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A group-theoretical method to construct a complete set of angular functions of given angular 
momentum and definite permutational symmetry is proposed. In order to completely classify 
those functions, a Hermitian, angular, operator is constructed: its square, W 2 ]  together with 
4, (the 2nd order Casimir operator of R,), U Z  (which takes care of the permutational sym- 
metry) as well as L2 and L, (the square of the CM angular momentum and its 3rd component), 
constitute a complete set of commuting Hermitian operators which provide a convenient 
set of labels. The matrix elements of U and I.t: in a suitable polynomial basis, are calculated. 

Propõe-se, neste trabalho, um método baseado na teoria de grupos para se construir um 
conjunto completo de funções angulares com dado momento angular e simetria permuta- 
cional definida. A fim de classificar completamente tais funções, constrói-se um operador 
hermitiano angular cujo quadrado, W2, juntamente com 9, (o operador de Casimir de 
2." ordem do grupo R,), U2 (responsável pela simetria permutacional) assim como L2 e L, 
(o quadrado do momento angular no sistema de centro de massa e a sua 3." componente), 
constituem um conjunto completo de operadores hermitianos que comutam entre si e que 
fornecem um conjunto conveniente de números quânticos. Os elementos de matriz de U e 
W são calculados em uma base polinomial conveniente. 

1. Introduction 

One of the basic problems, in the study of the non-relativistic three-body 
system in Quantum Mechanics, is the construction of the angular part 
of the eigenfunctions of the interna1 kinetic energy. This problem has been 
studied by severa1 a ~ t h o r s ' , ~ , ~  (see Ref. 3 for other references) using dif- 
ferent approaches and different characterizations of the angular functions. 
The problem becomes rather involved when, in the equal mass case, one 
looks for functions with definite permutational symmetry3. 

By making use of some standard constructions of the theory of angular 
momentum and guided by basic group-theoretical considerations, we have 
constructed angular functions with definite permutational symmetry and 
given a complete characterization of them. In order to completely charac- 
terize those angular functions, one needs five labels which are associated 
to a complete set of commuting Hermitian operators. In this set we have 
9, (the 2nd order Casimir operator of R,), the square of the operator3 



U (which will distinguish between different irreducible representations of 
the permutation group S,) and the operators L2 and L, (the square of 
the CM angular momentum and its 3rd component). We have constructed 
a fifth Hermitian operator, which commutes with the above ones and 
whose square we have used to complete the characterization of the angular 
functions. 

In Sections 2 and 3, the symmetry of the Hamiltonian is discussed and 
the angular functions are related to the homogeneous and harmonic poiy- 
nomials of a given degree in six dimensions, following Ref. (1). We cons- 
truct, in Section 4, a basis of R, in a chain in which the angular momenta 
with respect to the Jacobi reiative coordinates as well as the angular mo- 
mentum in the CM-frame are diagonal. The calculation of the matrix ele- 
ments of the R, generators, in the above mentioned basis, is indicated in 
Section 5. A method for the construction of the angular functions with 
definite permutational symmetry is developped in Section 6 and their 
complete characterization discussed in some detail. In the last Appendix, 
the homogeneous and harmonic polynomials of degree up to Â = 6, with 
definite permutational symmetry, are exhibited. In the Notes, a few useful 
notions have been included. 

2. The R, Group 

In the center of mass frame, the nonrelativistic kinetic energy operator 
for a system of three particles with equal mass reads 

A = m = 1, where x and y are the Jacobi coordinates of the relative motion, 

r , ,  r,, r, being the particle coordinates in the laboratory frame. In (2-I), 
V; and V; are the Laplacians with respect to x and y. Note that the coor- 
dinates (2-2) are translational invariant, as relative coordinates have to be. 
The above Hamiltonian is invariant4 under the rotation group R, acting 
on the six-dimensional space of the coordinates x and y. The fifteen gene- 
rators of R, are here realized byl : 



i, j = 1,2,3 and a, P = 1,2, where xf = xi and xt = y, .  Obviously, A$ = 
= -A;;. They satisfy the following commutation relations: 

Since R, is a rank-three group, its most general irreducible representations 
(fromnow on, IR = irreducible representation) are characterized by three 
labels, which one can associate to three functionally independent Casimir 
invariants. From (2-4), it follows that the operators 

are Casimir invariants of the group, since they commute with all generators. 
(In (2-5), E is the totally antisymmetric tensor of rank six; each pair (cri), 
(Dj), etc., is to be regarded as a single index running from 1 to 6). With 
the realization (2-3) for the generators, one finds that 9i2) = 0, while 

where r2 = x2 + y2 is the square of the six-dimensional distance and 
V2 = V; + V: the six-dimensional Laplacian. 

