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A group-theoretical method to construct a complete set of angular functions of given angular
momentum and definite permutational symmetry is proposed. In order to completely classify
those functions, a Hermitian, angular, operator is constructed: its square, W?, together with
#, (the 2nd order Casimir operator of R), U? (which takes care of the permutational sym-
metry) aswell as L? and L, (thesquare of the CM angular momentum and its 3rd component),
constitute a complete set of commuting Hermitian operators which provide a convenient
et of labels. The matrix elements of U and W, in a suitable polynomial basis, are calculated.

Propde-se, neste trabalho, um método baseado na teoria de grupos para se construir um
conjunto completo de fungBes angulares com dado momento angular e simetria permuta-
cional definida. A fim de classificar completamente tais fungdes, constréi-se UM operador
hermitiano angular cujo quadrado, W2, juntamente com £, (o operador de Casimir de
2.% ordem do grupo R), U? (responsdvel pela simetria permutacional) assm como L% e L,
(o quadrado do momento angular no sistema de centro de massa e a sua 3.* componente),
constituem um conjunto completo de operadores hermitianos que comutam entre s e que
fornecem um conjunto conveniente de ndmeros quanticos. Os elementos de matriz de U e
W sfo calculados em uma base polinomia conveniente.

1. Introduction

One of the basic problems, in the study of the non-relativistic three-body
system in Quantum Mechanics, is the construction of the angular part
o the eigenfunctions of the internal kinetic energy. This problem has been
studied by several authors':?* (see Ref. 3 for other references) using dif-
ferent approaches and different characterizations of the angular functions.
The problem becomes rather involved when, in the equal mass case, one
looks for functions with definite permutational symmetry?.

By making use of some standard constructions of the theory of angular
momentum and guided by basic group-theoretical considerations, we have
constructed angular functions with definite permutational symmetry and
given a complete characterization of them. In order to completely charac-
terize those angular functions, one needs five labels which are associated
to a complete set of commuting Hermitian operators. In this set we have
#, (the 2nd order Casimir operator of R), the square of the operator®
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U (which will distinguish between different irreducible representations of
the permutation group S) and the operators L? and L, (the square of
the CM angular momentum and its 3rd component). We have constructed
a fifth Hermitian operator, W, which commutes with the above ones and
whose square we have used to complete the characterization of the angular
functions.

In Sections 2 and 3, the symmetry of the Hamiltonian is discussed and
the angular functions are related to the homogeneous and harmonic poly-
nomials of a given degree in six dimensions, following Ref. (1). We cons-
truct, in Section 4, a basis of R, in a chain in which the angular momenta
with respect to the Jacobi relative coordinates as well as the angular mo-
mentum in the CM-frame are diagonal. The calculation of the matrix ele-
ments of the R, generators, in the above mentioned basis, is indicated in
Section 5. A method for the construction of the angular functions with
definite permutational symmetry is developped in Section 6 and their
complete characterization discussed in some detail. In the last Appendix,
the homogeneous and harmonic polynomials of degree up to 4 = 6, with
definite permutational symmetry, are exhibited. In the Notes, a few useful
notions have been included.

2. The R, Group

In the center of mass frame, the nonrelativistic kinetic energy operator

for a system of three particles with equal mass reads
H=-3(Vi+V), (2-1)

A =m = 1, wherex and y are the Jacobi coordinates of the relative motion,

1 1
X = (r; + 1,-2r3), y=—0x(r,-1,) (2-2)
N 2

=

ry, I, I, being the particle coordinates in the laboratory frame. In (2-1),
V2 and V; are the Laplacians with respect to x and y. Note that the coor-
dinates (2-2) are tranglational invariant, as relative coordinates have to be.
The above Hamiltonian is invariant* under the rotation group R, acting
on the six-dimensional space of the coordinatesx and y. The fifteen gene-
rators of R, are here realized by':

