Ellectromagnetism and Gravitation

MARIO SCHONBERG*

A formulation o the electromagnetic theory in a differentiable manifold devoid of any metric
and afine structure is discussed. It is shown that the Maxwell equations in such a manifold
involve a tensor describing the properties of the dielectricity and magnetic permeability of
space because of the anisotropy of such a general space. It is also shown that this tensor is
essentially equivalent to the metric of the angles on the manifold. Thus the necessity of having
equations for the determination of this tensor in order to determine the electromagnetic field
shows that the Maxwell equations are not a complete set of differential electromagnetic equa-
tions. The Einstein gravitational equation appears as complementing the Maxwell set of
equations allowing the determination of the dielectricity tensor. Thus a natural fusion of
the electromagnetic and gravitationai theories is obtained with an electromagnetic foundation
for the geometry o the world-manifold.

Discute-se uma formulagdo da teoria eletromagnética numa variedade diferencidvel des-
provida de quaisquer métrica e estrutura afim. Mostra-se que as equagdes de Maxwell em
tal variedade envolvem um tensor que descreve as propriedades da dieletricidade e da per-
meabilidade magnética do espaco devido & anisotropia de tal espaco geral. Mostra-se tam-
bem que ésse tensor é essencialmente equivalente 2 métrica dos angulos na variedade. Assm
a necessidade de se ter equagOes para a determinagdo désse tensor, a fim de se determinar
0 campo el etro-magnético, mostra que as equagdes de Maxwell ndo sdo um conjunto completo
d: equagOes diferenciais eletromagnéticas. A equacdo gravitacional de Einstein aparece
complementando o conjunto das equagdes de Maxwell permitindo entdo a determinagéo
do tensor de dieletricidade. Obtém-se assim uma fusdo natural das teorias eletromagnética
e gravitacional dando-se um fundamento eletromagnético 4 geometria da variedade-universo.

1. Introduction

In this paper we present the main results o our work on the formulation
of the electromagnetic theory in a world taken only with a structure of
clifferentiable manifold, without the a priori assumption of a Riemannian
geometry or even d an affine connection. The first results were communi-
cated at the Kyoto Conference' in 1965. Later developments were given
in unpublished lectures at the 1966 Blumenau meeting o the Sociedade
Brasileira para o Progresso da Ciencia, at the Znstitut Henri Poincaré
in Paris (1967) and at the 1969 and 1970 Symposia de Fisica Teorica Of
the Pontificia Universidade Catolica of Rio de Janeiro®

"Permanent address: Rua S. Vicente de Paulo. 501, Sio Paulo J°.
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The goa of our work is to discuss the distinguished rdle of electromag-
netism in Physics, in particular in the foundations of the normal hyper-
bolic Riemannian geometry of the world-manifold and of the gravitational
theory. We were inspired by some ideas presented by Dirac, a long time
ago, on the specia réle of electromagnetism in Physics, resulting from
the fact that all measurements depend directly or indirectly on electro-
magnetic phenomena.

We started from the description of the electromagnetic fidd by a pair
d antisymmetric covariant tensors F,, and *F,,, involved in the homoge-

neous and non homogeneous Maxwell equations, respectively. This gave
us the foundation of the dimensionality n =4 of the world-manifold, be-
cause the structure of the Maxwell equations in terms of the F, *F pair is
only possible for n = 4. This point is discussed in Section 3.

The relation between the fields F and *F corresponds to the properties
of dielectricity and magnetic permeability of space, since F is the (B, E)
fidd and *F the (H, D) field. This relation is mathematically expressed
by a linear operator L:

*

F=LFandF =-L *F,sothat L?=-1,,, 1,
It is also necessarv to assume the symmetry condition

ops = unit operator.  (1a)

&MLy, = e IS with  (LF),, = (1254 F,,, (1b)
which requires the four-dimensional Ricci symbol £***¥, hence the four-
dimensionality.

In General Relativity, *F is taken as the dual of F according to the genera
definition of the dual d an antisymmetric covariant tensor corresponding
to the metric given by the symmetric tensor g,, of determinant g < O:

*Foy = (1/2) /= 9 1090 07 08 Fap = (1/2)8,10p C* C?P F (10)
with C* = (= g)}* g».
The C, defined by the condition

Cup CVP = 51‘; > Cyv = (_ g)_1/4guv s (ld)

are the components o the conformal metric which gives the angular me-
tric associated to the Riemannian metric g, The C,, are obvioudly inva-
riant for the change of gauge g,, — Sg,., S denoting an arbitrary scalar.
The definition (Ic)df *F depends only on the conformal metric C,,.
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We found that the Riemannian metric g,, of the four-dimensional world-
manifold is determined up to a scalar factor by the properties (1a) and (1b)
of the electromagnetic linear operator L, because thev determine the Lorentz
group at each point of the world-manifold. The proof of this Fundamental
Theorem will be given in Section 4. In particular, the minus sign in I? =
= —1,, plays a central rdle and determines the signature of g,,,.

The Fundamental Theorem results immediately from the fact that the
linear operator L with I = —1,, defines a complex structure in the six-
dimensional vector space Sg constituted by the antisymmetric tensors A,
at any point of .the world-manifold, which allows to go over from the
six-dimensional real space S endowed with the indefinite metric £**” A, ; 4,
to a three-dimensional complex Euclidean vector space. The SO(3, C) of
the latter vector space is isomorphic to the Lorentz group component con-
taining the identity. The Lorentz group at a point x determines g,,(X) up
to a numerical factor S(x).

It is well known that the dimensionality n = 4 is exceptional with respect
to its orthogonal groups. For n > 2, the groups SO(n) and SO(n~p, p)
are all simple when n # 4. But for n = 4 only SO(3, 1), the Lorentz group,
is simple. This property is related to the equation 7 = -1,, and to the
complex structure it defines in Sg, IZ = 1,, corresponds to both the definite
metric and to the indefinite metric with signature O, whose orthogonal
groups are not simple.

The above results, especially the Fundamental Theorem, show clearly that
the properties of dielectricity and magnetic permeability of space can be
used to give a physical basis to the construction of a conformal geometry of
the world-manifold, which can only be associated to tensors g,, with the
Minkowski signature (normal hyperbolic metric). The aforementioned sym-
metry property of L cannot be introduced in manifolds of dimensionality
n # 4, because it depends on the existence of the Ricci fourth order tensor-
density e<** which allows to get a symmetric bilinear form (A, B) of antisym-
metric covariant tensors of the second order A and B,

¢(A, B) = (1/4) " A, B,,,. (2a)

The symmetry condition (1b) is equivalent to
e(A, LB) = ¢(LA, B) so that ¢(LA, LB)=-¢(A, B). (2b)
It will be shown in Section 3 that the possibility of the rotational form of
the Maxwell equations for the two fields F and *F is also related to the exis-
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tence of ¢(A, B) and can be used as a condition to get n = 4, taking as a
basic postulate that F and *F are both o the second order.

The electrornagnetic linear operator L determines only up to a sigh a
relative symmetric tensor C,,, which definesa conformal metric. Theintro-
duction o the electrornagnetic potentials leads to the imposition o the
Lorentz condition, which cannot be written only in terms of C,. Thus
we get a basis for the introduction of a quantitv Z of the kind of (- g)**#, such
that the indetermination in the sign of the C,, also related to a power 1/4,
be compensated and we get an electromagnetic symmetric tensor g, with
the Minkowski signature,

gn = ZCMV SO that g = - Z4, (3)

The availability of an electrornagnetic symmetric tensor g,, with g # O
dlows to get the covariant differentiation o the physical quantities by
means o the Christoffel symbols of g,,, especialy d the electromagnetic
tensor of energy and momentum. Thus we are able to get the Lorentz force
as a covariant divergence of that tensor.

The Maxwell equations associated to the algebraic equations (la) and
(Ib) are not sufficient for the determination of the fields F and *F, because
they do not alow the determination o the field I*,(x). We can obtain
I{x) in terms of the g,,(x),

Luxvl = Cxp C}»U = (— g)— 1z enee gxp Gio- (4)

We are naturally led to choose, as equations for the determination of the L(x),
the Einstein tvpe of equations for the g,,(x) on covariance grounds. We shall
actually postulate those equations directly in another way.