It is clear from (2-3) that the generators maintain the degree of homoge- 
neous polynomials in the variables x i ,  yi and it follows therefore that the 
set of homogeneous polynomials of a given degree 3, carry a representation 
of R,. Such a representation is, in general, reducible as we shall see in 
Section 4. IR's are obtained by requiring that the homogeneous polyno- 
mials be harmonic in the six variables, since in this case both Casimir 
operators 9, and 9 3 )  have definite values. Moreover, since ( r .  V) gives 
the degree Â of the homogeneous polynomials, it is enough to use 9, 
to label the IR's we are dealing with. Although 9, has the eigenvalue 
)Ã(Â + 4), it is simpler to use the integer Â to characterize the IR's5. 

3. Schrodinger Equation and Angular Functions 

First of all, the treatment which is been developped applies more generally 
to Hamiltonians with a purely r-dependent potential V(r): 

H = - -  ;V2 + V(r). (3-1) 



From (2-5), the Hamiltonian (3-1) can be rewritten as 

Since the generators (2-3) are angular operators (i.e., independent of the 
six-dimensional distance r), it follows that the Casimir -9, is also an angular 
operator. On the other hand, the operator (r . V )  (r . V  + 4 )  + V(r) ,  which 
is not built up from generators, depends only on r. One can then use the 
method of separation of variables in the Schrodinger equation H$ = E$. 
Writing6 +(x, y )  = f ( r )  F (x, e, , 4, , e,, 4,), one gets the equations: 

From the considerations of Section 2, one can write 

where PrL1 is a homogeneous and harmonic polynomial of degree I,. One 
gets then the value $A(Â. + 4)  for the separation constant E. The radial 
equation (3-4) relates il to E, this relation depending of course on V(r ) .  

Note that, by (3-3) and (3 -9 ,  the angular functions for a given energy 
value E belong to the set of functions carrying an IR of R, (the same holds 
for the eigenfunctions \C/ since r is an R,  scalar). This is of course a conse- 
quence of the invariance of (3-1) under R, and is true when the degene- 
racies of E are "normal", i.e., in the absence of "accidental degeneraciesM7. 

One could choose to go on with the method of separation of variables 
to solve the angular equation (3-3). We shall instead determine the angular 
function by making use of basic group-theoretical techniques. 

4. The Chain R, 3 [R, (x) @ R, (y)] 3 R, (L) 

Before going into the actual determination of the angular functions, one 
has to choose a classification scheme for the homogeneous and harmonic 
polynomials of degree A. 
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In the set of quantum numbers to be used in the classification of the angular 
functions, we want of course to have the angular momentum in the CM- 
frame, as well as its z-component M .  This is clearly possible since L = 
= - i(x x V ,  + y x V,) can be expressed in terms of the R, generators, 
namely, 

L, = - i ckjl (Afll  + AS2) J I  (4-1) 

and therefore the R ,  group generated by L, which we denote by R,(L),  
is a subgroup of R,. The angular momentum in the variable x ,  namely, 
L(x)  = - ix x V ,  is just L,(x) = - i ~ ~ ~ ~ A j ~ ~  and the subgroup R3(x)  it 
generates is also a subgroup of R,.  Similarly for R,  (y )  which is generated 
by L,(y) = - iekjl A r  . Moreover, L(x) and L(y) commute with each other 
and we can, therefore, take the following chain of R,  subgroups: 

R,  [ R ,  (x) O R,  (y)l R3 ( L )  R2 (L,), (4-2) 

which will provide us with the quantum numbers Â, 1, l', L and M .  

