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A formulation of the electromagnetic theory in a differentiable manifold devoid of any metric 
and afine structure is discussed. It is shown that the Maxwell equations in such a manifold 
in,u.olve a tensor describing the properties of the dielectricity and magnetic permeability of 
space because of the anisotropy of such a general space. It is also shown that this tensor is 
es:;entially equivalent to the metric of the angles on the manifold. Thus the necessity of having 
equations for the determination of this tensor in order to determine the electromagnetic field 
shows that the Maxwell equations are not a complete set of differential electromagnetic equa- 
tions. The Einstein gravitational equation appears as complementing the Maxwell set of 
equations allowing the determination of the dielectricity tensor. Thus a natural fusion of 
the electromagnetic and gravitationai theories is obtained with an electromagnetic foundation 
for the geometry of the world-manifold. 

Discute-se uma formulação da teoria eletromagnética numa variedade diferenciável des- 
provida de quaisquer métrica e estrutura afim. Mostra-se que as equações de Maxwell em 
tal variedade envolvem um tensor que descreve as propriedades da dieletricidade e da per- 
meabilidade magnética do espaço devido ?i anisotropia de tal espaço geral. Mostra-se tam- 
bem que êsse tensor é essencialmente equivalente h métrica dos ângulos na variedade. Assim 
a necessidade de se ter equações para a determinação dêsse tensor, a fim de se determinar 
o campo eletro-magnético, mostra que as equações de Maxwell não são um conjunto completo 
di: equações diferenciais eletromagnéticas. A equação gravitacional de Einstein aparece 
complementando o conjunto das equações de Maxwell permitindo então a determinação 
do tensor de dieletricidade. Obtém-se assim uma fusão natural das teorias eletromagnética 
e gravitacional dando-se um fundamento eletromagnético ?i geometria da variedade-universo. 

1. Introduction 

In this paper we present the main results of our work on the formulation 
of the electromagnetic theory in a world taken only with a structure of 
clifferentiable manifold, without the a priori assumption of a Riemannian 
geometry or even of an affine connection. The first results were communi- 
c:ated at the Kyoto Conference' in 1965. Later developments were given 
in unpublished lectures at the 1966 Blumenau meeting of the Sociedade 
Brasileira para o Progresso da Ciencia, at the Znstitut Henri Poincaré 
in Paris (1967) and at the 1969 and 1970 Symposia de Fisica Teorica of 
the Pontificia Universidade Catolica of Rio de Janeiro2. 

"Permanent address: Rua S. Kcente de Paulo. 501, São Paulo SP. 



The goal of our work is to discuss the distinguished role of electromag- 
netism in Physics, in particular in the foundations of the normal hyper- 
bolic Riemannian geometry of the world-manifold and of the gravitational 
theory. We were inspired by some ideas presented by Dirac, a long time 
ago, on the special role of electromagnetism in Physics, resulting from 
the fact that all measurements depend directly or indirectly on electro- 
magnetic phenomena. 

We started from the description of the electromagnetic field by a pair 
of antisymmetric covariant tensors F,, and *F,, , involved in the homoge- 
neous and non homogeneous Maxwell equations, respectively. Tlzis gace 
us the foundation of the dimensionality n = 4 of the world-manifold, be- 
cause the structure of the Maxwell equations in tbrms of the F ,  *F pair is 
only possible for n = 4. This point is discussed in Section 3. 

The relation between the fields F and *F corresponds to the properties 
of dielectricity and magnetic permeability of space, since F is the (B, E) 
field and * F  the (H, D) field. This relation is mathematically expressed 
by a linear operator L :  
* 
F = L F  and F = - L  *F, so that L2 = - l O p ,  l O p  = unit operator. ( lu )  

It is also necessarv to assume the symmetrv condition 

E ~ h ' a  LPV = ECVC)a LKA 
pa ,, with (LF),,  = (112) Fpa , ( W  

which requires the four-dimensional Ricci symbol E""", hence the four- 
dimensionalit!). 

In  General Relutivity, * F  is taken as the dual of F according to the general 
definition of the dual of an antisymmetric covariant tensor corresponding 
to the metric given by the symmetric tensor g,, of determinant g < 0: 

The C,, defined by the condition 

are the components of the conformal metric whjch gives the angular me- 
tric associated to the Riemannian metric g,,. The C,, are obviously inva- 
riant for the change of gauge g,, -+ Sg,,, S denoting an arbitrary scalar. 
The definition ( l c )  of *F depends only on the conformal metric C,,. 





tence of &(A,  B) and can be used as a condition to get n = 4, taking as a 
basic postulate that F and *F are both of the second order. 

The electrornagnetic linear operator L determines only up to a sign a 
relative symmetric tensor C,,, which defines a conforma1 metric. The intro- 
duction of the electrornagnetic potentials leads to the imposition of the 
Lorentz condition, which cannot be written only in terms of C,,. Thus 
we get a basis for the introduction of a quantitv Z of the kind of (- g)'I4, such 
that the indetermination in the sign of the C,,, also related to a power 1/4, 
be compensated and we get an electromagnetic symmetric tensor g,, with 
the Minkowski signature, 

g,, = ZC,, so that g = - Z 4 .  (3) 

The availability of an electrornagnetic symmetric tensor g,, with g # O 
allows to get the covariant differentiation of the physical quantities by 
means of the Christoffel symbols of g,,, especially of the electromagnetic 
tensor of energy and momentum. Thus we are able to get the Lorentz force 
as a covariant divergence of that tensor. 

The Maxwell equations associated to the algebraic equations (la) and 
(lb) are not sufficient for the determination of the fields F and *F,  because 
they do not allow the determination of the field G , ( x ) .  We can obtain 
L(x) in terms of the g,,(x), 

W e  are naturally led to choose, as equations for the determination of the L(x), 
the Einstein tvpe of equations for the g,,(x) on covariance grounds. We shall 
actually postulate those equations directly in another way. 

The mathematical problem of finding the equations for the determination 
of the electromagnetic g,, equivalent to Z and the is the same as that 
of the determination of the gravitational potentials in General Relativity. 
We need a set of 10 covariant equations for the electromagnetic g,,, related 
by 4 identities because the values 'of the g,,(x) cannot be totally determi- 
ned without the fixation of the four arbitrary functions involved in the 
choice of the coordinates xp on the world-manifold. The equations must 
be of the form 

R,, - (1/2)g,, R + Ag,, = O,, with constant Â and e,, = O,, , (5 )  

because of a well known theorem of Cartan which shows that the only 
second order symmetric tensors built with the g,, and their derivatives up 
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to order 2 having covariant divergence O are of the form of the tensor in 
the left-hand side of (5). Thus the covariant divergence of O,, is O: 

DP(gPV,,) = O with D, = xP covariant derivative of the metric g,,. (6) 

In order to choose O,,, the deflection of light rays by large stellar masses , 

gives the fundamental clue: we can take the electromagnetic tensor g,, as 
the metric and O,, = mrcT,,, m being a numerical constant and T,, the energy- 
momentum tensor of matter of a11 kinds, including the electromagnetic jeld 
itself, because the masses are seen to act on the electromagnetic ivaves and 
on the other hand DP(gPpT,,) = O. rc = G/c4, with G denoting the gravi- 
tational constant, must be introduced for dimensionality reasons. 

The constants I and m must be determined by experiment or observation. 
It is satisfactory to take 

I = O and m = 871, so that O,, = 8nrcTpV and rc = G/c4. (7) 

The deflection of light rays by a large mass not only gives us the tensor but 
provides also a direct proof of the relations between the Riemannian metric 
and the properties of dielectricity and magnetic permeability of space. It 
cal1 be seen as resultirig fionz a variation of the refiuctive irtdex of space, 
which leads to curved light rays, or alternatively from a strong curvature of 
the world-manifold in the neighbourhood of a large mass. It is well known 
that the Riemann-Christoffel tensor R;, ,, describes precisely the curva- 
ture of the manifold endowed with the Riemannian metric g,,. Cartan 
has shown that R,, - (1/2)g,, R describes the curvature of the three-dimen- 
sional infinitesimal domains of a Riemannian manifold. 