The mathematical problem o finding the equations for the determination
of the electromagnetic g, equivalent to Z and the %, is the same as that
of the determination of the gravitational potentials in General Relativity.
Weneed aset d 10 covariant equationsfor the electromagneticg,,, related
by 4 identities because the values of the g,,(x) cannot be totally determi-
ned without the fixation of the four arbitrary functions involved in the
choice of the coordinates x* on the world-manifold. The equations must
be of the form

R, -(1/2)g,,R + 4g,, =0, with constant 2 and 6,, =0, , (5)

because of a well known theorem of Cartan which shows that the only
second order symmetric tensors built with the g, and their derivatives up

A



to order 2 having covariant divergence O are o the form o the tensor in
the left-hand side o (5). Thus the covariant divergence o 6, is O:

D,(g™0,,) = 0 with D, = x” covariant derivative of the metric g,,. (6)

In order to choose 4,,, the deflection of light rays by large stellar masses .
gives the fundamental clue: we can take the electromagnetic tensor g, as
the metricand 0, = mxT,,, mbeing a numerical constant and T,, the energy-
momentum tensor of matter of all kinds, including the electromagnetic field
itself, because the masses are seen to act on the electromagnetic waves and
on the other hand D,(g**T,,) = 0. ¥ = G/c*, with G denoting the gravi-

tational constant, must be introduced for dimensionality reasons.

The constants | and m must be determined by experiment or observation.
It is satisfactory to take

| =0 and m= 8=, so that 0, = 8nxT,, and x = G/c*. @

The deflectiond light rays by a large mass not only gives us the tensor but
providesalso a direct proof of the relations between the Riemannian metric
and the properties of dielectricity and magnetic permeability of space. It
can be seen as resulting from a variation of the refractive index of space,
which leads to curved light rays, or alternatively from a strong curvature of
the world-manifold in the neighbourhood of a large mass. It is wel known
that the Riemann-Christoffel tensor Rj ,; describes precisely the curva-
ture of the manifold endowed with the Riemannian metric g,,. Cartan
has shown that R, -(1/2)g,, R describesthe curvature of the three-dimen-
sional infinitesimal domains of a Riemannian manifold.

The red-shift of the light emitted from the stars gives the same clue to the choice
of 0, asthe deflection of light rays, showing the influence of large masses on
electromagnetic radiation.

In order to find 0, we assumed the conservation laws D, T% =0. But
once the equations for the g,, were found, we may change our point o
view and take D, T? = 0 as a corollary o the fundamental law of Physics
given by the equation R, -(1/2)g,,R = 8nx T,,. The constant x appears
now as a link between the electromagnetic tensor g,,, equivalent to Z and
L, and mechanics: the fundamental mechanical equation D, T? = O can be
obtained from R, -(1/2)g,, R = 8z« T,, because « # 0.

It is important to note that «~* is a natural unit of force, both in General
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Relativity as in our electromagnetic theory, very large but finite. To neglect
k amounts to take the natural unit o force as infinite.

The two conditions for the operator L, IZ = - 1,, and ¢(4, LB) = ¢(B, LA),
are also satisfied by (- L).The sign of L is however essential because it deter-
mines the sign of the energy-density of the electromagnetic field:

TOFY = (1/8)(-9) ™2 " (LF)yp F,y — (LF), Fop) ®)

Equations (8) shows that we can obtain from F and L the tensor-density
of electromagnetic energy-momentum % (Fy* = (1/8)&"*#* (LF)4F,, -
—(LF),,F,p), but that we need Z* to get T (F). We can therefore use the
energy-momentum tensor T'9(F) as the basis for the introduction of Z2,
instead of the Lorentz condition for the potentials.

We shall provein afollowing Section that the conditions for L can be obtai-
ned by imposing suitable conditions on the energy-momentum tensor-
density % (FY:, without making use of the Maxwell equations. Thus the
four-dimensionality of the world-manifold and the normal hyperbolic type
of its Riemannian metric can be associated to rather simple properties of its
energv-momentum distribution.

2. The Fundamenta Postulates

We shall now give a more systematic development of the idea that electro-
magnetism plays a central rdle in Physics, following the genera line of
thought outlined in Section 1, but in a more radical way. The basic impor-
tance of electromagnetism for the physical construction of geometry was
aready shown in Section 1, without using the more radical approach o
this Section.

Besides the Basic Postulate of the existence o the two fields F and * F, des-
cribed by antisymmetric covariant tensorsd the second order of the world-
manifold, we shall aso assume the Maxwell equations and the algebraic
electromagnetic equations for L, the Lorentz condition for the potentials,
as well as the restriction on L necessary to render the energy-density of the
electromagnetic fiedld non negative. These matters were already discussed
in Section 1 and will be further analysed in Section 3.



In this Section we shall introduce four postulates of a somewhat different
kind, which wili be called the Fundamental Postulates:

I. The Fundamental Mechanical Postulate.

II. The Fundamental Geometrical Postulate.
III. The Existence of a Natural Unit of Electromagnetic Field-Intensitv.

IV. The Fundamental Postulate on the Parallel Displacement.

The Postulate III can be put in different forms. It is essentidly a postulate
on the existence of one natural unit of electromagnetic nature: unit of electric
charge, unit o magnetic mass, unit o field-intensity.Postulate | introduces
the unit of force x ~* and there is of course the velocity of light c. Thereby
the existence of one electromagnetic natural unit impliesthat o the others.
We preferred to postulate the unit of field-intensity in order not to close
the guestion on the priorities o the units of eectric charge or magnetic
mass. From a purely experimental point of view, the most natural thing
is to postulate the existence of a natural unit of electric charge, namely
the charge e o the known elementary particles. But this may perhaps not
be the most satisfactory form o our Postulate.

Postulate |. The tensor of energy and momentum distribution of matter T,
is proportional to the tensor R,,—(1/2)g,,R obtained with the electromag-
netic tensor g, and its Riemann-Christoffel tensor R 5, the proportionality
factor being (8nG/c*)~!, G denoting the gravitational constant (The Fun-
damental Mechanical Postulate):

8nxT,, =R, —(1/2)g9,,R with & = G/c*. M

Equation (1) is obviously a reinterpretation of the Einstein gravitational
eguations. In our theory Equation (1) completes the set of the Maxwell
and algebraic electromagnetic equations, giving the differential eguations
for the tensors I, and Z.

Equation (1) is the essential link between electromagnetism and mechanics,
whose basic equation is obtained by taking the covariant divergence of both
sides of (1):

D, Ty =0 with D, =(x* covariant derivative) and T% = g* T,,. (2)
The gravitational constant appears now as the bridge between electromag-
netism and mechanics. x~! is actually a natural unit of force.
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T,, includes also the electromagnetic energv-momentum tensor 7, whose
divergence D, T/®* introduces in (2)the Lorentz force on the charges.

Postulate II. The measurements of space and time in Phvsics are based on
the Riemannian géometrv of the four-dimensional world-manifold defined by
the electromagnetic tensor g,, obtained from L and Z. (The Fundamental
Geometrical Postulate).

The two Fundamental Postulates give a preciseformulation o the idea that
electromagnetism plays a central réle in physical measurements and obser-
vations. In particular the Postulate II bases the Riemannian geometry of
the world-manifold on electromagnetic quantities. We shall see that the
Postulate II is closdly related to the existence at each point of the world-
manifold of theelectromagnetic Liealgebra & isomorphic to the Liealgebra
o the Lorentz group.

We were able to put together the Maxwell and Einstein equations as funda
mental differential equations of the electromagnetic theory. Thus we have
thetwo kinds of basicfields F,, and g,, with *F expressed in terms of them.

We gained a new insight on the nature of the field g,,, which now svnthesizes
the linear operator L and the weighted scalar Z. The signature of g,,, dx*dx"
is seen to follow from the fact that L determines a complex structure in the
vector space S of the antisymmetric tensors A,,.