The solid harmonics CY3/m(x) 1x1' Yi(X) are homogeneous and harmonic 
polynomials of degree 1 carrying an IR [ g  of R ,  (x). We couple r/3/m(x) 
and C?&(y), via Clebsch-Gordan coefficients, to get homogeneous poly- 
nomials of degree ( I  + I'), with definite angular momentum L and z-projec- 
tion M = m + m'. Next, we multiply the resulting polynomial by an 
unknown homogeneous polynomial, of degree Â - 1 - l' - 2n, in the va- 
riables x2 and y2 (which are invariant under R,(x) O R,(y)) .  That is, we 
write the Ansatz 

PI;],, = Nt.  E;. ( x 2,  y2) < lml' mr I LM > r /k(x)  r/; (y), (4-3) 
m,m' 

and require it to be harmonic in the six variables x, y. This is enough to 
determine the polynomials B up to a multiplicative constant which we 
choose in such a way as to make them related to the Jacobi polynomialss 

by 
~ : ~ , ( ~ 2 ,  y 2 )  = r"plf+ 1 / 2 , 1 ' + 1 / 2 )  ( 6 ~ 0 s  2 ~ ) ,  (4-4) 

where n = non negatiue integer = ;(A - 1 - i') and x one of the spherical 
angles (cf. Ref. 3)).  The constants Jlrt, are obtained by normalizing the 
polynomials P[" in the unit sphere of E,. One gets 



Moreover, the polynomials (4-3) are orthogonal to each other: 

where d a 6  is the element of solid angle6 in E, and (*) denotes the opera- 
tion of complex conjugation. The last four S's, in (4-61, arise from the ortho- 
normality of the spherical harmonics, which together with the orthogo- 
nality of the Jacobi polynomials8, gives rise to the first S. On the other 
hand, the polynornials (4-3) exhibit the following property under the 
exchange (x ct y): 

(xCf Y)PI:']LM = (-1 n+i-L p[i] 
I'lLM . 

From what has bèen said above, it is clear that the polynomials fi;',, 
carry the IR[A] of R, in the chain (4-2), and one can verify that the labels 
A, 1, l ' ,  L, M are related by the branching laws 

From the branching laws, one gets: 

(i) The wellknown formula for the dimension of the IR[3,1 : 

dim [A] = &(A + 1) ( A  + 2)"A + 3) (4-9) 

(ii) In the IR [A], the values A, A - 1,. . . , 1  are always allowed for L. The 
value L = O occurs only for even A. The multiplicity of a given L value 
in the IR[li] depends on the relative parity of L and ?,, and is given by 

In Section 2, we stated that the representation of R, carried by homoge- 
neous polynomials of a given degree rZ is, in general, reducible. To prove 
that, one can start by counting the linearly independent monomials of 
degree A in six variables, which provide a basis of the vector space of homo- 
geneous polynomials of that degree in six variables. Their number

g 
is 

6 

clearly the number of solutions of the equation 1 ai = A, with ai = 
i =  1 

= non negative integers, and is equal to the binomial coefficient (7:'). 
We next observe that, for any fixed value of A, the polynomials 

(x2 + y2)PP/$2PI(x, y ) ,  
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with p = 0,1,2,. . . ,[AI21 (cf. Ref. 10), are homogeneous of degree Â. and, 
for each value of p, they provide a basis for the IR [A - 2p] of R, because 
x2 + y2 = r2 is an invariant of R, .  Since, for different values of p, they 
carry different IR'S of R,,  the polynomials (4-11) are linearly indepen- 
dent. Their number is given by 

I W l  
1 dim [A - 2p] = (7 '), 

p = o  

the equality being obtained making use of (4-9). It follows then that the 
R,  basis provided by the homogeneous polynomials of degree A is, in 
general, reducible into the IRfs[Â] ,  [A-21,. . . , {[:i. One can therefore 
decompose any" homogeneous polynomial of degree 1, in six variables, 
using the bases (4- 11): 

p = 0,1,2,. . . [Â./2], a result which we shall use in Section 6. 