The red-shft of the light emitted from the sturs giues the same clue to the choice 
of O,, as the dejlection of light rays, showing the injuence of large masses on 
electromagnetic radiation. 

In order to find O,,, we assumed the conservation laws D, Tg = O .  But 
once the equations for the g,, were found, we may change our point of 
view 2nd take D, T,P = O as a corollary of the fundamental law of Physics 
given by the equation R,, - (1/2)g,, R = 8nrc T,, . The constant rc appears 
now as a link between the electromagnetic tensor g,,, equivalent to Z and 
L, and mechanics: the fundamental mechanical equation D, T,P = O can be 
obtained from R,, - (1/2)g,, R = 8zrc T,, because rc # O. 

It is important to note that I C - I  is a natural unit of force, both in General 



Relativity as in our electromagnetic theory, very large but finite. To neglect 
K amounts to take the natural unit of force as infinite. 

The two conditions for the operator L, L? = - I O p  and &(A,  LB)  = s(B, LA),  
are also satisfied by (- L).  The sign of L is however essential because it deter- 
mines the sign of the energy-density of the electromagnetic field: 

Equations (8) shows that we can obtain from F and L the tensor-density 
of electromagnetic energy-momentum @(")(F){ = ( I / ~ ) E ~ " ~ Y ( ( L F ) , ~  Fy,  - 
- (LF),,,F,,J, but that we need Z 2  to get T(')(F). W e  can therefore use the 
energy-momentum tensor T(')(F) as the basis for the introduction of Z 2 ,  
instead of the Lorentz condition for the potentials. 

We shall prove in a following Section that the conditions for L can be obtai- 
ned by imposing suitable conditions on the energy-momentum tensor- 
density %"')(F)P, without making use of the Maxwell equations. Thus the 
four-dimensionality of the world-manifold and the normal hyperbolic type 
of its Riemannian metric can be associated to rather simple properties 01 its 
energv-momentum distribution. 

2. The Fundamental Postufates 

We shall now give a more systematic development of the idea that electro- 
magnetism plays a central role in Physics, following the general line of 
thought outlined in Section 1, but in a more radical way. The basic impor- 
tance of electromagnetism for the physical construction of geometry was 
already shown in Section 1, without using the more radical approach of 
this Section. 

Besides the Basic Postulate of the existente of the two fields F and *F, des- 
cribed by antisymmetric covariant tensors of the second order of the world- 
manifold, we shall also assume the Maxwell equations and the algebraic 
electromagnetic equations for L, the Lorentz condition for the potentials, 
as well as the restriction on L necessary to render the energy-density of the 
electromagnetic field non negative. These matters were already discussed 
in Section 1 and will be further analqsed in Section 3. 



In this Section we shall introduce four postulates of a somewhat different 
kind, which will be called the Fundamental Postulates: 

I. The Fundamental Mechanical Postulate. 

11. The Fundamental Geometrical Postulate. 

111. The Existence of a Natural Unit of Electromagnetic Field-Intensitv. 

IV. The Fundamental Postulate on the Parallel Displacement. 

The Postulate I11 can be put in different forms. It is essentially a postulate 
on the existence of one natural unit of electromagnetic nature: unit of electric 
charge, unit of magnetic mass, unit of field-intensity. Postulate I introduces 
the unit of force K- '  and there is of course the velocity of light c. Thereby 
the existence of one electromagnetic natural unit implies that of the others. 
We preferred to postulate the unit of field-intensity in order not to close 
the question on the priorities of the units of electric charge or magnetic 
mass. From a purely experimental point of view, the most natural thing 
is to postulate the existence of a natural unit of electric charge, namely 
the charge e of the known elementary particles. But this may perhaps not 
be the most satisfactory form of our Postulate. 

Postulate I .  The tensor of energy and momentum distribution of matter T,, 
is proportional to the tensor R,,-(1/2)g,,R obtained with the electromag- 
netic tensor g,, and its Riemann-Christoffel tensor Ri,va, the proportionality 
factor being (8nG/c4)-l ,  G denoting the gravitational constant (The Fun- 
damental Mechanical Postulate) : 

8x1~ q, = R,, - (l/2)g,, R with IG = G/c4. (1) 

Equation ( 1 )  is obviously a reinterpretation of the Einstein gravitational 
equations. In our theory Equation (1) completes the set of the Maxwell 
and algebraic electromagnetic equations, giving the differential equations 
for the tensors LK, and 2. 

Equation (1) is the essential link between electromagnetism and mechanics, 
whose basic equation is obtained by taking the covariant divergence of both 
sides of ( 1 ) :  

D, TP = O with D, = (xQovariant derivative) and T ;  = gw T p v .  (2) 

The gravitational constant appears now as the bridge between electromag- 
netism and mechanics. K - '  is actually a natural unit of force. 



T,, includes also the electromagnetic energv-momentum tensor T,':', whose 
divergence D, e"'" introduces in (2) the Lorentz force on the charges. 

Postulate 11. The measurements of space and time in Phvsics are based on 
the Riemannian giometrv of the four-dimensional world-manifold defined b.s 
the electromagnetic tensor g,, obtained from L and 2. (The Fundamental 
Geometrical Postulate). 

The two Fundamental Postulates give a precise formulation of the idea that 
electromagnetism plays a central role in physical measurements and obser- 
vations. In particular the Postulate I1 bases the Riemannian geometry of 
the world-manifold on electromagnetic quantities. We shall see that the 
Postulate I1 is closely related to the existence at each point of the world- 
manifold of the electromagnetic Lie algebra & isomorphic to the Lie algebra 
of the Lorentz group. 

We were able to put together the Maxwell and Einstein equations as funda- 
mental differential equations of the electromagnetic theory. Thus we have 
the two kinds of basic fields F,, and g,,, with *F expressed in terms of them. 
We gained a new insight on the nature of thefield g,,, which now svnthesizes 
the linear operator L and the weighted scalar Z. The signature of g,,dx~dxv 
is seen to follow from the fact that L determines a complex structure in the 
vector space S ,  of the antisymmetric tensors A,,. 

The mathematics of our theory of electromagnetism and geometry is essen- 
tially based on the exceptional role played by the vector- space of the A,, 
in the case of a four-dimensional manifold. 7?& mathematical fact gives a 
strong support to the idea that electromagnetism and also other fields des- 
cribed by tensors A,, must have a distinguished part in Phvsics. 

The vector space S,  is intrinsically endowed with a bilinear form &(A,  B), 
whose importance we have already stressed. Since &(A,  B) is a scalar-density, 
we need a scalar-density field o(x) to obtain a scalar metric o - l ~ ( A ,  A). 
It seems natural to take this metric independent of that given by the g,,, 
since &(A,  A )  does not depend on the g,,. We  are thergfore led to assume that 

w does not coincide with &: 

o ( x )  = S ( x )  4- g ( x ) ,  S ( x )  being a scalar field. (3) 
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Zn a four-dimensional manifold it is natural to assume the existence of a scalar 
field S ( x )  besides the Riemannian metric g,,(x), in order to have the indepen- 
dent metric w-' E ( A ,  A) for the A,,. This suggests a scalar-tensor theorv of 
geometry and gravitation, more general than that given in this paper. 

The tensors of S ,  seem to be of special interest to Physics. The S, vectors 
are the A,,, in particular the F,,. The antisymmetric tensors of the second 
order of S,  are the Uap,Y, antisymmetric with respect to c( and P and also 
in y, b with 

Uap, ?a + Ura, a~ = 0- (4) 

The electromagnetic energv-momentum tensor T(") is equivalent to the U(') = 

= " F  A F ,  

The U can be used to describe non polarized light. 

The Riemann-Christoffel curvature tensor R,&,, is a symmetric second 
order tensor of S,  satisfying the condition RaB, y6 = O. RaS, ,a is indeed 
antisymmetric with respect to the two indices of each pair and R,,,,, = 
= R,,,.p. It is interesting to note that the various symmetries of the indices 
of RaB,?,j mean simply that it is a symmetric tensor of the second order 
of S,, with the trace O for the intrinsic metric of S,. 

