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Crystal field parameters are calculated using the ionic model for rare-earth ions in crystals, 
where there are no problems of charge compensation. The comparison between calculated 
arid experimental values shows that the presently available knowledge of radial wai  c--functions 
is insuficient to conclude about the validity of the ionic model. 

Calculam-se os parâmetros do campo cristalino, no modêlo iônico para íons C : terra rara 
em cristais, onde não há problemas de compensação de cargas. Êstes parâmetrm, quando 
comparados com os obtidos experimentalmente, mostram que o conhecimento dc que se 
dispõe atualmente das funções de ondas radiais não permite concluir sobre a validade ou 
n5o do modêlo iônico. 

1 .  Introduction 

Due to the great interest on optical and paramagnetic resonance pro- 
perties of rare-earth ions in c ry~ta ls ' ,~ ,  there is today a large amount of 
experimental data and theoretical models and approximations. 

Calculations of crystal-field splittings are carried out by using crystal 
potentials as perturbations on the atomic potentials. The theoretical 
treatment of that problem was initiated by Bethe3. The simple model 
proposed was that of point charges as the originators of the crystal field, 
and it was initially applied to the transition metals4v5. In these metals, 
the paramagnetic electrons which are responsible for optical and hyperfine 
interaction properties are the 3d" electrons. Comparisons between expe- 
rimental results for the iron group and the theoretical leve1 scheme should 
show a good agreement. However, under careful examination, some dis- 
crepancies are apparent. This fact has lead to the use of the concept of 
ligand fields in which the wave-functions are the LCA06 for which cova- 
lence effects are not ignored. 
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In some aspects, rare-earth ions are different from those of transition metals, 
for their configuration is 4 fn5s25p6. Here the spin-orbit interaction is 
rather stronger and the crystal field is one order of magnitude smaller 
than in transitions metals. Also, the orbital functions 4 f n  are more con- 
centrated around the ion than those of transition metals7. Thus, the overlap 
of 4f wave-functions with those of neighbouring ions and the covalent 
mixing should both be smaller. Some a u t h ~ r s ~ * ~ , ' ~ * " , ' ~  have tried to 
show that deviations between experimental and theoretical values are due 
to covalent effects. Others suggested that they were due to the 5s25p6 
shells which shielded the crystal field and distorted the 4 f orbitals, but 
Burns13 has shown that this is not so. On the other hand, Freeman and 
Watson14 showed that the inclusion of the interaction among the confi- 
gurations obtained by changing the orbitals of the outermost electrons 
can produce a shielding which creates a large deviation on the crystaline 
energy levels. But this shielding can be nonlinear which makes questio- 
nable the parametrization scheme used in fitting experimental data. 

Recently, Vetri and Bassani15, in the study of Sm2 
i : SrF, , have explained 

the energy Ievels from crystal field parameters calculated by means of 
the ionic model. One could naturally ask whether the ionic model would 
explain the optical spectrum at least in first order. This is the problem 
we will try to analyse in this paper. We choose cases where distortion of 
the crystal lattice is hoped to be negligible and polarization effects small. 

In the ionic model of the crystal field there are many ways to make reaso- 
nable approximations in the calculations. There are three main interactions 
which control the magnetic properties of a rare-earth ion in a crystal, 
without taking into account the mixing of configurations: 

1. Electrostatic interactions (among 4 f paramagnetic electrons), which 
couple the angular momenta of individual electrons in such a way that 
there results a total angular momentum L and a total intrinsic moment S. 

2. Spin-orbit interactions, which couple L and S to give J. 

3. Crystal field, which splits partially the degeneracy of (25  + 1)  of a 
given multiplet J. 

In the ionic model, the most complete solution presupposes a simultaneous 
treatment of the interactions, which some researchers showed to be impor- 
tant2,16,i7,18 



Carvalhot9 has developped a computer program which enables us to 
perform these calculations for any f': configuration and for any symmetry, 
using the technique of Racah's tensor o p e r a t o r ~ ~ , ~ ~ .  One of the authors21 
has performed systematic calcuIations of Hund's level of the 4 f" confi- 
guration of the crystal íield matrices, taking into account the mixing of 
irreducible representations for the same L and S but different J. Lea and 
c o - w o r k e r ~ ~ ~ ,  supplementing the work of Ebina et use the pure 
Russell-Saunders coupling and treat the interactions separately for Hund's 
level and cubic symmetry. There is another approximation which consists 
of breaking down the L-  S coupling, without any mixing of irreducible 
representations of the crystal field with different J (Ref. 17). These last 
two types of approximation enable us to use Steven's equivalent operators 
t e ~ h n i q u e ~ . ~ ~ .  