If we were not interested in polynomials with definite angular momentum 
L and projection M, we couId take the chain 

and then instead of (4-3) we would have the polynomials 

P \ Z ~ . ~ .  (x, y) = .N$. B$, (x2 , y2) %L (x) C?& (y) , (4- 15) 

which carry an IR of R,  equivalent to the one carried by the functions 
(4-3), since the two bases are related by a unitary transformation: 

P$iM = C (lml' m' ( L M )  P,, ,. . (4- 16) 
mm' 

5. Matriz Elements of the R, Generators 

It is simple to classify the generators (2-3) of R, according to their irredu- 
cible character with respect to (wrt) the subgroups which are present in 
the chain (4-2). Indeed, by using the commutation relations (2-4), one 
can show that the A&' are the components of a vector wrt R,(x), A? a 
vector wrt R3(y), while the generators A? are the cartesian components 



of a tensor T[l,ll wrt R, (x) O R, ( y )  which reduces, wrt R, (L), into a scalar, 
a vector and a rank-two tensor, according to the formula 

Tqk = mm 1, (lmlm' I kq) A,!,:,, 

where k = 0,1,2 and q = - k, - k + 1 , .  . . , k-  1,  k. In (5-I), the A;:. are 
the spherical components of A?. The scalar operator 7'' plays an impor- 
tant role in connection with the permutational properties of the angular 
functions (Section 6). 

By using the Wigner-Eckart theorem12 for the R, groups of the chain 
(4-2), we get the following expressions for the matrix elements of the irredu- 
cible tensor operators Tqk in the PLA1 basis: 

( L ,  i r  E M  \ T: I L, 1l' L M )  = [(2L + 1 )  (2k + 1)  (21 + 1 )  (2i. + l)]'" ( - ) L + z .  

where the simpler bra-ket notation has been used (note that the scalar 
product on the LHS of (5-2) is understood as in (4-6)). The notation () 
stands here for 9 - j  symb01s~~ and the last bracket on the RHS is the 
reduced matrix element of TA;.'] A;$ as defined by the Wigner-Eckart 
theorem applied to both R,(x) and R,(y): 

In order to evaluate these reduced matrix elements, it is simpler to use 
the scalar operator TO, which is given by 



The matrix elements of T: are easily calculated using the formulas of 
Appendix 1. We get: 

where the notation {) denotes here 6 - j  s y m b o l ~ ' ~ .  

We now compare (5-5) and (5-2) and use again the Wigner-Eckart theorem 
in the LHS of (5-5) to obtain the four reduced matrix elements of T~ ' . ' ] :  

(A, 1 + 1 ' 1 ' 3  1  1 1  T [ '> l1  1 1  Â, 11') = ' ( 1 +  1)(1'+ 1)(Â-1- l ' ) (Â+l+l '+4)  [ (21 + 3)(2l '+ 3) 

( A ,  l +  l l ' - l ~ ~ ~ [ ~ ~ ~ ] ~ \ A ,  1 1 ' ) ~ - L  
( 1 +  l ) l ' ( Â - l + l ' + l ) ( Â + l - 1 ' + 3 )  

(21 + 3) (2r - 1) 1 
(A, 1- 1  I' + 1  1 1  T['.']Il A, 11' )  = L 

1 ( f +  I )@+ 1-1' + 1 ) ( Â - I +  r +  3) ' I 2  

i [  (2 i -1 ) (21 '+3)  1 
Il ' (Â+l+l'+2)(Â-1-1'+2) ' I 2  (L, 1 - 11' + 1 1 1  T [ ' s ~ ]  1 1  A, ll ') = ' 

(21 - 1 )  (2r - 1) I . (5-6) 

6. Angular Functions with Permutational Symmetry 

The next step is to construct, from the R, basis PI:!,,, functions with 
definite permutational symmetry. That this is actually possible comes from 
the fact that the above polynomial basis also carries an IR of O,,  the 
orthogonal group in six dimensions, the symmetry group of the general 
Hamiltonian we are dealing with, namely: (3-1); cf. Ref. 4. Indeed, one 
cannot consider S ,  (the permutation group of operators acting on particle 
indices 1,2,3) as a subgroup of R, since the matrices corresponding to 
transpositions have determinant equal to (- 1). It is also clear that one 
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can take S ,  as a subgroup of O,. Since O, can be written as R ,  O aR,, 
where a denotes the transformation (x + x, y + - y), which is diagonal 
in the basis P!;],,, we see that this basis also carries an IR of O,. 

