss in the fol- 
lowing : 

a) the Muirhead triangular representation and 

b) the Van Hove longitudinal phase space representation. 

3.3a The Muirhead Triangular Representation 

This representation has been suggested5 to describe reactions of the form 

We calculate the four-momentum transfer for each emitted particle (1, 2, 3) 
with respect to the same initial particle (say A). The three variables thus 
defined t,,, t A Z ,  tA3,  at high energy are not independent: 

t,, + t,, + t,, = const. (3-9) 

Thus, if we plot graphically these three variables on axes mutually inclined 
of 120°, the figure that obtains is a triangle (see Fig. 16). 

The representation generalizes easily. For 

we have a tetrahedron: for 

one has a regular simplex at (n - 1) dimensions. 
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In this representation, the density of points coming from the pure phase 
space (Fig. 16) is practically uniform in the triangle in the limit of very 
high energy. 

tAl + tAZ + tA3 = Const. Fig. 16 - The Muirhead plot. 

3.3b The Van Hove Longitudinal Phase Space Representation 

We shall discuss now in some detail this representation because we believe 
that it is the one which is more likely to incorporate already important 
dynamical properties of high multiplicity hadronic interactions. 

The basic observation here (which plays the role of Eq. (3-9) in the case 
of the Muirhead representation) is the experimental fact that, at high 



energies, the transverse component of the momenta in the final state are 
usually small and independent of the incident energy (see Sec. 2.6). 

The idea is then of separating the phase space in its longitudinal and trans- 
verse components. There follows that, with increasing energy, the phase 
space dilatates in its longitudinal component only. 

The Van Hove representation stems from the possibility of shówing that 
for a colIision with n final particles, the distribution of the phase space 
reduces to an (n - 2)-dimensional manifold. 

Consider reaction (3-1). Let E,,,, be the total c.m. energy, P,,~ and pTri 
the longitudinal and transverse momenta of the i-th final particle and 

the energy of this particle in the c.m. system. 

We notice that 
2 112 

',.,.i = (m: + ~ + , i  + PS,~)~" = (mi2 i- PL,~) (3-12) 

where mi2 = m? + p$,i is the effective (squared) mass for the longitudinal 
motion. In the c.m. system, the energy-momentum conservation demands 

The suggestion in Ref. 6 is now of representing each individual collision 
by the point (p,,, , p,,,, . . . p,,,) in the n-dimensional Euclidean space S,.  
On the other hand, all these points must lie on the (n- 1)-dimensional 
hyperplane L(, - , , defined by Eq. (3- 14). L(, - ,, is the longitudinal phase 
space. 

For given values of P , ~ ,  and therefore of m:, the point of coordinate 
(pL,,, . . . pL,,) lies on the hypersurface K( ,-,, defined in L( ,-,, by the 
equation 



If p i . i  » mi2 (high energy limit), Eq. (3-16) which defines the hypersurface 

which identifies in L ,,-,, a polyhedron H ,-,,. 

Scale in GeV 
t I I 1 I 

Fig. 17 - The longitudinal phase spací: plot (Van Hove) for n = 3 at E,,,, = 4 GeV. 
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Fig. 17 shows an example of the longitudinal phase space for the case of 
a final state m N  and E,,,, = 4 GeV Since n = 3, the longitudinal phase 
space L, is two dimensional and contains the polyhedron H, which is 
a regular hexagon. The curve K ,  is given for two different sets of values 
8f (IpT,, I, IpT,, 1 ,  I pT,3 1 )  and, more preciseiy, (inner curve) for (0.4, 0.4, 
0.5) and (outer curve) for (0, 0, O). The masses are m, = m, = rn, = .14 
and m, = m, = .94 (c = 1 and a11 quantities in GeV). 

Scale in GeV 
LLIII 

0 2 4 6 8  I 

I 

Fig. 18 - The longitudinal phase space plot (Van Hove) for n - 3 at E,, - 16 GeV 
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When there are four particles in the final state ( n  = 4), the longitudinal 
phase space L, is three dimensional and the polyhedron H, defined in 
it (a cubeoctahedron) is given in Fig. 19. In the space S,  of points 

, . . . pL,,), the pL,i are the distances of the points of the polyhedron 
from the planes AOB, OBD, OCE, OAE; the scale factor is (3/4)'12 (whereas 
in the n-dimensional case it would be (n- ~ ) ' / ~ n ' / ~ ) .  
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