The antisymmetric tensors of the third order of S,  are the Wap, Kl, antisym- 
metric with respect to the three pairs of indices and the indices of each pair. 
There is a very simple relation between W and the symmetric tensors S,, : 

We can raise the indices of W by means of the metric tensor w- ' &aPy6 and 
obtain WaP,y".""rom which we can extract a symmetric tensor 29" = 
= o ~ , ~ . , ~  W"".y-*v. The vector spnce of the W is the direct sum oftivo ten- 
dimensional vector spaces, equivalent to those of the S,, and Srv, when a 
scalar-density co is given. 

By means of three Iinearly independent A$, we can build a W = A") A 

A A") A A(3) by outer products of S,. These W are the simple trivectors 
of S,. It is possible to get from the real simple trivectors the Sd with non 
Minkowskian signatures. The g,, of the world-manifold can be obtained from 
the complex outer product of three linearly independent eigenvectors of the 
same eigenvalue of L, by means of formula (6). 



The vector space S, can be transformed into a richer algebraic structure, 
namely a Lie algebra, by the introduction of a vector product A ,  x A, ,  
which is again an A, by means of the structure constants C$yd of the 
Lorentz group of g,,: 

( A l  x AZ)," = (114) A2; y, with C$, y6 = gp0 (6;! 6;: - 6:: 6::). (7) 

Thus S ,  becomes the Lie algebra of the Lorentz group of the metric g,,. 

Here comes in another peculiarity of the dimensionality n = 4: there is 
essentially only one definition of the vector product of S, giving a simple 
Lie algebra, namely that corresponding to a g,, with a Minkowskian 
signature. This results from the fact that the Lorentz group is the only 
simple Lie group with six parameters, up to isomorphisms. 

The dimensionality n = 4 of the world-manijold and the Minkowskian sig- 
nature of its Riemannian metric are determined bv the condition that the Lie 
algebra structure of the vector space of the A at anv point x of the world-mani- 
fold determined by the orthogonal group of g,, be simple and the 0nl.v possible 
tvpe of simple Lie algebra for a vector space of dimensionalitv n. This theorem 
results from the fact that for n # 4 and larger than 2, the groups O(n - p, p) 
are a11 simple, so that there are severa1 types of simple Lie algebras. 

The above discussion shows that the Lie algebra structure of S ,  is really the 
most essential mathematical feature of the geometry of the world-manifold. 
It must therefore correspond to an essential algebraic structure d of the 
electromagnetic theory. In order to be able to define a Lie product F, x F2 
of two fields, of the same nature as a field F, we need a new Fundamental 
Postulate : 

Postulate 111. There is a natural unit 4 of electromagnetic field intensitv. 

By means of 4 we can give a satisfactory definition of the Lie product 
F, x F ,  of two fields corresponding to the above Lie algebra structure of 
the A,, because 4-' F,, is a tensor with dimensionless components. 
Thus we get the product of 6 

The Lie algebra of the Lorentz group is not changed when we replace g,, 
by Sg,,, S being a scalar, because the group is the same for both g,, and 
Sg,,. The definition of the Lie algebra of S, shows that the substitution 



g,, + Sgpv corresponds to an automorphism not affecting the vector-space 
structure of S , .  In the case of the electromagnetic Lie algebra with the 
product (8) we must rule out the automorphism induced by g,, + Sg,, because 
it amounts to a change of 4. This is related to a passage from the conforma1 
geometry determined by the Lorentz groups at the different points of the 
manifold, or by the corresponding linear operators L, to the Riemannian 
geometry given by the g,,. 

The introduction of 4 gioes us a fundamental length (4 ,,&)-I, which is 
probably related to the Planck length (hcrc)'I2. The theory contains also a 
constant (&c)-' which can be a fundamental electric charge or a fundamental 
magnetic mass. It is interesting to note that by taking for ( 4 ~ ) ~ '  the 
Dirac value for the elementary magnetic mass ( 1 / 2 ) i 1  e, we get for 

(4 &)-I the value (8na)- ' I 2  ( h c ~ ) ' ~ ' ,  very nearly the Planck length, with 
a = e2/hc. 

If follows from the above considerations that there are other postulates 
equivalent to Postulate 111, because of the existence of the natural unit 
of force K-' introduced by Postulate I. We may assume, instead of Pos- 
tulate 111, any one of the following postulates: 

Postulate ZIZa. There is a natural unit e, of electric charge. 

Postulate ZZZb. There is a natural unit mo of magnetic mass. 

Postulate IIIc. There is a natural unit of length A,. 

Postulate IIIa is of course the most obvious, because of the experimental 
fact of the existence of the charge e of the known elementary particles. We 
discussed already the interest of having the Dirac value of the magnetic 
mass as a constant in our theory, in order to get from it the Planck length. 
This can be done directly assuming the Postulate IIIb, with mo taken as 
the Dirac magnetic mass. 

In the case of Postulate IIIc, there would be the nice feature of having a 
natural unit of length, from the beginning, in the physical construction 
of geometry. The Planck length would eventually be a good choice for 
A,. Thus the Planck constant h could be obtained from the elementary length 
A o ,  G and c. 

There are of course other possible choices of a basic natural unit different 



from those discussed in the above four forms of the Postulate 111. A parti- 
cularly interesting one is that of a natural unit of angular momentum or 
action, which corresponds to the following form of our Postulate: 

Postulate IZId. There is a natural unit 15 of angular momentum. 

The angular momentum is a physical quantity particularly related to the 
rotations and the Lorentz group. The introduction of a natural unit of angu- 
lar momentum allows us to get a Lie algebra of the angular momentum ten- 
sors M,, directly from that of the Lorentz group, with the multiplication rule 
( M 1  x M,),, = h -  C$ yd M,; ,g M,; ,,, similar to the electromagnetic Lie 
algebra 8. Thus the Planck constant h ivould come in in a non quantized 
theorv as a natural unit of angular momentum. The passage to the relativistic 
quantum theory of the angular momentum would correspond to the 
introduction of the representations of the Lie algebra of the M,, by Lie 
algebras of operators of Hilbert spaces, in which the M are associated to 
linear operators whose commutators correspond to the Lie products of 
the Lie algebra. In the case of the angular momentum, as well as in other 
cases, it is possible to define Lie algebras for phvsical quantities, involving 
the Planck constant h as a dimensional constant, before the quantization, 
which is associated to a representation ofthose Lie algebras bv linear opera- 
tors of Hilbert spaces withfinite or infinite dimensionalitv. The Lie products 
give rise to commutators in the quantized formalism. 

The electromagnetic Lie algebra & does not depend on the Maxwell equa- 
tions. It is an algebraic structure of the electromagnetic theory underlying 
at each point x the geometric Lie algebra of the veclor space S, .  Thus it 
gives the foundation of the Postulate 11, which bases the geometry of the 
world-manifold on the electromagnetic g,,. We shall see in Postulate IV 
how-& underlies the definition of the parallel displacement on the world- 
manifold. 

&' shows that the g,, have a definite algebraic role in electromagnetism: 
they and the constant 4 give the structure constants 4-' C$,*yd of the 
electromagnetic Lie algebra 8. 

We shall now see that the L,ie product F ,  x F, is verv closeli. related to 
the Lorentz force on the charged particles. This is due to the fact that the 
Lie product F, x F, is a special case of a kind of product F x T which 
exists for any covariant tensor 

,.,,s : 

(F x TI,  ps =4-19Pa(Fp1pT0 ,p  z,..., , , + . . . + F P s P ~ l  ;.., ,s-l,a). (9) 
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In particular, when T is a vector P,  

(F  x P), = # - l g P U  F,, P, = 6-' F,, V P  with V P  = gPaP,,. (9a) 

Hence 

(F  x P), = rce, F,, V P  with e, = (ic#)-l (10) 

F x P is therefore the Lorentz force on a particle of charge e ,  with the velo- 
citv vector T) measured with the natural unit of force K-'. 

rl(F x T), with 51 infinitesimal, is the change of T for the infinitesimal 
Lorentz transformation which changes P into P + q ( F  x P). Along the 
element ds of the path of charged particle of mass mo and charge e,, the 
field F generates an infinitesimal Lorentz transformation changing the 
momentum mo V by e,(F x P)ds. 