The mixed representation of S ,  is chosen as13 

where (i, j) denotes the transposition (ri ++ rj). From (4-3), one can show 
that 

(1,2) p\;LM = (-)" P['l W L M  . (6-2) 

The effect of the generator (1,3) on these polynomials is, however, very 
complicated. The usual procedure to bypass this difficulty is to introduce 
the more convenient (complex) variables 

In these new variables, we have 

0 1  E 
2 )  (i) ( ) ('1 7 (193) (i) = (:-i. r) (i;) > 

(6-4) 

,$=- 2n, and the CM angular momentum L reads 
3 

It follows then that the polynomials 

where p, v, j, j' are non-negative integers satisfying the condition 
2(p + v) + j + j' = A, are homogeneous polynomials of degree 3, with 
total angular momentum L and projection M. These polynomials form 
a basis for the vector space of hornogeneous polynomials of degree 3, in 
six variables. They carry a most degenerate IR of U,, the unitary group 

in six dimensions9. Since the Q's are homogeneous separately in 4: and 
q, they exhibit very simple permutational properties: 



These relations show that for p # v or j # j', the pair 

QiVjyLM 2 QtpjrjLM (6-8) 

carry a two-dimensional representation of S , ,  which however may be 
reducible. Taking two linear combinations of the pair (6-8), with arbi- 
trary coefficients, we can by using (6-7) find the conditions for which such 
a two dimensional representation is exactly the mixed representation (6-1) 
or else reduces into symmetric and antisymmetric representations. The 
outcome is that the linear combinations 

QQOvjjfLM QPvjj,LM + õ QL WJ ., JLM . , (6-9) 

with o = f 1, have definite permutational symmetry depending on the 
number 

u = 2 ( p - v )  + j- j ' .  (6- 1 O) 

For u E O (mod 3), Q: l,vjj,LM is symmetric and Q!. l,vjfLM antisymmetric, 
while for u = O(mod 3) we have (cf. Eq. 6-1) 

with (Na) = [ei(f-v)@-ei(j-')@l, cr being an arbitrary constant. 
That is: for u +'O (mod 3), Q", and Q t ,  are proportional to the up and 
down components of the mixed representation (6-I), respectively. Note 
that o = $. 1 are the eigenvalues of the operator (1,2) of S , .  

Finally, for ,u = v and j = j' we see at once that, for even L, Q:, is symmetric 
and Q"_ = O, while, for odd L, Q$, O and Qf , is antisymmetric. 

It was rather simple to obtain homogeneous polynomials, with deiinite 
permutational symmetries, in terms of the Qh's (6-6). The polynomials, 
however, are not in general harmonic and therefore the IR of U ,  they 
carry is reducible with respect to R,, according to (4-13). In order to get 
harmonic polynomials out of the Q$s, we use the projection operator 

where Y, is the Casimir given in (2-6) and the notation [ 1 in the RHS 
is defined in Ref. 10. Of course, if a harmonic component is present in a 
given Qt, it will be a linear combination of the polynomials (4-3), 
with the same L and M, since [9,,  L] = O. On the other hand, since 9, 



commutes with the elements of S,, the above projector preserves the per- 
mutational symmetry. The number of harmonic polynomials one gets by 
such a procedure is however greater than dim [A], what indicates that they 
are not linearly independent . 

If we take the set (with v = 0) 

pral Q?pojjiLM (6- 13a) 

and restrict the L values to 

L = A - 2 p 4 k  and L = A-2p-4k-1, (6-13b) 
k = 0,1,2 ,..., 

we get dim [A] polyn~mia ls '~ .  In what follows we shall designate the poly- 
nomials (6-13a), restricted by conditions (6-llb), simply by (6-13). 

Since the numbers p,v j j l  are not preserved by the projector Yrq1 it is 
necessary to look for a new set of labels. To assure that polynomials with 
different sets of labels are orthogonal, we have to take labels associated 
to eigenvalues of Hermitian operators. 