At =A% - ) -3



i,j=123and a g =12 where x! = x; and x? = y,. Obviously, A =
= -~ A%, They satisfy the following commutation relations:
[A, AT = 3N 076, ~ A5L07 0, + AR 6% 0y = AJF 07 8y). (2-4)
Since R, is a rank-three group, its most general irreducible representations
(fromnow on, IR = irreducible representation) are characterized by three
labels, which one can associate to three functionally independent Casimir
invariants. From (2-4), it follows that the operators
I, =NAFA,
];1' Aaﬂ Aﬂkv Ak j(l) — 8(au)(ﬁj)(vk)(rfl)(um)(vn) Aaﬂ A/S Auv
J i

(2-5)

are Casimir invariants of the group, since they commute with al generators.
(In (2-5), ¢ is the totally antisymmetric tensor of rank six; each pair (cri),
(B)), €tc., is to be regarded as a single index running from 1 to 6). With
the realization (2-3) for the generators, one finds that .#§@ = 0, while

e V@V + 4-12v7],
=%[(r V-V + 7+ 12V,

(2-6)

where r2 =x? +y? is the square of the six-dimensional distance and
V2=V2+V? the six-dimensional Laplacian.

It is clear from (2-3) that the generators maintain the degree of homoge-
neous polynomials in the variables x;, y; and it follows therefore that the
set of homogeneous polynomials of a given degree 4 carry a representation
of R,. Such a representation is, in genera, reducible as we shall see in
Section 4. IR’s are obtained by reguiring that the homogeneous polyno-
mials be harmonic in the dx variables, since in this case both Casimir
operators .#, and #¢" have definite values. Moreover, since (r- V) gives
the degree 2 of the homogeneous polynomials, it is enough to use .#,
to label the IR’s we are dealing with. Although 9, has the eigenvalue
1J( + 4), it is simpler to use the integer 1 to characterize the IR's®.

3. Schrodinger Equation and Angular Functions

First of al, the treatment which is been developped applies more generally
to Hamiltonians with a purely r-dependent potential V(r):

H=_iv2+tv@). (3-1)
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From (2-5), the Hamiltonian (3-1) can be rewritten as

1
Hz;z—fz—jif(r-V)(r'V+4)+ V(). (3-2)

Since the generators (2-3) are angular operators (i.e., independent of the
six-dimensional distance r),it followsthat the Casimir %, isalsoan angular
operator. On the other hand, the operator (r-V)(r-V F 4)* v (#), which
is not built up from generators, depends only on r One can then use the
method of separation of variables in the Schrodinger equation Hy = Ey.
Writing® ¥ (x, y)= f(r)F (x, 6;, ¢, €,, ¢,), one gets the equations:

F(Xa 01’ d)l’ 025 4)2) = dF(X, 01’ d)l’ 92’ d)?.) (3_3)
and
1 d/d o
[ﬁ Zfr(?i? + 4) +(E- V(r))—;i] f(r=0. (3-4)
From the considerations of Section 2, one can write
Pt
F(X9 019 ¢la 927 ¢2) =”T’ (3'5)

where P!* is a homogeneous and harmonic polynomial of degree 4. One
gets then the value £4(2 * 4) for the separation constant «. The radial
equation (3-4) relates 4 to E, this relation depending of course on V(r).

Note that, by (3-3) and (3-5), the angular functions for a given energy
value E belong to the set of functions carrying an IR of R, (the same holds
for the eigenfunctions y sincer isan R, scalar). Thisis of course a conse-
quence of the invariance of (3-1) under R, and is true when the degene-
racies of E are"normal", i.e., in the absence of "accidental degeneracies™’.

One could choose to go on with the method of separation of variables
to solve the angular equation (3-3).We shall instead determine the angular
function by making use of basic group-theoretical techniques.

4. The Chan R o[R (x) ® R (y)] @R (L)

Before going into the actual determination of the angular functions, one
has to choose a classification scheme for the homogeneous and harmonic
polynomials of degree A.
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In the set of quantum numbersto be used in the classification of the angular
functions, we want of course to have the angular momentum in the CM-
frame, as well as its z-component M. This is clearly possible since L =

—i(x xV, + yxV,) can be expressed in terms of the R, generators,
namely,

L, = —igg (AL T AP (4-1)
and therefore the Ry group generated by L, which we denote by R;(L),
is a subgroup o R,. The angular momentum in the variable X, namely,
L(x)=-ix xV, is just L,(x)=-ig;A}' and the subgroup R;(x) it
generates is also asubgroup o R,. Similarly for R, (y)which is generated

by L,(y) = - ie,; Aj*. Moreover, L(x) and L(y) commute with each other
and we can, therefore take the following chain of R, subgroups:
s 2 [R:(x) ® R3(y)]1 2 Ry (L) = Ry(L,), (4-2)

which will provide us with the quantum numbers 4, 1 I', L and M.