The mathematics of our theory o electromagnetism and geometry is essen-
tially based on the exceptional réle played by the vector- space of the A,
in the case of a four-dimensional manifold. This mathematical fact gives a

strong support to the idea that electromagnetism and also other fields des-
cribed by tensors A, must have a distinguished part in Phvsics.

The vector space S is intrinsically endowed with a bilinear form ¢(4, B),
whose importance we have already stressed. Sincee(A, B)is a scalar-density,
we need a scalar-density field w(x) to obtain a scalar metric w™'e(4, A).

It seems natural to take this metric independent of that given by the g,,,,
sincee(A4, A)does not depend on theg,,. We are therefore led to assume that

w does not coincide with ./-g¢:

o(X)=S(X)\/-g(x), S(x) being a scalar field. ©)
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In afour-dimensional manifold it is natural to assume the existence of a scalar
field S (x) besides the Riemannian metric g,,(x), in order to have the indepen-
dent metric w™*e(4, A)for the A,. This suggests a scalar-tensor theorv of
geometry and gravitation, more general than that given in this paper.

The tensors o S, seem to be of specia interest to Physics. The S vectors
arethe A, in particular the F,,. The antisymmetric tensors o the second
order o S, are the U,; ,; antisymmetric with respect to « and g and also
in y, § with

Usp.s6 + Ussap = 0. 4

The electromagnetic energv-momentum tensor T is equivalent to the U =
=*F A F,

TE* = (14) ()" e UG, with USG5 = *Fop Fys=*F i Fop. (9)

The U can be used to describe non polarized light.

The Riemann-Christoffel curvature tensor R,; .5 iS @ symmetric second
order tensor of S, satisfying the condition £V R R,s,,5 = 0. R4 45 is indeed
antisymmetric with respect to the two indices d each pair and R,,, =
= R,; .. It is interesting to note that the various symmetries d the indices
of R, ,, mean smply that it is a symmetric tensor of the second order
o Se, with the trace O for the intrinsic metric o S..

Theantisymmetrictensorsdf thethird order of S, arethe W, 5 1, antisym-
metric with respect to the three pairs o indicesand theindicesd each pair.
There is a very simple relation between W and the symmetric tensors S, :

O e PPW, g s =28, {6)

We can raise the indices of W by means d the metric tensor w’ls“’”f and
obtain W=*:7%*4 from which we can extract a symmetric tensor 25** =
= Wy, WH 7% The vector space of the W is the direct sum of two ten-
dimensional vector spaces, equivalent to those of the §,, and S¥. when a
scalar-density w is given.

By means o three linearly independent A%, we can build a W = A® A
A AP A A® by outer products o S. These W are the simple trivectors
d S. Itispossibleto get from the rea simple trivectors the S,; with non
Minkowskian signatures. The g, of the world-manifold can be obtained from
the complex outer product of three linearly independent eigenvectors of the

same eigenvalue of L, by means of formula (6).
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The vector space S can be transformed into a richer algebraic structure,
namely a Lie algebra, by the introduction of a vector product A, X A4,,
which is again an A, by means o the structure constants C2:7* of the
Lorentz group o g,

(Ay X Ay = (18 CiR 7P A Ay s with C2B70 = goo (528 873 _ 525 372). (7)
Thus S becomes the Lie algebra of the Lorentz group of the metric g,

Here comes in another peculiarity of the dimensionality n = 4: there is
essentialy only one definition of the vector product o Ss giving a simple
Lie algebra, namely that corresponding to a g,, with a Minkowskian
signature. This results from the fact that the Lorentz group is the only
simple Lie group with sx parameters, up to isomorphisms.

The dimensionality n = 4 of the world-manifold and the Minkowskian sig-
nature of its Riemannian metric are determined bv the condition that the Lie
algebra structure of the vector space of the A at anv paint x of the world-mani-
fold determined by the orthogonal group of g, be simple and the onlyv possible
tvpe of simple Lie algebra for a vector space of dimensionalitv n. This theorem
resultsfrom the fact that for n # 4 and larger than 2, the groups O(n- p, p)
are all smple, so that there are several types of simple Lie algebras.

The above discussionshowsthat the Lie algebrastructure of S¢ isreally the
most essential mathematical feature of the geometry of the world-manifold.
It must therefore correspond to an essential algebraic structure & o the
electromagnetic theory. In order to be able to defineaLie product Fy x F,
of two fields, of the same nature as a field F, we need a new Fundamental
Postul ate:

Postulate IIL There is a natural unit ¢ of electromagnetic field intensitv.

By means of ¢ we can give a satisfactory definition o the Lie product
F, X F, o two fields corresponding to the above Lie algebra structure of
the A, because ¢ ! F, is a tensor with dimensionless components.
Thus we get the product of &

(Fi X Fa)yy = (/™ Ch P FropFays = 67197 (F1 A Fadypav- (8)

The Lie algebra of the Lorentz group is not changed when we replace g,
by S, S being a scalar, because the group is the same for both g, and
Sy,. The definition of the Lie algebra of S, shows that the substitution
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9. — Sg,, corresponds to an automorphism not affecting the vector-space
structure of Sg. In the case of the electromagnetic Lie algebra with the
product (8)we must rule out the automorphism induced by g, — Sg,, because
it amounts to a change of 4. This is related to a passage from the conformal
geometry determined by the Lorentz groups at the different points o the
manifold, or by the corresponding linear operators L, to the Riemannian
geometry given by the g,,.

The introduction of ¢ gioes us a fundamental length (¢ \/E)", which is
probably related to the Planck length (kex)!/?. The theory contains also a
constant (¢x)~* which can be a fundamental electric charge or a fundamental
magnetic mass. It is interesting to note that by taking for (¢x)™' the
Dirac value for the elementary magnetic mass (1/2)«"! e, we get for

(¢ /%)™ the value (8ra)~ /2 (hcx)'2, very nearly the Planck length, with
a= e*/he.

If follows from the above considerations that there are other postulates
equivaent to Postulate ITI, because o the existence of the natural unit
o force k™! introduced by Postulate I. We may assume, instead of Pos-
tulate IIT, any one o the following postulates:

Postulate I1Ia. There is a natural unit e, of electric charge.
Postulate I1Ib. There is a natural unit m, of magnetic mass.
Postulate IIIc. There is a natural unit of length A,.

Postulate I11a is o course the most obvious, because o the experimental
fact o the existence of the charge e of the known elementary particles. We
discussed already the interest o having the Dirac value of the magnetic
mass as a constant in our theory, in order to get from it the Planck length.
This can be done directly assuming the Postulate IIIb, with m, taken as
the Dirac magnetic mass.

In the case of Postulate Illc, there would be the nice feature of having a
natural unit of length, from the beginning, in the physical construction
of geometry. The Planck length would eventually be a good choice for
A,. Thus the Planck constant h could be obtained from the elementary length
Ay, G and c.

There are of course other possible choices of a basic natural unit different
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from those discussed in the above four forms o the Postulate I11. A parti-
cularly interesting one is that of a natural unit o angular momentum or
action, which corresponds to the following form o our Postulate:

Postulate I1Id. There is a natural unit & of angular momentum.

The angular momentum is a physical quantity particularly related to the
rotations and the L orentz group. Theintroduction of a natural unit of angu-
lar momentum allowsusto get aLiealgebrad the angular momentum ten-
sorsM,, directly fromthat of the Lorentz group, with the multiplication rule
(M; X My),,=h™"CE7" M, s M, 5, Smilar to the electromagnetic Lie
algebra &. Thus the Planck constant h ivould come in in a non gquantized
theorv as a natural unit of angular momentum. The passageto the relativistic
gquantum theory o the angular momentum would correspond to the
introduction o the representations o the Lie algebra of the M, by Lie
algebras o operators of Hilbert spaces, in which the M are associated to
linear operators whose commutators correspond to the Lie products of
the Lie algebra. In the case of the angular momentum, as well as in other
cases, it is possible to define Lie algebras for phvsical quantities, involving
the Planck constant h as a dimensional constant, before the quantization,
which is associated to a representation ofthose Lie algebras bv linear opera-
tors of Hilbert spaces with finite or infinite dimensionalitv. The Lie products
give rise to commutators in the quantized formalism.