First of all, the number u, (6-10), is just the difference of the degrees of 
homogeneity in r and q for the Q"olynomials. This number is the eigen- 
value of the Hermitian, scalar15, operator 

where T,O was given in (5-4) and its matrix elements in (5-5). It is easy to 
verify that the polynomials Q:, defined by (6-9), are eigenfunctions of the 
operator U2 with eigenvalues u2 and of course the same holds for the 
harmonic set (6-13) since [U, 9,] = O. We note however that the operator 
U2 does not distinguish between up and down components of a mixed 
representation of S, : this is done by the transposition (42). It is then clear 
that, instead of U2, we have to use the product (1,2)U2. 

For A > 5, degeneracies occur and one needs an extra operator to classify 
completely the basic harmonic polynomials. To that purpose, we construc- 
ted the Hermitian, scalar, operator16 



or, in the x, y variables: 

W = i{[(x2-y2)(x.Vy + ~~V,)-~(X.Y)(X.V,-Y.V~)]V~ + 
+ 2 [(x . y) (V: - V;) - (x2 

- y2) (V, + Vy)] (r . V + 1) - 

- r 2 [ (x .Vy + y.VX)(V,2-V;)-2(x.V,-y.Vy)(Vx.Vy)])- 
-2[2(r .V)  + 31 U .  

This operator was obtained by requiring its commutation with Y2, U 
and L. In order to commute with L, it has to be built up from scalars with 
respect to R,(L); to commute with U, we take it homogeneous separately 
in and and with the same degree of homogeneity in these variables. To 
preserve the degree of homogeneity Â. of the polynomials, the operator 
has to have the same degree in the coordinates and derivatives. For an 
operator Ansatz of second degree in the coordinates and derivatives, the 
three conditions together with its commutation with 9,, give an operator 
which is a function of Y 2 ,  U, L', (r . V), and therefore will not provide 
us with a new label. If instead we start with an operator Ansatz built up 
from terms of first, second and third degrees in the coordinates and the 
derivatives, we find that there exist solutions that are not functions of Y 2 ,  U ,  
L2 and ( r .  V), and any of them can therefore be used to give us the extra 
label we need. These different solutions, however, differ only by a function 
of those four operators. We chose our solution by requiring that the opera- 
tor be angular (i.e., it has to commute with r) and to have factorized matrix 
elements in the basis Pr4 (cf. Appendix 2): this is the origin of the terms 
- 2 [2 ( r .  V) + 31 U in (6-15). Note also that since W will operate in a space 
of harmonic polynomials, the terms which factorize the six-dimensional 
Laplacian V2 (which equals 2Vt .V,) on the right, can be omitted. 

Since I/l.: like U ,  is antisymmetric under S , ,  we take W2 to label the har- 
monic polynomials (6-13). These polynomials are already eigenfunctions 
of W2 if no degeneracies with respect to the remaining labels occur and 
therefore the operator W2 is necessary only for A > 5, since up to Â = 4 
degeneracies are not present. When a degeneracy occurs, we have of course 
to take linear combinations of the polynomials involved to diagonalize 
W 2.  Fortunately, these degeneracies are rather rare and only for large 
Â are greater than two. 

We have shown that the polynomials (6-13) are dim [A] in number and have 
also exhibited a set of operators to label these polynomials. To show that 
they provide a basis for an IR of O, ,  it is enough to prove that when we 
apply the projector P[" to the set Q : , , ~ ~ , ,  with the restriction (6-13b). 



we get no zeros and, moreover, that the resulting harmonic polynomials 
are linearly independent. The proof that, in the set (6-13), there are no ele- 
ments identically zero is given in Appendix 2. We have not however been 
able to give a complete proof of the linear independence for any value 
of A. Indeed, we have shown that we get the same multiplicities for the 
L values as given by (4-10), namely, the same as in the IR [A] of O, carried 
by the polynomials PCL1. On the other hand, it can also be shown that the 
set (6-13), for fixed values of A and L, split into multiplets of S ,  with the 
right m~ltiplicities'~. We also verified that, for A up to seven, the poly- 
nomials (6-1 1) are linearly independent. 