2. Crystal Field in the Point Charge Approximation 

Let us consider the model for which the crystal field acting on an ion inside 
a crystal is due to a11 ions in the lattice. In this case, we calculate the average 
electrostatic field in the place where the ion "should be" when it is not 

there4J. The resulting field satisíies Laplace's equation, and the solution 
which gives non-vanishing matrix elements of the crystal field Hamil- 
tonian is: 

where 1 is even, and the integration of the radial part has already been 
performed, since matrix elements differ only in the angular part. 

The Kamiltonian of the crystal field is a scalar. Therefore, according to 
Bethe3, it is a basis for the scalar representation of the point group which 
characterizes the symmetry of the neighbourhood around the ion. Crystal 
field potentials for a number of symmetries have been tabulated6. 

For cubic symmetries we have: 



In the point charge mode12*, 

C,, = [4n/(21 + I)] (Slm/aO1+') e 

where S,, is the lattice sum given by 

s ~m = ao'"1 (q,tPA;+') X m  (%I j  9 4>.>. 
'.i 

Here, a, is the smallest distance between the rare-earth and lattice ions; 
qLJ is the Âj-th ion charge placed at a distance r L J .  The lattice sum Slm 
can be computed by Evald's method2,. For an NaCl-type lattice, Wette 
and NiJboar2' have evaluated Sim, and found that 

For CaF2-type lattices, Vetri and Bassanil' have obtained 

These results differ from the ones obtained by taking into account only 
the nearest ions in the lattice sumsZ8. 

The most frequently used crystal field parameters are not the Clm's but 
the A,,'s, defined by S t e v e n ~ ~ ~ .  The crystal potential is then defined by 

where 5, is Stevens's x, ,L?, y, and d,, is the operator equivalent to x,(%, 4). 
The relationships between these parameters for a cubic field are 

C40 = 8 & ~ 4 0 :  

C,, = 16 &/EA,, 

Since for rare-earth ions Russell-Saunders coupling is not valid, the inter- 
mediate coupling is used16 which requires the tensor operator techniqueZ0. 
In this case one tries to keep the same crystal field parameter A,,, intro- 
ducing a normalization factor, and obtains 

where Uf, is a tensor operator equivalent to ?,(O, 4) and N,, is the nor- 
malization factor2. 



Summarizing, we can compute the crystal field parameters A,, with the 
point charge model. In order to discuss the validity of the crystal field 
approximation for rare-earth ions, we will use the values of ( r ' )  tabulated 
by usZ5 and compare A,, ( r ' )  with the fitted experimental ones. However, 
we should choose experimental data on rare-earth ions in crystal matrices 
which do not distort the lattice too much. Thus, for example, we could 
choose divalent rare-earth ions in CaF2-type matrices, or trivalent rare- 
earth ions in LUCI,-type matrices. For rare-earth ions in CaF2-type ma- 
trices, we have the following tabulated values for e .  A,; ( r ' ) ,  in cm-' ; 

Theoretical values Experimental values Reference 

- 

Calculated values of eA,, (r') for some rare-earth ions in CaF,-type matrices (in cm-') 

Taking a look at this Table, one can see that the situation is confusing. 
The calculated and the experimenta1 vaiues are so much different, that 
the theory does not seem to even yield a first order approximation. In 
our opinion, a major part of the inconsistency between the experimental 
and calculated values comes from errors in the calculated averages (r') .  
As it has been stressed by the authors in another work2', the averages 
( r ' )  are much dependent on the computational techniques and the assumed 
exchange correlation energy. ( r 6 )  should be specially sensitive to these 
small "details" in the computational method, because it depends strongly 
on the tails of the wave-functions. Thus, it seems that although the atomic 
calculations can give reliable energy eigenvalues, they are not precise 
enough for the calculations of the higher moments (r4) and ( r 6 ) .  Then, 
we are led to believe that the results given in the Table above misrepresent 
the possibilities of the ionjc model of the crystal field. Thus one must be 
careful when trying to correct the ionic model and the crystal field theory 
to account for effects such as shielding, lattice relaxation, etc. The impor- 
tance of such effects can be assessed only when better methods for the 
calculations of ( r ' )  have been devised. 

We would like to acknowledge our indebtedness to L. G. Ferreira for stimulating discussions. 
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