The electromagnetic Lie algebra & does not depend on the Maxwell equa-
tions. It is an algebraic structure o the electromagnetic theory underlying
at each point x the geometric Lie algebra o the veclor space S¢. Thus it
gives the foundation of the Postulate II, which bases the geometry o the
world-manifold on the electromagnetic g,,. We shal see in Postulate IV
how-& underlies the definition of the parallel displacement on the world-
manifold.

& shows that the g,, have a definite algebraic role in electromagnetism:
they and the constant ¢ give the structure constants ¢! C%:-7° of the
electromagnetic Lie algebra &.

We shall now see that the Lie product F, x F, is verv closelv related to
the Lorentz force on the charged particles. This is due to the fact that the
Lie product F; x F, is a specia case of a kind o product F x T which
exigts for any covariant tensor 7,

- Hs ®

(F X T)#x,"‘,ﬂs = d)_lgpa(F#xﬂ T;T,uz;" +...+ F T, ',ﬂs—x-d)' (9)

Sls “sP TH1,
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In particular, when T is a vector P,
(FxP),=¢ 1¢F,P =¢ 'F,V" with VP=g”P,. (9)
Hence
(F x P), =xegF,,VP  with ey = (k)™* (10)

F x P istherefore the Lorentz force on a particle of charge e, with the velo-
citv vector ¥, measured with the natural unit of force x~1.

n(F x T), with # infinitesimal, is the change o T for the infinitesimal
Lorentz transformation which changes P into P t 5(F x P). Along the
dement ds o the path o charged particle of mass m, and charge e, the
field F generates an infinitesimal Lorentz transformation changing the
momentum my V by e, (F X P)ds.

& isactuallv a subalgebra ofthe Lie algebra &, of the fields F,, and currents

J,, with the multiplication rules (8), (8a) and (8b):

(FxJ),=¢ '¢F,J,and (J x F), =¢ g J,F,, =-(F xJ), (8a)
JO x g2 =90 (8b)

The rule (8b) followsfrom the fact that J® x J® is the scalar g (J{V JP) —
—JW @y =0,

The role of the Lorentz force is seen explicitlv in (8a). Moreover from the
Jacobi condition

(FyxF)xJ+(UxF)xF,+(F;xJ)yxF, =0 (11
and (8a), we get (8).

In the Minkowski space-time, the group of the displacements is the well
known Poincaré group generated by the Lorentz group and the Abelian
group d trandations. In the case of a curved world-manifold there is no
Abelian group o translations with four independent parameters, so that
there is no true analog of the Poincaré group o the flat space-time. It is
nevertheless possible to introduce at each point x o the world-manifold
aLiealgebrad the A, and P, with the muItipIication rules(A, x A), =

_g (AluﬂAZGv Al"ﬂ 20# (AXP ﬂaA Pn’ P(I)XP(Z)_O
(12)

which is essentialy the Lie algebra d the Poincaré group o the flat space-
time tangent at the point x to 'the world-manifold.
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The electromagnetic Lie algebra &p(x) is isomorphic to the Lie algebra of
the flar Minkowskian tangent space at the point x. The,&p at all the points
o the world-manifold are therefore isomorphic Lie algebras. The & at
all the points d the world-manifold are all isomorphic to the Lie algebra
o 0(3,1) and thereby isomorphic to each other.

We shall now consider the determination of the affine connection I'?; o
the world-manifold in the electromagnetic construction o geometry. In
the ordinary Riemannian geometry the affine connection 1'%, is assumed

to be symmetric
I, = T% (13)

so that the torsion tensor 7,4, = I'2, - T, = O everywhere. The symmetric
I'?, are obtained from the Riemannian metric tensor g, by imposing the
condition o invariance of the length o the vectors V* by pardld dis-
placement:

G (IVHVY = g, (x + dx) (V" + 8V (V¥ + 8VY)vith 8VP = —T%2, V<dx*
(14)

We get from (14)
099~ L3490~ TpvGue =0  so that D,g,, = 0. (15)

It follows from equations (15) and (13)that the components of the affine
connection T" are the Christoffel symbols

T2, =(1/2)6°(0c9se + 0100— 0, 9x) s that  Tf, ={&}  (16)

We want to keep equations (13)and (16)in our electromagneticapproach,
with the g,, taken as the electromagnetic ones, equivalent to Z and L,
in order that the theory o the parallel displacement be in agreement with
the Postulate 11. The condition (14)will be replaced by another involving
the Lie algebra &, through the following Fundamental Postulate of the
Parallel Displacement:

Postulate 1V. The paralld displacement is defined by a symmetric affine
connection T, and induces an isomorphic correspondence between &(x)
and &(x T dx).

The Postulate 1V requires that the Lie product o the parallel displaced
tensors F, ,, t 6F, ,, and F, ,, T 6F, ,, at the point x T dx, involving
the g,,(x T dx), is the tensor (F, X F,),, + 6(F, X F),, with F; X F,
involving the g,,,(x). A straightforward computation shows that as a con-
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sequence of the symmetry of I'7;, we get again the equations (15) and (16).
Now equation (14) is a corollary of (15), <o that the invariance of g, V* V"
by parallel displacement is a consequence of the Postulate IV, the g, being
of course the electromagnetic ones.

1t follows from the validity of equations (16) for the electromagnetic g,
that the Riemann-Christoffel tensor Rj * of those g,,, is actually the cur-
vature tensor of the world-manifold, corresponding to the affine connection
I'2,. Thus the equations (1) have the same geometric content as the Einstein
gravitational eguations, as a consequence of the Postulate IV.

3. The Maxwell Equations

We shall now discuss the form of the Maxwell equations in a differentiable
world manifold not endowea with either affine, conformal or metric pro-
perties. This requires a two-field formalism. We shall be mainly interested
in showing how the structure of the Maxwell equations in the two-field
formalism requires that the dimensionality of the world-manifold be n = 4,
when the fields *F and F are assumed to be both described by covariant
antisymmetric tensors of the second order.

Let usfirgtly give the definitions of the fundamental differential operators
Rot and Div. The operation Rot can be applied to the antisymmetric cova
riant tensors A of order p < n, in a n-dimensional differentiable manifold,
the tensor Rot A being antisymmetric covariant of order p+ 1:

(Rot A)y, ..., ., = (P O5000r 0, A with 9, = x* derivative.

“sHp +1 T P1T P2 Pp o+l
ey

The operation Div can be applied to the antisymmetric contravariant
tensor-densities Z of order p > Oinan-dimensional differentiablemanifold,
Div# being an antisymmetric contravariant tensor-density of order p-1:

(Div By>"ke = 3, B te )

The covariant differential operations Rot and Div involve only ordinary
derivatives of the components of the antisvmmetric tensors A and tensor-
densities 9. Rot corresponds to the Cartan differential of an external
differential form. Div can be expressedin terms of Rot as we shall now see.

The antisymmetric contravariant tensor-density o order p, 4, is equi-
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valent to an antisymmetric covariant tensor B o order n - p, because o
the existence of the Ricd relative tensor ¢, ..., :

By = (0D ey, B 2t 5
This B, # duality associates to Rot B the tensor-density (- 1)""?Div #:
(Rot B)u1,~--,lln—p = ((p - 1) !)_ 1 (— l)n_pgm,'“,u.n (DlU g)#"‘F 42, Hn (4)

The homogeneous Maxwell equation involves only the field F associated
to the Lorentz force-density F,, #* on the charge-current distribution. F
must be a covariant antisymmetric tensor of the second order, because

o the contravariant nature d the tensor-density #* associated to particle
velocities #*. The homogeneous Maxwell equation

RotF=0 (Sa)
can obvioudly be written for any world dimensionality n > 3.
The non homogeneous Maxwell equation will be taken firstly in a diver-
gencia form
Div*# = ¢ (56
*# must be an antisymmetric contravariant tensor-density o order 2,

because ¢ is a vector-density. The equation (5b’) can be written for n > 2.