In order to exhibit the chain of 0, subgroups which provide the set of labels 
which characterize the polynomials with permutational symmetry, (6-13), 
we recai1 that the operator ( 1 4  U2 labels representations of S,. Therefore, 
the set of commuting operators (1,2) U2, L2 and L, label IR'S of S ,  O R3(L) 
and S3 O R,(L,). We are then in the chain 

Since we need four labels18 besides 1, we see'that the above chain is not 
complete: the extra label is then provided by W 2 .  

The matrix elements of U  in the PI" basis are, up to a constant, given by 
(5-9, since U  and T; are proportional to each other (cf. 6-14). The matrix 
elements of W  in the same basis are explicitly exhibited in Appendix 2. 

As a final comment, we should add that the projection technique presented 
above is convenient, in practice, when we are interested in getting only 
a few polynomials of a given ZR[A] of 0, with permutational symmetry. 
When, however, we want to calculate a large number of polynomials we 
found it more convenient to use another method. We, first, construct the 
PIP1 bases (4-3) for p = A, A-  2, . . . , (1 and then express the Qbl's in terms 
of the P[ql's. The effect of the projection operator @'I is just to omit, in 
such an expansion, the PIPl's with p < A, the result being a linear combi- 
nation of P["]'s. Since the P1'l's are orthonormal, the final expansion will 
te11 us directly the norm of the harmonic polynomials (6-13). Use of the 
expressions for the matrix elements of W  (Appendix 2) gives us its matrix 
elements in the basis (6-13). In this way we have calculated the normalized 
harmonic polynomials with permutational symmetry, (6-13), up to L = 6. 
They are exhibited in Appendix 4. 
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Appendix 1. Basic Formulas for the Calculation of Matrix Elements in the P'" Basis 

1 
where q = & 1,O and x + = f - ( x ,  rt ix,), x, = x, and similarly for the spherical com- 

& 
ponents of the gradient. To get the corresponding expressions in the other variable, one can 
use a relation which gives the result of exchanging x and y, 1 and I', m and m',  in the P[" poly- 
nomials, namely, 

where n = +(A- I - I ' ) ;  note that, by (4-8), 2n is an even number. The basic formulas above 
are obtained by using the corresponding formulas for solid harmonics as well as recursion 
relations for Jacobi polynomialss . 

Appendix 2. Matrix Elements of W in the P'" Basis 

(I,, i i ' ~ ~  I WI A, I I ' L M )  = 2i(-) '+"+L. 

(i .+1-/ '+2)(i.-1+~+2)[(1+ 1)(l'+ 1)( jL-1-1' ) (A+1+I '+4)]112 



In the above expressions, { } stands for 6- j  symbols. To  obtain those matrix elements, we 
have made use of the formulas of Appendix-1. Note that W is diagonal in L and M since it 
is a scalar wrt R, (L). 

Appendix 3. 

To prove that the polynomials (6-13) have a harmonic part, we íírst of all observe that the 

polynomials (cf. 6-6) 
QAOo,j.LL = C < jmj'm' I W ,  > !?li (<)fVi.(q) 

mm' 

can be rewritten by making use of the following Ansatz: 

where the KL,.,, constitute a basis for polynomials of angular momentum Lin six variables: 

1 
where ;, = T -(;, f i;,) and ;, = :, are the speherical components of ; (and similarly 

Jz 
for v). Since QiOjj.,, is harmonic and homogeneous separately in 5 and q (with degrees of 
homogeneity j  and j', respectively), we see that the functions j'in (A-1) can be written as 

where a, /I, y and the angular momenta q, q' are the non-negative integral solutions of 

with 
2 a + y + q = j ,  2 / I + y  + q ' = j ' ,  

q  + q' = L for i + L = even, 
q  + q' = L + 1 for Â + L = odd, 

and, of course, we have the relation j + j' = i. In (A-3), the A coefficients are determined im- 
posing that the polynomials Q:,,.,, be harmonic. We shall deal with conditions (A-4) in three 
steps. 