The solid harmonics #.,(x) = |x|' ¥,.(X) are homogeneous and harmonic
polynomials of degree ! carrying an IR[[] of R,(x). We couple %}, (x)
and #%.(y), via Clebsch Gordan coefficients, to get homogeneous poly-
nomials of degree (I + ), with definite angular momentum L and z-projec-
tion M = m* m. Next, we multiply the resulting polynomial by an
unknown homogeneous polynomial, d degree A-1-1 = 2n, in the va
riables x* and y* (which are invariant under R;(x) ® R;(y)). That is, we
write the Ansatz

PA, ., = /A BAL(X2, YD) 2 < Imlm |[LM > @Lx)%,,(y),

m,m’

(4-3)

and require it to be harmonic in the six variables X, y. This is enough to
determine the polynomials B up to a multiplicative constant which we
choose in such a way as to make them related to the Jacobi polynomials®
by

Bh(x2, y?) = P pU+ 12,1 +1/2)(— cos 2%), (4-4)

where n = non negatiue integer = (A1) and y one d the spherical
angles (cf. Ref. 3)). The constants 47, are obtained by normalizing the
polynomials P! in the unit sphere of E,. One gets

i _[ PHIA+9nln+ 1+ 1+ 1! }‘/2

TR A=+ DNE-T+ T+ DN (4-3)
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Moreover, the polynomials (4-3) are orthogonal to each other:
(ng.lllleMl ’ P%llszMz) — S dQG [ngll’]:L1M1 nglz’]szMz]r=1 »
= 6/1132 51'11’2 5lllz 5L1L2 5M1M2 > (4'6)

where 4Q is the element of solid angle® in E, and (*) denotes the opera-
tion of complex conjugation. Thelast four §'s, in (4-6), arise from the ortho-
normality of the spherical harmonics, which together with the orthogo-
nality of the Jacobi polynomials®, gives rise to the first S On the other
hand, the polynornias (4-3) exhibit the following property under the
exchange (X < y):
(X V)Pl = 478 Py

From what has beéen said above, it is clear that the polynomials P} ,,
carry the IR[ 2] of R¢ in the chain (4-2),and one can verify that the labels
Al T, L, M are related by the branching laws

[+ =2 2-2,...,{,

48
40> Ls|l-, L>M>-L @8

From the branching laws, one gets:
(i) The wellknown formula for the dimension o the IR} 1}:

dm[i]=&@ T (AT 224 T 3) (4-9)

(i) In the IR[A],the values A, A-1,...,1 are always allowed for L. The
value L = 0 occurs only for even A. The multiplicity of a given L value
in the IR[A] depends on the relative parity of L and 4, and is given by

ML) =520 + 1+ O [2(A-L) + 3 + O**H] (4-10)

In Section 2, we stated that the representation of R, carried by homoge-
neous polynomials of a given degree 4 is, in general, reducible. To prove
that, one can start by counting the linearly independent monomials of
degreeA in six variables, which provide a basis of the vector space of homo-

geneous polynomials of that degree in sx variables. Their number®
6

clearly the number of solutions of the eguation ‘Z o, = A, with o; =

=1

= non negative integers, and is equal to the binomial coefficient (*%°).
We next observe that, for any fixed value of A the polynomials

x>t y?P Piiax, ), (4-11)
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with p = 0,1,2,...,[4/2] (cf. Ref. 10), are homogeneous of degree 4 and,
for each value of p, they provide a basis for the IRA - 2p] of R, because
x?+y2 =r2’s an invariant of R,. Since, for different values of p, they
carry different IR’s of R,, the polynomials (4-11) are linearly indepen-
dent. Their number is given by

1421
2 dmpA -2p] = (*3?), (4-12)
=0

p

the equality being obtained making use of (4-9). It follows then that the
R, basis provided by the homogeneous polynomials of degree A is in
general, reducible into the IR’s[4], [A-21.. ..,{{‘1’{. One can therefore
decompose any'! homogeneous polynomial of degree 4, in six variables,
using the bases (4-11):

PAx, y) = 3 Coun (PP PHLZ (%, ¥), - (@41
pll’ ’ ’
LM

p=012,...[4/2], a result which we shall use in Section 6.