& is actuallv a subalgebra o f the  Lie algebra &, of thefields F,, and currents 
J,, with the multiplication rules (8), (8a) and (8b):  

(F x J) ,  = ~ - ' g P " F ~ p ~ u  and (J x F), = 4-'gP"JPF,,  = - (F x J),, (8a) 

J") x J(!) = 0 (8b) 

The rule (8b) follows from the fact that J"' x 3") is the scalar gP"(Jy' J y )  - 
- J ? ) J ~ )  = o. 

The rôle of the Lorentz force is seen explicitlv in @a). Moreover from the 
Jacobi condition 

( F l x F 2 ) x J + ( J x F l ) x F 2 + ( F , x J ) x F l = 0  (11) 

and @a), we get (8). 

In the Minkowski space-time, the group of the displacements is the well 
known Poincaré group generated by the Lorentz group and the Abelian 
group of translations. In the case of a curved world-manifold there is no 
Abelian group of translations with four independent parameters, so that 
there is no true analog of the Poincaré group of the flat space-time. It is 
nevertheless possible to introduce at each point ?c of the world-manifold 
a Lie algebra of the A,, and P, with the multiplication rules ( A ,  x A,),, = 

= gP"(A l ;pp  A z i a ,  - A2;,,) ; ( A  x P),  = gP"App P,, ; P ( l )  x P(') = O 
(12) 

which is essentially the Lie algebra of the Poincaré group of the flat space- 
time tangent at the point x to 'the world-manifold. 



The electromagnetic Lie algebra 6,(x) is isomorphic to the Lie algebra of 
theflat Minkowskian tangent space at the point x. The, 8, at a11 the points 
of the world-manifold are therefore isomorphic Lie algebras. The & at 
a11 the points of the world-manifold are a11 isomorphic to the Lie algebra 
of 0(3,1) and thereby isomorphic to each other. 

We shall now consider the determination of the affine connection r:, of 
the world-manifold in the electromagnetic construction of geometry. In 
the ordinary Riemannian geometry the affine connection TP,, is assumed 
to be symmetric 

r:, = 1-5, (13) 

so that the torsion tensor T,Pn = r;n - l-2, = O everywhere. The symmetric 
are obtained from the Riemannian metric tensor g,, by imposing the 

condition of invariance of the length of the vectors V" by parallel dis- 
placement : 

gPv(x)VpVv = gsv(x +- dx)(VP + 8V P)(V V + 8Vv) with 8VP = -rEnVKdx? 
(1  4) 

We get from (14) 

It follows from equations (15) and (13) that the components of the afine 
connection r are the Christoffel symbols 

C n  = (1/2)gPa(aKg, + aÃg,,- a, g,3 so that = {E>.). (16) 

We want to keep equations (13) and (16) in our electromagnetic approach, 
with the g,, taken as the electromagnetic ones, equivalent to Z and L, 
in order that the theory of the parallel displacement be in agreement with 
the Postulate 11. The condition (14) will be replaced by another involving 
the Lie algebra 8, through the following Fundamental Postulate of the 
Parallel Displacement : 

Postulate IV. The parallel displacement is defined by a symmetric afine 
connection TEn and induces an isomorphic correspondence between 8 ( x )  
and 8 ( x  + dx). 

The Postulate IV requires that the Lie product of the parallel displaced 
tensors F ,,,, + 6F ,,,, and F,,,, + 6F2,,, at the point x + dx, involving 
the gPv(x + dx), is the tensor (F ,  x F,),, + 8(F,  x F,),, with F,  x F,  
involving the g,,(x). A straightforward computation shows that as a con- 



sequence of the symmetry of TE,, we get again the equations (15) and (16). 
Now equation (14) is a corollary of (15), so that the invariance of g,, VpV'  
by parallel displacement is a consequence of the Postulate TV, the g,, being 
of course the electromagnetic ones. 

It follows from the validity of equations (16) for the electromagnetic g,, 
that the Riemann-Christoffel tensor R;,'' of those g,, is actually the cur- 
vature tensor of the world-manifold, corresponding to the affine connection 
r:,. Thus the equations (1) have the same geometric content as the Einstein 
gravitational equations, as a consequence of the Postulate IV. 

3. The MaxwelJ Equations 

We shall now discuss the form of the Maxwell equations in a differentiable 
world manifold not endoweá with either affine, conforma1 or metric pro- 
perties. This requires a two-field formalism. We shall be mainly interested 
in showing how the structure of the Maxwell equations in the two-field 
formalism requires that the dimensionality of the world-manifold be n = 4, 
when the fields *F and F are assumed to be both described by covariant 
antisymmetric tensors of the second order. 

Let us firstly give the definitions of the fundamental differential operators 
Rot and Div. The operation Rot can be applied to the antisymmetric cova- 
riant tensors A of order p < n, in a n-dimensional differentiable manifold, 
the tensor Rot A being antisymmetric covariant of order p + 1:  

1 P l  ..., P p  + I  (Rot * ) B 1 , . . . , P P  + i  = (P !I- 8 C 1 : . . . , P p  +, d P 1 A P 2 , . . . ,  p p  + l  with ôp = xP derivative. 

(1) 

The operation Div can be applied to the antisymmetric contravariant 
tensor-densities 99 of order p > O in a n-dimensional differentiable manifold, 
DivB being an antisymmetric contravariant tensor-density of order p - 1:  

The covariant differential operations Rot and Div involue only ordinary 
deriuatives of the components of the antisvmmetric tensors A and tensor- 
densities 9. Rot corresponds to the Cartan differential of an externa1 
differential form. Div can be expresseá in terms of Rot as we shall now see. 

The antisymmetric contravariant tensor-density of order p, B, is equi- 
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valent to an antisymmetric covariant tensor B of order n - p, because of 
the existence of the Ricci relative tensor E ~ ~ , . . . , ~ ,  : 

+ I  ."'. Pn BpI,...,Pn-p = (P ~ p ~ , . . . , ~ ,  (3) 

This B, B duality associates to Rot B the tensor-density (- 1)"-PDiv 69: 

( R O ~ B ) ~ ~  ,...,P " - p  + I  = ((P- 1 )  V(- 1 Y P  (Div g ) P n -  P +2, '" ,  Pn 
EP1 ;.., P" (4) 

The homogeneous Maxwell equation involves only the field F associated 
to the Lorentz force-density F , , y  on the charge-current distribution. F 
must be a covariant antisymmetric tensor of the second order, because 
of the contravariant nature of the tensor-density 2" associated to particle 
velocities v". The homogeneous Maxwell equation 

RotF = O  (54 

can obviously be written for any world dimensionality n > 3. 

The non homogeneous Maxwell equation will be taken firstly in a diver- 
gencial form 

D i v * F  = f (56') 

*F must be an antisymmetric contravariant tensor-density of order 2, 
because $ is a vector-density. The equation (5b') can be written for n > 2. 

In the n-dimensional case *F is an antisymmetric couariant tensor of order 
n- 2  as shown by equation (3). For any value of n compatible with (5b'), 
*F has the same number of components as F. But only for n = 4 is *F 
a tensor of the same nature as F. This is due to the fact that the Ricci relative 
tensor has four indices for n = 4: *F,, = (1/2)~,, , ,*P'.  

The non homogeneous Maxwell equation can be written in a rotational 
form for n > 3: 

Rot *F = (- 1 y 2  J .  (Sb) 

J is now an antisymmetric covariant tensor of order n-  1. 

The-non homogenous Maxwell equation is closely related to the conser- 
vation of the electric charge expressed by the equation 

Div ,f = O or Rot J = O 
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It is well known that, with suitable conditions imposed to the world- 
manifold, Div 9 = O implies the existente of fields * 4  satisfying the 
equation Div * 4 = 2, * 4  may be seen as a kind of potential tensor for 
the charge-current density 9, from a purely mathematical point of view. 