(i) For L = O, E. is even and j  = j' and one has (since q  = q' = 0) 

with 2a + y = 28 + y  = j. This implies a  = and y = j, j --  2, .  . . , {:. For odd j, therefore, 
y f O which means that Q~ojj,, factors (c. v) out. Since (e .>I )  = (1/2)(x2 + y2), we conclude by 



recalling Eq. (4-13) in the text that Q~,,,, does not have a harmonic part. Such cases are, howe- 
ver, excluded by restriction (6-13b), since odd values of j  entail1 = 2j = 4k + 2 (k = 0, 1,2,. . .) 
and therefore Â -  2p  - L = 4k + 2, which contradicts (6-13b). For even j, however, ;l can be 
zero and this means that Q~,,,, does not factor (5 . q )  out, i.e., that polynomial has always a 
harmonic part. 

(ii) For L = 1 ,  the K basis is 

Then, for odd i , we have according to (A-2): 

Since, in this case, j and j' must have opposite parities, from conditions (A-4) we see that, in 
f,, , y = O implies odd j and even j', while in f,, , y = O implies even j and odd j'. So, 
in any case, one of the f does not factor ( r .  q) out: Q&,., , , odd L. has always a harmonic part. 
On the other hand, for even 1, j = j '  and we have 

Inf,, , y = O implies odd j. Therefore, for even j, the polynomial factors (r . v )  out and so does 
not contain a harmonic part. Those cases are excluded, since for even j we shall have I - 2p-  
- L  = 4k- 1 ,  which violates the restriction (6-13b). It is clear that, for odd j, the corresponding 
polynomial has a harmonic part. 

(iii) For any L 2 2, the K basis has elements with even as well as odd values of q. Conditions 
(A-4) imply then that, regardless of the parities of j and j', in some f's of the expansion (A-i) 
there will be terms with y = 0, which therefore will not factor (r .q) out. We then conclude 
that for L 2 2 any polynomial Q&,,.,, has a harmonic part. 

Note now that clearly (cf. 6-6) 

Assuming that the Q polynomial on the RHS of the above relation satisfies the restriction 
(6-13b), in which case the discussion above has shown that it contains a harmonic part, it is 
clear that QtVj,.,, also contains a harmonic part since the RHS factors do not involve ( 5 .  q). 

Finally, as Q;jVjyLM - Q;lv,,.LL, where L- is the (- 1) spherical component of L, all 
the conclusions above hold for any value of the z-component M since L .  commutes with ( 5 .  q). 

Appendix 4. Harmonic Polynomials with Permutational Symmetry for I up to 6. 

The polynomials with permutational symmetry are here designated by S (symmetric), A 
(antisymmetric), F (up component of a mixed representation), or G (the down component). 
Along with their explicit expressions in terms of the Jacobi coordinates, we have given their 
expressions in terms of the P$',, polynomials, in which the upper index has been om- 
mited and, to make the reading easier, we used parentheses to separate the 1, i' labels from the 



others. When, for given values of A and L, a certain S,  representation appears more than 
once, we have used dashes to distinguish them. Their linear independence follows from the 
fact that they have different values for the pair (uZ , \vZ). For A = 5 and 6, pairs of polynomials 
corresponding to the mixed representation, with the same A, u2 and L, occur: they are not 
eigenfunctions of W Z  and their w Z eigenvalues have to be obtained by diagonalization. We 
listed only polynomiais with M = L s ina  those with M < L can be obtained by successive 
applications of the ladder operator L..  We finally recall that 

Goo = P, l l , oo  = -4 (1 /n3 ) ' I2 (x .  y ) ;  uZ = 4, w 2  = (64)' 

F 3 ,  = ) ( $ ~ ( 3 0 ) 3 ~  i- P ( 1 Z ) 3 3 )  = 2 ( 1 5 / 7 ~ ~ ) ~ ~ ~ x + ( x :  + y : ) ;  uZ = 1, w2 = (18)2 

G3, = ) ( $ ~ ( 0 3 ) 3 ,  + P(21)33) = 2(15/n3)'I2y +(i: + v : ) ;  u2 = 1, w2 = (18)' 

F 2 ,  = P(12)22  = 4 ( 1 0 / n 3 ) 1 1 2 y + ( ~ + y ~ - - ~ ~ ~ + ) ;  u2 = 1, w2 = (18)2 

G22  = - P ( z 1 ) 2 2  = - 4 ( 1 0 / n 3 ) 1 1 2 ~ + ( ~ +  y O - x O y + ) ;  u2 = 1, w Z  = (18)2 
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