If we were not interested in polynomials with definite angular momentum
L and projection M, we could take the chain

Rs = [R3(x) @ R3(y)] = [R, (%) ® R, (y)], (4-14)
and then instead of (4-3) we would have the polynomials

P ,Y) = h B (67 ,y2) ¥, ) 21, (), (4-15)
which carry an IR of R, equivalent to the one carried by the functions

(4-3), since the two bases are related by a unitary transformation:

Py = 3 (iml'm' | LM P . (4-16)
mm'

5. Matriz Elements o the R, Generators

It is simple to classify the generators (2-3) of R, according to their irredu-
cible character with respect to (wrt) the subgroups which are present in
the chain (4-2). Indeed, by using the commutation relations (2-4), one
can show that the A};! are the components of a vector wrt R;(x), A7 a
vector wrt R;(y), while the generators A} are the cartesian components
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of atensor TH-Twrt R, (X)® R, (y)which reduces, wrt R, (L),into a scalar,
a vector and a rank-two tensor, according to the formula

=y (Imlm’|kq) AL2,,
(5-1)

where k =0,1,2 and gq=-k, —k+ 1,...,k-1,k In (5-1), the A}2. are
the spherical components of Al%. The scalar operator T{ plays an impor-
tant role in connection with the permutational properties of the angular
functions (Section 6).

By using the Wigner-Eckart theorem'? for the R, groups o the chain
(4-2),we get the following expressions for the matrix elements of the irredu-
cible tensor operators T} in the P* basis:

(L, TFLM|TX L LM =[eL + 12k + 1)@+ 1)@r + D2 ErE
{11k B
(LMkq|LMY41 1 Ly || TOS 410, (5-2)
1T L

where the simpler bra-ket notation has been used (note that the scalar
product on the LHS of (5-2)is understood as in (4-6)).The notation {}
stands here for 9-; symbols'? and the last bracket on the RHS is the
reduced matrix element of 711 = ALZ, as defined by the Wigner-Eckart
theorem applied to both R;(x) and R;(y):

{2, Il | T2, Il m'y = (mlq|lmy {I'm' 1q| I'm

G| T 4,00 (5-3)

In order to evaluate these reduced matrix elements, it is simpler to use
the scalar operator T, which is given by

o= Lyms- R

Ve v v

Ill

(x-V,=y- V). (5-4)

1
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The matrix elements of 7y are easly calculated using the formulas of
Appendix 1. We get:

GITIM | TQ| 4, WLM) = —2;

O R Ty X e e

U+ DE+ DA-I=-DA+ T+ T+ QT2 T} 00001070 +
[+ DVA-T+ T+ DA+ -1+ ]2 T T i 01—
0+ DA+ =T+ D@1+ T+ 32T 1 01 8 +
F A+ T+ T+ 2A-1-1 + ]P0 B8, 0m0], (59)

where the notation {} denotes here 6-; symbols'?.

We now compare (5-5) and (5-2)and use again the Wigner-Eckart theorem
in the LHS of (5-5) to obtain the four reduced matrix elements of 71-13:

’

" oy [l 1)(z’+1)(1—1—1')(1+l+l’+4>T’2
+ 17 TIL.1} =1 (
A1+ 1 A ) I Lt 3@l +3)

g s - a[ (DI G-I+ P+ @A+ 1-T+3
R 2L @IF 32 -0

- \ (100 + DA+ 1=+ D(A-1+ T+ 3) V2
B 1o Lrd arnja ) g MEDE LT DG LTy R

. ”ll'(/1+l+l'+2)(,1—l—l’+2)| 112
11+ {1,1] N — 1 i
G, 1=+ 1Ty, ) | o naer | (5-6)