We shall assume the following Basic Postulate of the electromagnetic 
theory, which renders *F an antisymmetric covariant tensor of the second 
order, as a consequence of F having the same property: 

BASZC POSTULATE: The two basic tensors F and *F are both antisvm- 
metric covariant of the same order. 

It follows from the Basic Postulate that the dimensionality of the world- 
manifold is n = 4, since the discussion of the Maxwell equations showed 
that the order of *F is n- 2.  Thus we see that the four-dimensionalitv of 
the ivorld-manijold is a consequence of the structiue of the Maxwell equations 
(5a) und (5b) which involve fields F and *F of the same tensorial nuture. 
The Basic Postulate gives to the two Maxwell equations the same structure 
in vacuum and allows to replace them by a singie equation for a complex 
field F +  (or F - ) :  

Rot F +  = - iJ and Rot F -  = iJ, with F +  = F - i*F and F -  = F + i*F 
(5 )  

Until now we did not assume any relation between F and *F. The four- 
dimensionality of the world-manijold is associated to the differential elec- 
tromagnetic equations, without an.v consideration of L and the algebraic 
electromagnetic equations. It is interesting to note that the introduction 
of the linear operator L presupposes the Basic Postulate. ' 

The introduction of L and the algebraic electromagnetic equations cor- 
responds to a second stage of the physical construction of geometry. The 
F+ are now eigenvectors of L corresponding to the eignevalue i and the 
F -  eigenvectors of L of the eigenvalue (- i): 

L F +  = iF' and LF- = - iF-  since *F = LF. (7) 

L being a real operator of square - I,, has only two eigenvalues i and 
(-i), both with the multiplicity 3. The complex vector spaces of the F+ 
and F-  must thereby be three-dimensional. The introduction of L leads 
therefore to a description of the electromagnetic jeld bv a complex three- 



dimensional vector F+  or F -  = (F+)*. Those three-dimensional vectors 
correspond to the tivo kinds of second order van der Waerden spinors, built 
with the two-component Wevl spinors. 

The bilinear form &(A,  B) exists already in the first stage of the construction 
of geometry, but &(A, LB) belongs to the second stage. In the first stage 
F and *F are still independent, so that F+ and F -  are vectors of a six- 
dimensional complex Euclidean space S,(C) with the metric form e(A,  A). 
In the second stage F +  is restricted to the three-dimensional sub-space 
S i  of S,(C) defined by L F +  = iF+ and F-  to the sub-space S; defined 
by the equation LF- = - iF- . 

We shall see in Section 4 that the linear operator L with L? = - I,, allows 
to render the six-dirnensional vector space S, of the real F into a complex 
three-dimensional Euclidean space equivalent to S i  or to S 3 .  

3a. The Maxwell equations appear as a special case of a more general type 
of equations in which there is a field A described by an antisymmetric 
covariant tensor A of order p < n and another field *A described by an 
antisymmetric covariant tensor of order 11 - p. The two fields have the same 
number of components C: and satisfy equations of the form 

R o t A = B ,  R o t * A = B ' ,  (1) 

B and B' being antisymmetric covariant tensors of order p + 1 and n - p + 1 ,  
respectively. 

The case of p = 2 is particularly interesting when B = O because it follows 
from a well known general theorem of Poincaré that under certain con- 
ditions there is a covariant vector P such that 

so that A can be described by a vector field P. In the electromagnetic case 
P is the uector potential. It is not completelv determined bv thefield A, there 
being the possibility of the gauge transformation 

P --+ P + Rot S, with S an arbitrarv differentiable scalar field. (3)  

In the case of p = 2, B' describes a conservative current, since it follows 
from the second equation (1)  that 

Rot B' = O so that 3' = O for p = 2. (4) 



In the electromagnetic case equation (4) is the law of conservation of the 
electric charge. 

The introduction of a Riemannian metric in the n-dimensional differen- 
tiable manifold allows to associate to the field A a field *A by the operation 
of tensor duality for a11 the possible values of p. This follows from the 
possibility of associating to A an antisymmetric contravariant tensor 
API."', PP = g m f i . .  .g"ppApl ,..., pp by means of the metric g,, and to build 

a contravariant tensor-density of order p, *d:  

From the tensor-density *d of order p we get the covariant antisymmetric 
of order n - p, *A. The metric "dualitv alloivs the dejnition of the diver- 
gente Div * d ,  equivalent to Rot *A. Thus with the present choice of *A 
the svstem of equations ( 1 )  appears as a direct generalization of the system 
rot A = B, div A = S for a vector jeld A in the three-dimensional Euclidean 
vector analvsis. 

In the case of p = 2 the introduction of the metric g and the correspond- 
ing *duality allows to define the dual *P of the vector P, which is an actisym- 
metric covariant tensor of the order n - 1. The arbitrariness of the scalar 
S in equation (3) can now be restricted by the generalized Lorentz condition 

Rot *P = O equivalent to Div *B = 0. (24 

It is important to note that in the case of n = 4 and p = 2 the definition 
of *A can be given in terms of the conformal metric C,, = (6g)-1/4g,v, 
but the definition of * P  requires the Riemnnnian metric g,,. Therebv the 
Lorentz condition for the electromagnetic potentials involues the Riemannian 
metric of the world-manqold. On the other hand it is well known that in 
general relativity the Maxwell equations involve only the conformal 
metric. This follows from the fact that in General Relativity the fíeld *F 
is taken as the *dual of F. 

The Equations (2) and (2a) are a system of the type (1) for the vector P. 
By taking the *dual of both sides of (2) we get *(ROL P) = *F and by making 
use of the inhomogeneous Maxwell equation we obtain the relation bet- 
ween P and J 

Rot (*(Rot P)) = J ,  ( p  = 2). (6) 

It is not necessary to use the explicit definition of the *dual of a second 
order antisymmetric tensor to get the eqiiation corresponding to (6) in 



the electromagnetic case in which we have a linear operator L such that 
* A  = LA for p = 2. Equation (6) can be written as 

Rot (L (Rot P)) = J ,  for n = 4, p = 2. (7) 

3b. The duality B, &' corresponds to the existence of a bilinear forrn 
&,(A, B) of the antisymmetric covariant tensors A of order p and B of 
order n-  p 

E ,  (A, B) = ( p  ! (n - p) !)- ' sP1?"', Pn A,, ,,..., pp Bpp ; ,..., ,,, , ( 1 )  

E ,  (A,  B) = (- l ) P ( n - P ) ~ ,  (B, A). (2) 

For even values of n, n = 2r, the B of order r have A9 of the same order r. 
Now &,(A, B) gives a bilinear form for the tensors of order r. It follows 
from (2) that it is either symmetric or antisymmetric according to r :  

& z ~ ( A ,  B) = (- ~)'E,,(B, A), ( A  and B of order r). (3) 

For n = 2r the *dual *A of an A of order r is also of order r, so that we 
can define a linear operator L such that 

* A  = LA for the A of order r. (4) 

Since we have for any p < n 

*(*A) = (- ~ ) P ( ~ - P ) o A  (p  = order of A), (5 )  

L = (- 1 l P  with I , ,  = unit operator on the A of order r. (4a) 

The conditions imposed in Section 1 to the electromagnetic linear operator 
Lure preciseli) of the tvpe (4), (4a), (4b) with 6 = -- 1 nrtd r = 2, corresportdirtg 
to the dimensionality n = 4 and the normal hyperbolic type ~f the metric. 

It is easily seen that in the case of n = 2r the *duality for the A of order 
r depends only on the conforma1 metric 



Equation (4b) shows that, for even values of n, L allows always to build 
a symmetric bilinear form of the A of order r = n/2: 

L(A, B) = L(B, A) = E~,(A, LB). (8) 
For odd values of r, the bilinear form E~,(A, B) is antisymmetric. 

We shall prove in Section 4c that when n = 4 and 8 = - 1 the conditions 
(4), (4a) and (4b), determine the conformal metric C,, up to a minus sign, 
but not for n = 4 and 8 = 1, when there are diflerent possibilities for the 
signature of the Riemannian metric. 