In the n-dimensional case *F is an antisymmetric covariant tensor of order
n- 2 as shown by equation (3). For any value of n compatible with (55),
*F has the same number of components as F. But only for n =4 is *F
atensor of the same nature as F. Thisis dueto thefact that the Ricci relative

tensor has four indices for n = 4: *F,; = (1/2)e,,,,* #*".

The non homogeneous Maxwell equation can be written in a rotational
form for n> 3:

Rot *F = (- 1)"~2J. (5b)
J is now an antisymmetric covariant tensor of order n-1.

The non homogenous Maxwell equation is closdly related to the conser-
vation o the electric charge expressed by the equation

Div#g=0 o RotdJ=0 (6)
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It is wdl known that, with suitable conditions imposed to the world-
manifold, Div_¢ =0 implies the existence of fieds *# satisfying the
equation Div*# = ¢, *# may be seen as a kind of potential tensor for
the charge-current density ¢, from a purely mathematical point of view.

We shall assume the following Basic Postulate o the electromagnetic
theory, which renders *F an antisymmetric covariant tensor of the second
order, as a consequence d F having the same property:

BASZC POSTULATE: The two basic tensors F and *F are both antisym-
metric covariant of the same order.

It follows from the Basic Postulate that the dimensionality of the world-
manifold is n = 4, since the discussion of the Maxwell equations showed
that the order o *F is n—2. Thus we see that the four-dimensionalitv of
the world-manifold is a consequence of the structure of the Maxwell equations
(5a) and (5b) which involve fields F and *F of the same tensorial nature.
The Basic Postul ate gives to the two Maxwell equations the same structure
in vacuum and allows to replace them by a single equation for a complex
field F* (or F7):

RotF* =_iJ and RotF~ = iJ, with F* = F—i*F and F~ = F + i*F
5)

Until now we did not assume any relation between F and *F. The four-
dimensionality of the world-manifold is associated to the differential elec-
tromagnetic equations, without anv consideration of L and the algebraic
electromagnetic equations. It is interesting to note that the introduction
of the linear operator L presupposes the Basic Postulate.

The introduction of L and the algebraic electromagnetic equations cor-
responds to a second stage of the physical construction of geometry. The
F* are now eigenvectorsdf L corresponding to the eignevaluei and the
F~ eigenvectors o L of the eigenvalue (-i):

LF* =iF* and LF~ =-iF~ since *F=1LF. (7)

L being a real operator of square - 1,, has only two eigenvalues i and
(-i), both with the multiplicity 3. The complex vector spaces o the F*
and F~ must thereby be three-dimensional. The introduction of L leads
therefore to a description of the electromagnetic field bv a complex three-
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dimensional vector F* or F~ = (F*)*. Those three-dimensional vectors
correspond to the tivo kinds of second order van der Waerden spinors, built
with the two-component Wevl spinors.

The bilinear form ¢(4, B) existsalready in the first stage d the construction
of geometry, but ¢(4, LB) belongs to the second stage. In the first stage
F and *F are still independent, so that F* and F~ are vectors of a six-

dimensional complex Euclidean space S¢(C) with the metric form z(A4, A).
In the second stage F~ is restricted to the three-dimensional sub-space
ST of S¢(C) defined by LF* = iF* and F~ to the sub-space S5 defined
by the equation LF~ = -iF ™.

We shall seein Section 4 that the linear operator L with I* = - 1,, allows
to render the six-dirnensional vector space S¢ o the real Finto a complex
three-dimensional Euclidean space equivalent to S3 or to S5 .

3a. The Maxwell equations appear as a special case d a more general type
of equations in which there is a fidd A described by an antisymmetric
covariant tensor A o order p< n and another field *A described by an
antisymmetric covariant tensor o order » - p. The two fields have the same
number of components C? and satisfy equations o the form

RotA=B, Rot*A="H, (1)
Band B' beingantisymmetric covariant tensorsdf order p+ landn-p + 1,

respectively.

The caseof p = 2 is particularly interesting when B = O because it follows
from a well known general theorem of Poincaré that under certain con-
ditions there is a covariant vector P such that

A=RotP, (B=0,p=2) @)

so that A can be described by a vector fidd P. In the electromagnetic case
P is the vector potential. It is not completelv determined bv the field A, there
being the possibility of the gauge transformation

P— Pt RotS, with S an arbitrarv differentiable scalar field. (3)

In the case of p= 2, B describes a conservative current, since it follows
from the second equation (1) that

RotB=0 sthat %' =0 for p=2 )
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In the electromagnetic case equation (4) is the law of conservation of the
electric charge.

The introduction of a Riemannian metric in the n-dimensional differen-
tiable manifold allowsto associate to the field A a field *A by the operation
o tensor duality for all the possible values of p This follows from the
possublllty of assouannq to A an antisymmetric contravariant tensor
Aree — ghPtL L gtePr 4, by means'df the metric g,, and to build

a contravariant tensor-density of order p, *«:
Xt = —(Og)' 2 AR e with 62 =1, 6g>0. (5

From the tensor-density *<# of order pwe get the covariant antisymmetric
of order n—p, *. The metric *dualitv allows the dejnition of the diver-
gente Div*«7, equivalent to Rot . Thus with the present choice of *A
the svstem of equations (1) appears as a direct generalization of the system
rot A= B, divA = Sfor a vector field A in the three-dimensional Euclidean
vector analysis.

In the case of p = 2 the introduction of the metric g and the correspond-
ing *duality allowsto definethedual *P of the vector P, whichisan antisym-
metric covariant tensor of the order n— 1. The arbitrariness of the scalar
S in equation (3) can now be restricted by the generaized Lorentz condition

Rot*P =0 equivdent to Dip*? =0. (2a)

It is important to note that iz the case of N =4 and p= 2 the definition
o *A can be given in terms of the conformal metric C,, = (6g)~'g,,,
but the definition of *P requires the Riemnnnian metric g,,. Therebv the
Lorentz condition for the electromagnetic potentials involves the Riemannian
metric of the world-manifold. On the other hand it is well known that in
general relativity the Maxwel equations involve only the conformal
metric. This follows from the fact that in General Relativity the field *F
is taken as the *dual of F.

The Equations (2) and (2a) are a system of the type (1) for the vector P.
By taking the *dual of both sidesdf (2)we get *(Rot P) = *F and by making
use of the inhomogeneous Maxwell equation we obtain the relation bet-
ween P and J

Rot (*(RotP))=1J, (p=2). (6)

It is not necessary to use the explicit definition of the *dual of a second
order antisymmetric tensor to get the egiiation corresponding to (6)in
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the electromagnetic case in which we have a linear operator L such that
*A = LA for p= 2. Equation (6) can be written as

Rot (L(RotP))=J, for n=4 p=2 (7

3b. The duality B, # corresponds to the existence of a bilinear forrn
&,(A, B) o the antisymmetric covariant tensors A o order p and B o
order n-p

e (A, B)=(p!(n-p) !)nl‘gpl"“’p"Aul.m,ppop SR 1)
e (A, B)=(-1)P""P¢, (B, A). 2

For even values of n, n = 2r, the B of order r have # of the sasme order r.
Now ¢,(A4, B) gives a bilinear form for the tensors of order r. It follows
from (2) that it is either symmetric or antisymmetric according to r:

e2,(4, B) = (- 1), (B, A), (A and B of order r). G)

For n= 2r the *dual *A o an A of order r isalso of order r, so that we
can define a linear operator L such that

*A=LA for the A of order r. “)

Since we have for any p<n
*(*4) = (- 1)pn=P g4 (p = order of A), &)

L =(1ye1,, with 1,= unit operator on the A of order r.  (4q)

It follows from (3) that
e2,(4, LB) = &,,(B, LA). (4b)
The conditions imposed in Section 1 to the electromagnetic linear operator

Lure preciselv of the tvpe (4), (4a), (4b)with 8 = 1 and r = 2, corresponding
to the dimensionality n =4 and the normal hyperbolic type of the metric.