6. Angular Functions with Permutational Symmetry

The next step is to construct, from the R, basis P}, functions with
definite permutational symmetry. That this is actually possible comes from
the fact that the above polynomia basis also carries an IR of O,, the
orthogonal group in Sx dimensions, the symmetry group of the general
Hamiltonian we are dealing with, namely, (3-1); d. Ref. 4. Indeed, one
cannot consider S; (the permutation group of operators acting on particle
indices 1,2,3) as a subgroup of R, since the matrices corresponding to
transpositions have determinant equal to (- 1). It is also clear that one
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can take S5 as a subgroup o O,. Since O, can be written as R, @ aRg,
where o denotes the transformation (x — x, y — —Y), which is diagonal
in the basis P} ,,, we see that this basis also carries an IR of O,

The mixed representation of S, is chosen as!?

()00 )70 o

where (i,j) denotes the transposition (r; <> r;). From (4-3), one can show
that

(1,2) P e = (¥ Plém. (6-2)

The effect of the generator (1,3) on these polynomials is, however, very
complicated. The usual procedure to bypass this difficulty is to introduce
the more convenient (complex) variables

¢ = ﬁ(xﬁiy), "= ﬁ(" +iy).

In these new variables, we have

()7 () ) ()6

¢ = ‘-22. and the CM angular momentum L reads

3

(6-3)

L=~i¢(xV,+1nx V’1) =L() + L. (6-5)

¢

It follows then that the polynomials
Qpevsiim (&) = (E2V ?) Z, (mjm' [LM) %5, ) ¥).(n),  (6-6)

where u, v, j, j/ are non-negative integers satisfying the condition
2wt v)+j+j =4 are homogeneous polynomials of degree 4 with
total angular momentum L and projection M. These polynomials form
a badgis for the vector space of hornogeneous polynomials of degree 4 in
sx variables. They carry a most degenerate IR of Uy, the unitary group

in sx dimensions®. Since the Q's are homogeneous separately in ¢ and
n, they exhibit very simple permutational properties:
(1,2 injj'LM = (_)j+j'_LQéuj’jLMs (6-7)
(133)Q2vjj’LM = (_)jﬁl_Lei(z”_ZVH—J.’WQéuj'jLM
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These relations show that for p # v or j # j/, the pair

A y)
uvjj’'LM » Qv,uj’jLM (6-8)

carry a two-dimensiona representation of S,, which however may be
reducible. Taking two linear combinations o the pair (6-8), with arbi-
trary coefficients, we can by using(6-7) find the conditions for which such
a two dimensional representation is exactly the mixed representation (6-1)
or else reduces into symmetric and antisymmetric representations. The
outcome is that the linear combinations

Q;uvjj’LM = injj’LM to (_)j”’_L QfusiLM (6-9)

with o = + 1, have definite permutational symmetry depending on the
number

u=2(u-v)tj-j. (6-10

For u = O(mod3), 0% 1,,;Lm iS Symmetric and Q"_l,,vjj,m antisymmetric,
while for u = 0 (mod 3) we have (cf. Eq. 6-1)

“Qﬁ-luvjj’LM = F’ ﬁQ%—Iuvjj’LM = Ga (6-11)

with (B/a) = (¢*%/y/3) [V ™" —¢i~#%], o being an arbitrary constant.
That is: for u 0 (mod 3), Q% , and Q*, are proportional to the up and
down components of the mixed representation (6-1), respectively. Note
that o = + 1 are the eigenvalues o the operator (1,2) o S,.

Finaly,for 4 = vandj = j weseeat oncethat, for even L, Q% ; issymmetric
and Q*, = Q while, for odd L, 9%, = Oand Q%, is antisymmetric.

It was rather smple to obtain homogeneous polynomials, with deiinite
permutational symmetries, in terms o the Q*s (6-6). The polynomials,
however, are not in general harmonic and therefore the IR o Uy they
carry is reducible with respect to R,, according to (4-13). In order to get
harmonic polynomials out of the Q*s, we use the projection operator

A+34,
2 | [4/2]

] [£:-10-20)(A-20 + 4] (6-12)

P =
PG+ DT

where ., is the Casimir given in(2-6) and the notation [ ] in the RHS
is defined in Ref. 10 Of course, if a harmonic component is present in a
given Q2, it will be a linear combination of the polynomials Pif ., (4-3),
with the same L and M, since [.#,, L] = 0. On the other hand, since .#,
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commutes with the elements of S5, the above projector preserves the per-
mutational symmetry. The number of harmonic polynomials one gets by
such a procedure is however greater than dim[A, what indicates that they
are not linearly independent.