It is easily seen that, both for the definite Riemannian metric and for the 
indefinite Riemannian metric of a four-dimensional manifold, the deter- 
minant g is positive so that 8 = 1 in both cases and the duality operators 
L satisfy the same conditions I? = lOP and &(A, LB) = &(B, LA). 

3c. The non conformal nature of the Lorentz condition Div *B = O follows 
from the fact that *P' cannot be expressed in terms of P, and the C"" 
only, a Z is also needed: 

*Sp = - Z3 C" Pv with Z = (Og)lI4, *PKlp = (8g)314 E ~ ~ , , ,  CvP P,, (1) 

as a consequence of Eq. (2a - 5). The Lorentz condition gives therefore the 
electromagnetic basis for the introduction of Z and, together with the linear 
operator L, of the tensor g,, = ZC,,, since L determines C,, up to the sign. 

It is not surprising that the Lorentz condition should give something beyond 
the Maxwell equations, since it is a restriction on the potentials not required 
by the Maxwell equations. The remarkable fact is that it leads to the intro- 
duction of the measure of the hypervolumes and the orientation of the 
world-manifold by the scalar density Z2 = (8g)-'I2. 

In fact, it is more correct to say that the introduction of Z is necessary 
in order to build the scalar-density Div * B  by means of the vector field 
P. The importance of the scalar-density Div *B was clearly shown by the 
Hamiltonian formalism of the electromagnetic field and even more by the 
quantum electrodynamics, in which the Lorentz condition is closely related 
to the Coulomb force. Since the Coulomb force is basic for the existente 
of solid bodies, it must also be fundamental for the physical construction 
of geometry. I t  seems therefore plausible to think that the basic role of 
Div *B in the electromagnetic foundation of geometry is related to the Cou- 
lomb force. 



The passage from the relative tensor C,, to the absolute tensor g,, has 
far reaching consequences, because the field g,,(x) ailows to define the 
covariant derivatives D, of the tensors and thus to give a'meaning to the 
absolute variation of the physical quantities from a point x to a neigh- 
bouring point x + dx of the world-manifold. 

4. The Fundamental Theorem and the Lorentz Group 

We shall now give the first .proof of the Fundamental Theorem on the 
determination of the conforma1 geometry of the world-manifold at the 
point x by its operator L. In Sections 4b and 4c we shali give a second proof 
and show how g,, can be built by means of the antisymmetric tensors 
of the third order W,,,;, ,, of the vector space S,. The first proof is based 
on the discussion of the complex structure defined in S, by the linear 
operator L. 

It is well known that a real vector space of even dimensionality 2r can 
be rendered into a complex r-dimensional vector space by means of a 
real operator I with I 2  = -- 12,., 12* denoting the unit operator of the 2r- 
dimensional real space. It suffices to give a definition of iA in terms of 
I in one of the following ways: 

iA = IA  or iA = - I A  ( A  = vector of the 2r-dimensional space) ( 1 )  

This requires a restriction of the linear operators of the 2r-dimensional real 
vector space: only the linear operators commutabie with I give linear opera- 
tors of the r-dimensional complex vector space, because in the latter I must 
be treated as a number. 

The above method can be applied to S, with the linear operator L. S, 
is rendered a complex three-dimensional vector space S: by taking 
iA = LA.  By taking iA = - L A  we get the vector space S; = Si* ,  the 
complex conjugate space of S:. The algebra of the linear operators of 
S i  and S; is constituted by the linear operators K of S, commutable 
with L :  

[ K ,  L] = 0. (2) 

We must now take into account that S, is endowed with the symmetric 
bilinear form &(A,  B), which distinguishes the group of linear operators 
N of S, such that 

&(NA,  NB) = &(A,  B). (3) 
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The group of the N is isomorphic to 0(3,3). Only the operators N commutable 
with L are linear operators of S: and S; . It follows from (3) and [L, N] = O 
that 

E(NA,  NB)  = &(A,  B) and &(NA, LNB) = &(A,  LB). (4) 

The conditions (4) characterize the fi because they give [L, fi] = O. It 
follows indeed, from the first equation (4), that &(A,  LB) = &(NA, NLB) 
and since for any A' there is an A with A' = N A  because of the existente 
of N - ' ,  for arbitrary A' and B we have &(A', NLB)  = &(A1,  LNB), so that 
N L  = LN. 

Since the N are real linear operators, we can replace the equations (4) by 

E+ (NA,  NB) = E+ (A,  B) with 2E+(A, B) = &(A,  B) - i&(A, LB), ( 5 ' )  

or 

E- (NA,  N B ) = E - ( A ,  B) with 2EP(A,  B ) = & ( A ,  B ) +  k(A, LB). ( 5 - )  

E+ (A,  B) and E- (A ,  B) are svmmetric bilinear forms of the complex uector 
spaces S i  and S; , respectively, because E+ (LA,  B) = E+ (A,  LB) = 
= i E f  (A, B) and EV(LA ,  B) = E- (A,  LB) = - iE- (A ,  B), so that the 
multiplication of E+(A,  B) by i is equivalent to replace either A by L A  
or B by LB and the multiplication of E- (A,  B) by (- i) is equivalent to 
replace A by L A  or B b y  LB. Equations (5+) and (5- )  show therefore that 
the group constituted bv the fi is the orthogonal group of the covnplex Eucli- 
dean vector spaces S i  and S; ,  with the metric quadratic forms E+(A,  A) 
and E- (A,  A), respectivelv. 

We can now use the well known isomorphism of SO(3, C) and the conti- 
nuous Lorentz group S0,(3, 1 )  to obtain at each point of the world-mani- 
fold a linear representation of the Lorentz group by the linear operators 
N on the A. The N give the Ad representation of the Lorentz group of the 
corresponding point x of the world-manifold, the fundamental representation 
associated to the Lie algebra of the Lorentz group. 

The above discussion shows that the operator L is related to one of the 
Casimir operators of the Lorentz group, because of its commutability 
with a11 the N .  It is easily seen that it is actuallv related to the Casimir 
operator C,,, 

Cop = (1/8)~,~~~dOap) do:), (6) 

the 6'"" being the basic tensors A of the coordinate svstem, of components 



6;') = 6$, and the 6$') the corresponding linear operators in a represen- 
tation of the Lie algebra. 

Thus we get the following form of the Fundamental Theorem: 

THEOREM. The linear operator L(x) of dielectricitv and magnetic permea- 
bilitv of space at the point x of the world-manijold determines its Lorentz 
groop and the conforma1 geometrv at x corresponding to a Minkowskian 
signature of the Riemannian metric, which is determined onlv up to a scalar 
factor s(x) by L(x). 

It is well known3 that a Lie algebra 9 over the real numbers is said to 
have a complex structure when the vector space constituted by the ele- 
ments X of 9 has a complex structure defined by a linear operator I with 
I2  = - lOp ,  l O p X  = X ,  such that for any elements X and Y of 9, 

X x ( I Y )  = I f '  x Y )  with X x Y = Lie product of 2. (7) 

The Lie algebra of the Lorentz group of the quadratic form g,, V"Vv  has a 
complex structure in the four-dimensional case with g < 0,  defined bv the 
linear operator L on the A corresponding to g,,: 

( L A ) , , = ( l / 2 ) & ~ , , ~ , g ~ g @ ~ , ,  with L2=-I,,. (8) 

It follows indeed from the definition (2-7) that 

L ( A  x B) = A x (LB). (9) 

The discussion of the complex structure of S, defined by the electromag- 
netic linear operator L shows that the complex structure of the Lie algebra 
of the Lorentz group at a point x of the world-manifold follows from the 
commutability of L with the linear operators Ad A of the infinitesimal 
Lorentz transformations on the vectors of S, .  Equation (9) can indeed 
be written as 

L(Ad A)  B = (Ad A)  (LB). (10) 

Thus we see that the electromagnetic linear operator L defines directlv the 
complex structure of the Lie algebra of the Lorentz group at the correspon- 
ding point of the world-manijold. L defines also the complex structure of 
the electromagnetic Lie algebra 8'. 