It is easily seen that in the case of n = 2r the *duality for the A of order
r depends only on the conformal metric

*Aﬂxy"', b= (T !)—18111,"', Hrs P17 Pr e P'l T G Am,"', Pr> (6)
CH = (Bg)l/nguv. (7)
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Equation (4b) shows that, for even values of n, L alows always to build
a symmetric bilinear form of the A o order r = n/2:

L(A, B)= L(B, A)=¢,,(4, LB). 8)
For odd values o r, the bilinear form &,,(4, B) is antisymmetric.

We shall prove in Section 4¢ that when n =4 and 8 = -1 the conditions
(4), (4a) and (4b), determine the conformal metric C, up to a minus sign,
but notfor n=4 and 8 = 1, when there are different possbilitiesfor the
signature of the Riemannian metric.

It is easily seen that, both for the definite Riemannian metric and for the
indefinite Riemannian metric of a four-dimensiona manifold, the deter-
minant g is positive so that 8 = 1 in both cases and the duality operators
L satisfy the same conditions I? = 1,, and &(4, LB) = ¢(B, LA).

3¢. The non conformal nature of the Lorentz condition Div *# = O follows
from the fact that *2* cannot be expressed in terms o P, and the C**
only, a Z is aso needed:

*PE=-72°C"P, with Z=(09)'", P, =096, C*P, (1)

as a consequence o Eq. (2a-5). The Lorentz condition gives therefore the
electromagnetic basis for the introduction of Z and, together with the linear
operator L, of the tensor g, = ZC,,, since L determines C,,, up to the sign.
It isnot surprising that the Lorentz condition should give something beyond
the Maxwell equations, sinceit isa restriction on the potentials not required
by the Maxwell equations. The remarkable fact is that it leads to the intro-
duction of the measure of the hypervolumes and the orientation of the
world-manifold by the scalar density Z2 = (fg)~ /2.

In fact, it is more correct to say that the introduction of Z is necessary
in order to build the scalar-density Div *# by means o the vector field
P. The importance of the scalar-density Div *# was clearly shown by the
Hamiltonian formalism of the electromagnetic field and even more by the
guantum electrodynamics, in which the Lorentz condition is closdly related
to the Coulomb force. Since the Coulomb force is basic for the existence
o solid bodies, it must also be fundamental for the physical construction
of geometry. It seems therefore plausible to think that the basic role of
Div *2 in the electromagneticfoundation of geometry is related to the Cou-
lomb force.
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The passage from the relative tensor C, to the absolute tensor g,, has
far reaching consequences, because the field g,,(x) allows to define the
covariant derivativesD, o the tensors and thus to give a@meaning to the
absolute variation of the physica quantities from a point x to a neigh-
bouring point x *+ dx of the world-manifold.

4. The Fundamentad Theorem and the Lorentz Group

We shall now give the first.proof of the Fundamental Theorem on the
determination o the conformal geometry of the world-manifold at the
point x by itsoperator L. In Sections4b and 4¢ we shall give a second proof
and show how g,, can be built by means d the antisymmetric tensors
d the third order W,; ., ,, of the vector space S,. Thefirst proof is based
on the discussion o the complex structure defined in S¢ by the linear
operator L.

It is well known that a rea vector space of even dimensionality 2r can
be rendered into a complex r-dimensional vector space by means of a
real operator | with I = _1,,, 1,, denoting the unit operator of the 2r-
dimensional real space. It suffices to give a definition o i4 in terms of
| in one o the following ways:

iA=I1A o iA=-1A (A= vector of the 2r-dimensional space) (1)

This requires a restriction of the linear operators of the 2r-dimensional real
vector space: only the linear operators commutabie with | give linear opera-
tors of the r-dimensional complex vector space, because in the latter | must
be treated as a number.

The above method can be applied to S with the linear operator L. S,
is rendered a complex three-dimensional vector space S; by taking
iA = LA. By taking iA = - LA we get the vector space S5 = S3*, the
complex conjugate space of S3. The algebra of the linear operators o
S¥ and S5 is congtituted by the linear operators K of S commutable
with L:

[K,L]=0 2

We must now take into account that Sy is endowed with the symmetric
bilinear form ¢(4, B), which distinguishes the group of linear operators
N of Sg such that

¢(NA, NB) = (4, B). 3)
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The group of the N is isomorphicto 0(3,3). Only the operators N commutable
with L arelinear operators of §§ and S5 . It followsfrom (3)and [L,N] =0
that

¢(NA, NB)=¢(4, B) and &(NA, LNB) = ¢(4, LB). €

The conditions (4) characterize the N because they give [L, N] 0. It

follows indeed, from the first equation (4), that (4, LB) = s(NA NLB)

and sincefor any A thereisan A with A’ = NA because o the existence

cNJf N1 , for arbitrary A' and B we have ¢(4’, NLB) = &(4’, LNB), s that
L= LN

Since the N are red linear operators, we can replace the equations (4) by
E*(NA, NB) = E*(A, B) with 2E* (4, B)=&(4, B)-ie(4, LB), (5%)
or

E-(NA, NB) = E™ (4, B) with 2E~ (4, B) = (4, B)+ is(4, LB). (57)

E*(A,B)and E™ (A, B) are symmetric bilinear forms of the complex vector
spaces S3 and S3, respectively, because E* (LA, B)= E*(A, LB)=
=iE*(A, B) and E™ (LA, B)= E-(A, LB)=-iE™ (4, B), so that the
multiplication of E* (A, B) by i is equivalent to replace either A by LA
or B by LB and the multiplication o E-(A,B) by (-i)is equivaent to
replace A by LA or B by LB. Equations (5¥) and (5-)show therefore that
the group constituted bv the N is the orthogonal group of the complex Eucli-
dean vector spaces S3 and S5, with the metric quadratic forms E* (4, A)
and E- (A, A), respectivelv.

We can now use the wel known isomorphism o SO(3, C) and the conti-
nuous Lorentz group SO, (3, 1) to obtain at each point of the world-mani-
fold a linear representation o the Lorentz group by the linear operators
N on the A. The N give the Ad representation of the Lorentz group of the
corresponding point x of the world-manifold, the fundamental representation
associated to the Lie algebra of the Lorentz group.

The above discussion shows that the operator L is related to one of the
Casimir operators o the Lorentz group, because of its commutability
with all the N. It is easily seen that it is actuallv related to the Casimir

operator C,,
C,p = (1/8)2,5,500 802, (6)
the 6% being the basic tensors A of the coordinate svstem, of components
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0P = 842, and the 8% the corresponding linear operators in a represen-

tation of the Lie algebra.
Thus we get the following form o the Fundamental Theorem:

THEOREM. The linear operator L(x) of dielectricitv and magnetic permea-
bilitv of space at the point x of the world-manijold determines its Lorentz
gronp and the conformal geometrv at x corresponding to a Minkowskian
signature of the Riemannian metric, which is determined onlv up to a scalar
factor s(x) by L(x).

It is well known? that a Lie algebra & over the real numbers is said to
have a complex structure when the vector space constituted by the ele-
ments X of % has a complex structure defined by a linear operator | with
I’=_1,, 1,,X = X, such that for any elements X and Y o 9,

op>

X x (1Y)=ItX xY) with X xY = Lie product of £. (7)

The Lie algebra of the Lorentz group of the quadratic form g, V* V" has a
complex structure in the four-dimensional case with g <0, defined bv the
linear operator L on the A corresponding to g,,:

LAYy = (1/2) /= G 60ps 0797 A,y With I = -1, ®)
It follows indeed from the definition (2-7) that
L(Ax B)= A x (LB). 9

The discussion of the complex structure of S¢ defined by the electromag-
netic linear operator L shows that the complex structure o the Lie algebra
o the Lorentz group at a point x d the world-manifold follows from the
commutability of L with the linear operators Ad A o the infinitesimal
Lorentz transformations on the vectors o S,. Equation (9) can indeed
be written as

L(Ad A)B = (Ad A)(LB). {(10)
Thus we see that the electromagnetic linear operator L defines directlv the
complex structure of the Lie algebra of the Lorentz group at the correspon-

ding point of the world-manijold. L defines also the complex structure of
the electromagnetic Lie algebra &.
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Equation (9) is a fundamental property of the Lie algebra of the Lorentz
group. It leads to several interesting relations

Ax*B=-Bx*4 sothat A xC=-*4Ax*C ad *4Ax A=0.
(1)
The second equation (11) shows the effect o the tensor-duality on the Lie

algebra. The third equation (11) shows that the infinitesimal Lorentz trans-
formations corresponding to A and * A are commutable.