Equation (9) is a fundamental property of the Lie algebra of the Lorentz 
group. It leads to severa1 interesting relations 

A x * B = - B x * A  sothat A x C = - * A x * C  and * A x A = O .  
( 1 1 )  

The second equation ( 1 1 )  shows the effect of the tensor-duality on the Lie 
algebra. The third equation ( 1  1 )  shows that the infinitesimal Lorentz trans- 
formations corresponding to A and * A  are commutable. 

4a. Let us consider now the vector space S6(C) of the compiex antisym- 
metric tensors A,,, in order to be able to introduce the eigenvectors A+ 
and A- of L corresponding to the eigenvalues i and (- i) respectively, 

Since L is a real operator, its eigenvalues i and (- i) are triple and the A', 
A- constitute two three-dimensional vector spaces of S6(C). The A+ 
and A- vector spaces are equivalent to the S: and S ;  uector spaces of Section 
3, respectively. Let us write 2A+ = A + iB with A and B real. The condition 
L(A + iB) = i ( A  + iB) gives L A  = - B and LB = A, so that 2A+ = 
= A-  iLA. Similarly we see that the A- are of the form 2A- = A + iLA 
with A real. The complex conjugate of a A+ is a A- corresponding to the 
same real tensor A. 

For the sake of simplicity we shall denote by S i  the vector space of the 
A+ and by S; the vector space of the A- .  S,(C) is the direct sum of S i  
and S ; ,  since anv complex A is the sum of a A+ and a A - ,  

The linear operators L+ and L-, 

are determined by the vector spaces S: and S i  and conversely determine 
them completely. We have 

(L+)2 = L+, (L-)2 = L-, L+ L- = L- L+ = O, L+ = (L-)*, L+ + L- = i,,, (4) 

E (A,  L+ B) = E (B, L+ A)  and E (A, L- B) = E (B, L- A). (5)  
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Zt follows immediatelv from (5)  that A+ and B- are orthogonal with respect 
to the two basic symmetric bilinear forms of S6(C), 

& ( A f ,  B - )  = O and & ( A + ,  LB-)  = O. (6) 

The symmetric bilinear form &(A,  B) defines a complex Euclidean metric in 
S6(C), which induces in S: and S; the three-dimensional complex Euclidean 
metrics defined bv the svmmetric bilinear forms E+ and E- of equations 
(4-5) and (4-5*) : 

E+ (A,  B) = E (L+ A, L+ B) and E- (A,  B) = e(L- A, L- B). (7) 
Equations (7) show in a very clear way why E+ and E- are three-dimen- 
sional complex bilinear forms of S: and S ; .  

The linear .operators K commutable with L are those which transform 
an A+ into a B+ and a A- into a C - .  This explains why the K define linear 
operators K+ in S: and K -  in S3 : 

K+ = K L + ,  K -  = K L -  and also K +  = L f K ,  K - = L - K ,  (8)  

because K is commutable with L+ and L-. It follows from (8) that 

K = K+ + K -  with K+ K -  = 0. (9) 

4b. The discussion of Section 4a showed that the introduction of a real 
linear operator L satisfying the conditions L? = - lOp and &(A, LB) = 
= E(B, LA) is associated to the splitting of S6(C) into the direct sum of 
two complex conjugate three-dimensional vector spaces S: and S; , ortho- 
gonal with respect to the complex six-dimensional metric &(A, A). L is 
in fact expressed in terms of the two projectors L+ and L- of S: and S;,  

We shall now see that any pair of complex conjugate three-dimensional 
vector spaces S, S* with S6(C) = S O S* determines a real linear operator 
L, with L2, = - lOp and &(A,  LsB) = E(B, L, A), provided the vectors As 
be orthogonal to the B,, with respect to the metric defined bj ;(A, B): 
&(AS,  BS*) = O. We can define L, by the conditions L, As = iA, and 
LsAs, = -iAs,, since any A = As + As, : LsA  = i(As-A,,). 

When A is real, A,, = A; and L, A is also real, so thar L, is a real linear 
operator and for, any A, L ~ A  = i(L,A,-LsA,,) =- A, so that L; = - lOp.  



We have :(A, L,B) = ie(A, + A,,, B, - B,,) = ii-;(A,, B,) - is(A,,, B,,) = 

= E(B, L,A), because of the e-orthogonality of S and S*. 

A three-dimensional vector space S of S,(C) can be described by a Gras- 
smann outer product of three linearly independent AS") : Ws = AS1) A 

A AS2) A AS3). W, is an antisymmetric tensor of the third order of S6(C) 
of components Ws;K,;,v,,,, determined by S up to a numerical factor. 
From Ws we can get a symmetric tensor-density Gs,aS of determinant 
Gs # O :  

We shall see in Section 4c that G,;.@ = o(-  gS)'l2 g,; a S ,  o being an arbitrary 
complex number depending on the choice of the AS"), and gSiap  a real 
tensor with gs < 0. 

The above discussion gives a new way to obtain the relation between the 
electromagnetic linear operator L ( x )  and the symmetric tensor g,,(x) 
at the point x of the world-manifold, gp,(x) being expiessed in terms of 
three linearly independent eigenvectors A+(")@), a = 1,2?3, of L(x )  and 
of an arbitrary scalar field o@). Thus we obtain a new proof of the Funda- 
mental Theorem relating the conforma1 geometrv of the world-manifold to 
the properties of die1ectricit.y and magnetic permeabilitv of space described 
by the linear operator L. 

4c. We shall now apply to S,(C) the theory of the temor-duality, taking 
the metric of S6(C) as defined by the quadratic form &(A,  A). We shall 
considec especially the antisymmetric tensors W, ,  ,,, ,, of the third order 
of S,(C), for which there is a linear operator of the type L, which will be 
denoted by L,. It follows from the general discussion of Section 3b that 
L& = 16,0p, 16, o p  denoting the unit operator on the W because now n = 

= 2r = 6 and &(A,  A) has signature O for real A, so that 8 = - 1. L ,  has 
the eigenvalues 1 and - 1, and there are real eigenvectors. We shall denote 
by X and Y the eigenvectors of L,: 

L , X = X  and L 6 Y = - Y  (1) 

The X are self-dual and the Y anti-self-dual. 

The simple p-vectors of S,(C) are its antisymmetric tensors of order p 
obtainable as ,Grassmann outer products of p linearly independent vectors 
of S,(C). They describe the p-dimensional vector spaces of S6(C). The 
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tensor duality of a n-dimensional metric vector space transforms its p-dimen- 
sional non nu11 vector spaces into their orthogonal n - p dimensional vector 
spaces, through the associate simple p and n- p  vectors. 

The tensor duality of S,(C) corresponding to the metric &(A,  A) exchanges 
the conjugate orthogonal vector spaces S and S*, and in particular S,f 
and S;.  It allows us to determine in a uery convenient way the structure 
of the simple W ,  describing S. L6 W S  is a simple trivector W,, of S* and must 
therefore be of the form kW2,  k denoting a numerical factor, because 
S and S* are complex conjugate vector spaces. We have L: Ws, = kL, W,* = 
= k(L6 W,)* because L,  is real, so that kk* = 1 and k = e'" with u real. 
Since L,  (e-'"/' Ws) = (e-'"I2 %)*, 

Ws = e'"I2(Xs + i&) with real Xs  and Y,, (2) 

L s X s = X s ,  L s Y s = - Y ,  with real Xs  and Y,. (3) 

S determines the associated pair X,, Y ,  up to a real numerical factor. X ,  
and Y,  for a giuen Ws are determined up to a common sign. 

A simple direct calciilation shows that a necessary and sufficient condition 
for a Y is 

p W v  
K K ,  Ãp,  v p  = 0. 

We have therefore E ~ ~ ~ ~ X ~ ~ , ~ ~ , ~ ~  # O for X # O. Thus only the Xs part 
of Ws contributes to the symmetric tensor-density GS;aB defined by 
Equation (4b-2) : 

Since S,(C) = S @ S*, S f S* and X ,  # O, Y ,  # 0. e'-'"I2 GSiaB is therefore 
a real nonzero symmetric tensor density, for any value of u. In particular 
the G$& corresponding to u = O are real and nonzero. Any Gs;aB is of the 
form rei"/' G g B  with a given G;Lp and real values of r. 

We can define by means of an equation of the form (4b-2) a GstaP for any 
three-dimensional vector space S of S ,  or S,(C) by means of a Ws which 
is the outer product of three linearly independent tensors A'") of S. In 
particular S can be taken complex, as in Section 4b, or real. Gs;aB will 
be O in case Ws is a I: We shall assume that there are in S non nu11 A$) 
satisfying the conditions of orthogonality and normalization 

&(A$), A$)) = 20,  (o, # O). (6) 



The determinant Ds of the elements ( 1 / 2 ) ~ ( A g ) ,  A$") is the analog of the 
Gram determinant of the three vectors AS") for the metric ( 1 / 2 ) ~ ( A ,  A). 
Ds is therefore nonzero for any set of three linearly independent AS). 
With the choice (6), we get Ds = w ,  w'w,. We shall see that the deter- 
minant Gs of the Gs;aS is Dg, hence nonzero. With the choice (6), 

It follows from the definition of the Grassmann outer product A A B in S, : 

and from the identity 

(112) E"""(A,, B,, + A,, B,,) = - E (A ,  B) Sa (9) 

that 

Gs; ,! = ( 1 / 2 ) ~ ~ ' ~ ~  A(') s;aK A(') S ;  1, A(3) S ;  vs (10) 

It follows from equation (10) that the matrix of the Gs;,S is the product 
of the three matrices of elements A&:?B, ( 1 / 2 ) ~ ~ ~ ~ ~ A $ ) ~ ,  and A&:',@, whose 
determinants are the corresponding 0;. Since Gs is the product of those 
determinants, we get equation (7). 

We can associate to S the relative tensor G~114G,;aB and the absolute 
tensor 

gS;;: = G -  112 IivW G 
S E S ; K p  G ~ ; l a  9 (1 11 

which do not depend on the choice of the A$". The 9s;,S define a linear 
operator 9, on the A : (%A),, = 2'gOpV Apo;. 

Let Y denote the three-dimensional vector space of S, or S,  (C) orthogonal 
to S with respect to the metric &(A,  A). Since &(AÍp ,  A f ) )  = O, it follows 
from (10) and (9) that the vectors A, of Y are eigenvectors of the eigen- 
value (- 1) of gS and the As eigenvectors of the eigenvalue 1 of Zs : 

When S is real, the A(") can be taken as real tensors. Ds is also real and 
Gs = D2 > O. Thus G s ; q  and Gii14Gs,,S are real. We can associate to 
the real S any tensor gs;aS with determinant gs > O such that 

1/4gs;aB = GS ' I 4  so that gs; = gS14 G; ' I 4  GS;,!, (gS > 0). (13) 
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In the case of a real S  the gs;afl cannot have the Minkowskian signature (- 2) 
because gs > O. The real metric induced by &(A, A) in S can be either defi- 
nite or indefinite, giving rise to a definite Riemannian metric gs;,fl and 
to an indefinite one of signature 0, respectively. Since in both cases the 
real operator ,SPS satisfies the same conditions 2; = I,, and &(A, YSB) = 

= E(B, YsA), those conditions are not sufficient to determine uniquely the 
signature of the Riemannian metric. 

Let us consider now the case of two complex conjugate E-orthogonal S, 
S* .  We need only to consider Gg)-''4 GSO;jap in the calculation of L?,, which 
would be real for Gg) > O and imaginary for G$') < O. Now A,* is a A, 
and must correspond to the eigenvalue (- 1) of Ys , which cannot therefore 
be a real operator. G$" is therefore negative and we have now the tensors 
gSiap with gs < 0: 

gs; afl = (- gS)'l4 (- G ~ ) -  'I4 G ~ ;  with gs < O arbitrarv. (1 4) 

Now the Riemannian rnetrics must be normal hvperbolic with the Minkoivs- 
kian signature (-2). The linear operator L, = iYs is real and satisfies the 
conditions 

L2, = - I,,, &(A,  LsB)=&(B, LsA), (1 5 )  

which are sufficient to determine the signature of the metric. 

In the case of electromagnetism, we can apply directly the results of the 
above discussion with S  = S: and S* = S ; ,  the two vector spaces asso- 
ciated to the eigenvalues i and (- i) of the electromagnetic linear operator 
L, which is now L = L,. Equation (14) shows that L determines g,, 
up to the factor f (-gs+)114. In fact S  does not determine the sign of 
(- G,+)-'I4 which comes in the conformal metric (- e,+)-'I4 G,+;,B.  

Thus we have obtained a proof of the Fundamental Theorem based on 
the direct construction of the conformal metric from eigenvectors A'")' 
of the linear operator L of dielectricity and magnetic permeability of space. 
This method allows also an easy parallel discussion of the non Minkowskian 
signatures, which are not related to complex structures. 

We have excluded the three-dimensional S constituted by nu11 vectors 
As with &(As, As) = O. Let us consider now a pair of such real vector spaces 
S, S ,  with S ,  = S  @ S , ,  the AS) and Ap. satisfying the conditions: 

E ( A ~ ) ,  ASh)) = O ; &(A&, A$';) = O ; (AS), A$'.!+) = 08,~. (16) 

(w = scalar-densitv and a, b = 1,2,3) 



We can define a linear operator L, by the conditions 

L, AS") = A$$ and L, Agi = - A$". (17) 

The AS") and ASb; constitute a basis for S ,  and thereby we have 

& = - I,, and E (A,  L, B) = E (B, L, A) (18) 

The definition (17) of L, renders the A f )  and ALbi an orthonormal basis 
of S, for the metric O-'&(A,  LsA) with signature O 

E (L, A&@, A#')) = wd,, ; E (L, AS', A$!$ = O ; E (L, Agi, A$.) = - @aab. ( 1  9) 

4d. We shall now show how to obtain at each point x bases of orthogonal 
vectors P(J) with j = 0,1,2,3 from complex bases A(")+ with a = 1,2,3 in 
S : .  We take 

&(A(")+, A(b)+) =-($2) wSab with O =scalar-density and A(")+ =(1/2)(A(")-i *A(")) 

( 1 )  

The six real tensors A(") and *A(") = LA'") constitute an orthonormal 
basjs in S ,  for the metric W- '&(A ,  LA) because of the equations (2) which 
follow from (1) : 

o- ' t ; (A ,  LB)=AaBa-*Aa*Ba  with A=A,A(")+*A,*A("'.  (3) 

It is well known that a necessary and sufficient condition for A to be a 
simple bivector A = P A P' is that &(A, A) = 0, the symboln denoting 
the outer product. A necessary and sufficient condition for two simple 
linearly independent bivectors A and Ã to be expressed in terms of three 
linearly independent covariant vectors P, P and P' as A = P A P', Ã = 

= P A P' is that E(A,  A) = O. P' is determined up to a numerical factor 
as belonging to the intersection of the two-dimensional vector spaces 
associated to A and Ã. 

It follows from the equations (2) that the six tensors A'") and *A(") are a11 
simple bivectors and can be expressed as outer products of vectors P. By 



taking into account the three equations (2) it is seen that four linearly 
independent P(j) are sufficient and we have, either 

A(") = P(") A P(") and *A(") = (1/2)~,, ,P(~) A P@) with a,b,c = 1,2,3 (4a) 

Tke PJ3 can not be introduced witk L alone, a o is necessarv. The g,, cor- 
responding to L and Z = 0112 are given in terms of the P(j) bv (6): 

g,, = sjPpPL? with so = 1 and s,  = s, = s, = - 1.  (6) 
j 

The P(A give an orthonormal basis of the metric g,, : 

g,vpfj)fik) s .8.  
J ~ k .  (7) 

The P(J3 are determined by the A(") and *A(") up to a simultaneous change 
of a11 their signs. 

Thus we get a third proof of the Fundamental Theorem. The g,, are not 
entirely determined by L because g = -w2, as a consequence of Equation (5). 
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