4a. Let us consider now the vector space S¢(C) of the compiex antisym-
metric tensors A, in order to be able to introduce the eigenvectors A+
and A~ o L corresponding to the eigenvaues i and (-i) respectively,

LA* =iA*, LA™ =-iA". ()

Since L is a real operator, its eigenvaluesi and (- i) are triple and the A,
A~ congtitute two three-dimensiona vector spaces of S¢(C). The A"
and A~ vector spacesare equivalent to the S and S5 vector spaces of Section
3, respectively. Let uswrite24™ = At iB with A and B real. The condition
L(AT iB)=i(AT iB) gves LA=-B and LB= A, s0 tha 24" =
= A-iLA. Similarly we see that the A~ are of the form 24~ = A+ iLA
with A red. The complex conjugateof a A* isa A~ corresponding to the
same real tensor A

For the sake of simplicity we shall denote by S7 the vector space d the
A* and by S; the vector space of the A-. S¢(C) is the direct sum of S3
and S5, since anv complex A is the sumof a A™ and a A-,

A=A*+ 4" with A" =(1/2(,,-iL)A, A~ =(1/2)(1,, + iL)A.
)

The linear operators L" and L-,
L =Q1/2)1,,-il), L =(1/21,, +iL), 3)

are determined by the vector spaces S7 and S; and conversely determine
them completely. We have

LY =L+Ly¥ =L, =L+ =0+ =Ly, L+ = 1,,,(4)
e(A,L"B)=¢(B,L'A) and (A, L B)=¢(B, L A). (5)
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It follows immediatelv from (5) that 4* and B~ are orthogonal with respect
to the two basic symmetric bilinear forms of Sg(C),

e(A*,B7)=0 and (4%, LB )=0. (6)

The symmetric bilinear form e(A4, B) defines a complex Euclidean metric in
S¢(C), which inducesin 7 and S5 the three-dimensional complex Euclidean
metrics defined bv the svmmetric bilinear forms E* and E~ of equations
(4-5)and (4-5*):

E+(A, B)=¢(L' A, L+B) ad E~(A B)=¢(I A L[ B). (7)

Equations (7) show in a very clear way why E* and E~ are three-dimen-
sional complex bilinear forms of S and S7 .

The linear -operators K commutable with L are those which transform
an A* intoaB* anda 4~ intoaC- .Thisexplainswhy the K definelinear
operators K* in §§ and K™ in S35 :

K*=KL', K- =KLC andadso K*'=L'K, K- =LK, (8)
because K is commutable with L and L-. It follows from (8) that
K=K"'*+K~ with K*K™ =0. ©

4b. The discussion of Section 4a showed that the introduction d a real
linear operator L satisfying the conditions I = - 1,, and ¢(4, LB)=
= ¢(B, LA) is associated to the splitting d S¢(C) into the direct sum o
two complex conjugate three-dimensional vector spaces S and S5 , ortho-
gonal with respect to the complex six-dimensional metric (4, A). L is
in fact expressed in terms o the two projectors L and L~ o 3 and S5,

L=il"-L). (1)

We shall now see that any pair o complex conjugate three-dimensional
vector spaces S, S with S,(C) = S@ I determinesa red linear operator
Lg with I = —1,, and &(4, LyB) = ¢(B, L, A), provided the vectors As
be orthogonal to the By, with respect to the metric defined by (A4, B):
¢(As, Bs,) = 0. We can define L, by the conditions Ly A = i4s and
LgAg, = —iAs,, Snce any A= Ag T Ag, : LgA = i(Ag— As,).

When Aisrea, A, = 4% and L, Aisalso red, so thar L, isa red linear
operator and for, any A, L34 =i(LsAs—-LsAs,)=-A, so that L =-1,,.
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We have ¢(A, LgB) = is(Ag + A, B, -B,) =i&A4s, B) —is(As,, Bs,) =
= ¢(B, LsA), because of the e-orthogonality o § and S*.

A three-dimensional vector space S o S¢(C) can be described by a Gras-
smann outer product o three linearly independent AQ : Wy = AP A
A AP A AP - Wy is an antisymmetric tensor of the third order of S, (C)
of components W, ;... ... determined by S up to a numerical factor.
From W; we can get a symmetric tensor-density G ., of determinant
Gg # 0

6Gs,~ af = (1/2)6KMv VVS; ax, Ay B+ 2

We shall seein Section4c that Gs,,; = 0(-gs)'/* gs, 5. 0 beiNg an arbitrary
complex number depending on the choice of the A{, and gg.,, a rea
tensor with g¢ < 0.

The above discussion gives a new way to obtain the relation between the
electromagnetic linear operator L(x) and the symmetric tensor g,,(x)
at the point X of the world-manifold, g,,(x) being expressed in terms o
three linearly independent eigenvectors A*®(x), a=1,2,3, of L(x) and
o an arbitrary scalar fidd ¢ (x). Thus we obtain a new proof of the Funda-
mental Theorem relating the conformal geometrv of the world-manifold to
the properties of dielectricity and magnetic permeabilitv of space described
by the linear operator L.

4¢. We shal now apply to S4(C) the theory of the tensor-duality, taking
the metric o S¢(C) as defined by the quadratic form ¢(A4, A). We shall
consider, especialy the antisymmetric tensors W,, ,, ,, o the third order
o S¢(C), for which there is a linear operator of the type L, which will be
denoted by L,. It follows from the general discussion o Section 3b that
L5 = 1g,,,, 16,0, denoting the unit operator on the W, because now n =
= 2r = 6 and ¢(4, A) has signature O for real A, sothat 8 =-1 L, has
the eigenvalues 1 and - 1, and there are red eigenvectors. We shall denote
by X and Y the eigenvectors o L,:

LX=X ad LgY=-Y (1)
The X are self-dual and the Y anti-self-dual.
The simple p-vectors of S¢(C) are its antisymmetric tensors of order p

obtainable as Grassmann outer products o p linearly independent vectors
o S¢(C). They describe the p-dimensional vector spaces of Sg(C). The
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tensor duality of a n-dimensional metric vector space transforms its p-dimen-
sional non null vector spaces into their orthogonal n- p dimensional vector
spaces, through the associate smple p and n- p vectors.

The tensor duality of S¢(C) corresponding to the metric e(A4, A) exchanges
the conjugate orthogonal vector spaces S and S*, and in particular Sy
and S3 . It allows us to determine in a very convenient way the structure
of the simple W describing S. Ls Wy isasimpletrivector W, d S and must
therefore be o the form kW, k denoting a numerical factor, because
Sand S are complex conjugate vector spaces. We have I Wy = kLg Wet =
= k(L¢ Wo)* because L, is redl, so that kk* =1 and k = €' with u real.

Since Lg(e ™2 W) = (e-"12W4),
W = e*(Xg + iY,) with real X and Y;, )
LgXg=Xg, LsYs =-Y;  with real X5 and Y. 3)

S determines the associated pair X5, ¥; up to a real numerical factor. X
and Y; for a given W; are determined up to a common sign.

A simpledirect calculation showsthat a necessary and sufficient condition
for a Y is

8,duv Yak, Ap, v = O (4)

We have therefore &** X, ;. .5 # O for X # 0. Thus only the X part
o Ws contributes to the symmetric tensor-density Gg,,; defined by
Equation (4b-2):

6Gs, o5 = (1/2) €2 & Xy 20 vp» (€% Gy, op is real). )

SinceSg(C) =S @ S*, S# S and Xs # 0, Y5 # 0. e” ™2 Gy, 4 is therefore
a rea nonzero symmetric tensor density, for any value o u. In particular
the G§),, corresponding to u = 0 are real and nonzero. Any Gg, . is of the
form re™*G§),, with a given G§),; and real vaues o r.

We can define by means of an equation o the form (4b-2)a Gs, 4 for any
three-dimensional vector space S o S, or S¢(C) by means d a W which
is the outer product o three linearly independent tensors A o S In
particular S can be taken complex, as in Section 4b, or real. Gg, ,p will
be O in case W; isa Y. We shall assume that there are in S non null AQ
satisfying the conditions d orthogonality and normalization

(A9, AY) = 20,5, (w, #0). ©
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The determinant Dg of the elements (1/2)e (A, AY) is the analog of the
Gram determinant of the three vectors A® for the metric (1/2)e(A4, A).
Dy is therefore nonzero for any set of three linearly independent AY.
With the choice (6), we get Dy = w, w,w;. We shall see that the deter-
minant Gs of the Gg,,s is D2, hence nonzero. With the choice (6),

Gs = (0; 0, 0;). (N

It followsfrom the definition df the Grassmann outer product A A Bin Sg:

(A A B)Kl,uv = AK}.Buv_Auva).a (8)
and from the identity
(1/2)e** (4,8, T A, B,)=—-t(A, B)S; )
that
Gs.ap = (1/2) "% A8tk A A8V - (10)

It followsfrom equation (10)that the matrix of the Gyg,,4 is the product
o the three matrices of elements A{l),, (1/2)e7 AZ); and A§),;, whose
determinants are the corresponding ?. Snce Gy is the product of those
determinants, we get equation (7).

We can associate to S the relative tensor Gg '/* Gy, ,; and the absolute
tensor
35:%. = GE 12 grvee GS;xp GS;lo ’ (1 1)

which do not depend on the choice o the A . The . ., define a linear
operator £, on the A : (%, A),, = L5 4 Apo:

Let % denote the three-dimensional vector space of S or S (C)orthogonal
to S with respect to the metric (4, A). Since ¢(4,, A) =0, it follows
from (10) and (9) that the vectors A, o & are eigenvectorsd the eigen-
value (- 1) of Z5 and the Ag eigenvectors o the eigenvaluel of % :

Psdg = Ag, LsAy, =-A, sothat LE=1,, (12)
When S is real, the A® can be taken as real tensors. Ds is also rea and

Gs = D > 0. Thus Gg,, and G5 '*Gs,,, are rea. We can associate to
the real S any tensor g, With determinant gs > O such that

g.;" 1/4gs;aﬁ = GS— 1/4GS;aﬂ so that gs;aﬂ = ﬂé/‘th_ 1/4GS:aBs (gS > 0) (13)
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In the case d a redl S the g5, ,; cannot have the Minkowskian signature (- 2)
because gs > O. The real metric induced by &(A4, A) in S can be either defi-
nite or indefinite, giving rise to a definite Riemannian metric gs,,, and
to an indefinite one o signature O, respectively. Since in both cases the
real operator %; satisfies the same conditions #¢ = 1,, and &(4, L3 B) =
= g(B, ¥sA), those conditions are not sufficient to determine uniquely the
signature d the Riemannian metric.

Let us consider now the case of two complex conjugate e-orthogonal S,
S*. We need only to consider G§’~ ' G§),; in the calculation of £, which
would be rea for G¥ >0 and |mag|nary for G < 0 Now A% isa A
and must correspond to the eigenvalue(- 1) of %, which cannot therefore
be a rea operator. G is therefore negative and we have now the tensors
Js.qp With gg < O:

Gs,0p = (- 9514 (= G) " G, ap with  gg <O arbitrarv.  (14)

Now the Riemannian metrics must be norma hvperbolic with the Minkows-
kian signature (-2). The linear operator Lg = i.%; is rea and satisfies the

conditions
LZS = - lopa 8(A> LSB) = S(B’ LSA)’ (]5)

which are sufficient to determine the signature d the metric.

In the case of electromagnetism, we can apply directly the results o the
above discussion with S = §7 and St = §3, the two vector spaces asso-
ciated to the eigenvauesi and (- i) of the electromagnetic linear operator
L, which is now L =L, Equation (14) shows that L determines gg. :,,
up to the factor + (-gs)'*. In fact S does not determine the sign o
(- Gg+)~'* which comes in the conformal metric (- Gg:) 1% Ggs.0p.

Thus we have obtained a proof of the Fundamental Theorem based on
the direct construction of the conformal metric from eigenvectors 4+
of the linear operator L of dielectricity and magnetic permeability of space.
Thismethod allows also an easy parallel discussiondof the non Minkowskian
signatures, which are not related to complex structures.

We have excluded the three-dimensional S constituted by null vectors
Ag With ¢(45 A5) = O. Let usconsider now a pair of such real vector spaces
S, S, with §¢ =S@S,, the AY and A¥) satisfying the conditions:

s(AP, AP)=0;  ¢(4§), AQ) =0; (AP, Af)) = wdy.  (16)
(o = scalar-densitv and a, b= 1,2,3)
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We can define a linear operator L, by the conditions

L,A® = AE  and L, Af = -AP. (17

The A® and AE) constitute a basis for S¢ and thereby we have

& =_1 and (A, L, B)=¢(B, LgA) (18)

op

The definition (17)of Lg renders the AQ and AY) an orthonormal basis
of S, for the metric w~'¢(4, LgA4) with signature O

(L, 4L, AD) = wé,,; (L, A8, A8 =0; e(L, 4§, ALY = - wdy. (19)

4d, We shall now show how to obtain at each point x bases d orthogonal
vectors PY with j = 0,1,2,3 from complex bases A®* with a= 1,23 in
S7. We take

gAY, AP =—(i/2) 09, With © =scalar-density and A@* =(1/2)(A“—i %)
(1)
The gx real tensors A® and *4®@ = LA constitute an orthonormal

basis in S for the metric w™'¢(A, LA) because of the equations (2) which
follow from (1):

s(A(“), A(b)) =0; 8(*/1(“), *A(b)) =0; s(A(“’, *A(b)) = wdy, 2

w le(A, LB) = A,B,~ *A,*B, With A = A,A® 4+ *4, %A@ (3)

It is wel known that a necessary and sufficient condition for A to be a
simple bivector A= P AP isthat ¢(4, A)=0, the symbol a dencting
the outer product. A necessary and sufficient condition for two simple
linearly independent bivectors A and A4 to be expressed in terms o three
linearly independent covariant vectorsP, P and P’ as A=P AP, A=
=P A P isthat ¢(4, A) =0. P’ is determined up to a numerical factor
as belonging to the intersection of the two-dimensional vector spaces
associated to A and A

It follows from the equations (2)that the six tensors A® and *4“ are all
simple bivectors and can be expressed as outer products of vectors P. By
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taking into account the three equations (2) it is seen that four linearly
independent PY are sufficient and we have, either

A@D = PO APD and *A® = (1/2)¢, P® A PO with abc =123 (4a)
or

*4@ = PO A PO and A9 = (1/2)e,, PP A PO (4b)
e PO PO PO PD = because  e(A9, *AY) = w 5
The PY can not be introduced with L alone, a O is necessarv. The g,, cor-

responding to L and Z = w!/? are given in terms of the PY bv (6):
g =3 5;PPPY  with s,=1 and s,=s,=5;=-1 (6)

7

The PY give an orthonormal basis of the metric g,,, :
g PP PO = 50 (7)

The PY are determined by the A and *4® up to a simultaneous change
of all their signs.

Thus we get a third proof of the Fundamental Theorem. The g,, are not
entirely determined by L becauseg=-w?, asa consequence of Equation (5).
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