If we take the set (with v =0)

PAQ oiim (6-13a)
and restrict the L values to
L=A-2u-4k and L=A1-2u-4k-1, (6-13b)
k=012...,

we get dim [4] polynomials'#. In what follows we shall designate the poly-
nomials (6-13a), restricted by conditions (6-11b), simply by (6-13).

Since the numbers wv,jj are not preserved by the projector 2 it is
necessary to look for a new set of labels. To assure that polynomials with
different sets of labels are orthogonal, we have to take labels associated
to eigenvalues of Hermitian operators.

First of all, the number u, (6-10), is just the difference of the degrees of
homogeneity in ¢ and # for the Q* polynomials. This number is the eigen-
value of the Hermitian, scalar!®, operator

U=¢V,-n-V, =i(x-V,-y-V)=-2i/3T, (6-14)

where Ty was given in (5-4) and its matrix elements in (5-5). It is easy to
verify that the polynomials Q2, defined by (6-9), are eigenfunctions of the
operator U? with eigenvalues u? and of course the same holds for the
harmonic set (6-13)since [U, .#,] = 0. We note however that the operator
U? does not distinguish between up and down components of a mixed
representation of S, : thisisdone by the transposition (1,2). It is then clear
that, instead of U?, we have to use the product (1,2)U2

For 4 > 5, degeneracies occur and one needs an extra operator to classify
completely the basic harmonic polynomials. To that purpose, we construc-
ted the Hermitian, scalar, operator'®

W =4[&m Ve)-n* (€ V)]V V)= 2@ Vi -0 V)V + 1) +
+4E-M[E-V)VE-0- V)V ]-2[20-V) + 3]U,  (6-15)
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or, in the x, y variables:

W=i{[x*-y)x-V, Ty V)-2(x-y)(x-V,-y-V)]V* +
+2(x .y) (V2-V2)_ (@ _y?) (V, - V)] (r.V T 1)~
-2 [x-V, Ty V)(V2-V2)-2(x -V, -y V) (V.- V)]} -
~2[2@c-v) t 3]U.

This operator was obtained by requiring its commutation with .#,, U
and L. In order to commute with L, it has to be built up from scalars with
respect to R;(L); to commute with U, we take it homogeneous separately
in & and n and with the same degree of homogeneity in these variables. To
preserve the degree of homogeneity 4 of the polynomials, the operator
has to have the same degree in the coordinates and derivatives. For an
operator Ansatz of second degree in the coordinates and derivatives, the
three conditions together with its commutation with .#,, give an operator
which is a function of .#,, U, L2, (r.V), and therefore will not provide
us with a new label. If instead we start with an operator Ansatz built up
from terms o first, second and third degrees in the coordinates and the
derivatives, wefind that there exist solutionsthat are not functions of .#,, U,
L2 and (r- V), and any of them can therefore be used to give us the extra
label we need. These different solutions, however, differ only by a function
o those four operators. We chose our solution by requiring that the opera-
tor beangular (i.e., it has to commute with r) and to have factorized matrix
elements in the basis P! (cf. Appendix 2): this is the origin o the terms
_2[2(r-V) t 3] Uin (6-15). Note also that since W will operate in a space
of harmonic polynomials, the terms which factorize the six-dimensional
Laplacian V2 (which equals 2V; - V,) on the right, can be omitted.

Since W, like U, is antisymmetric under S,, we take W2 to label the har-
monic polynomials (6-13). These polynomials are already eigenfunctions
of W2 if no degeneracies with respect to the remaining labels occur and
therefore the operator W2 is necessary only for A > 5, since up to 1 = 4
degeneracies are not present. When a degeneracy occurs, we have of course
to take linear combinations of the polynomials involved to diagonalize
W2, Fortunately, these degeneracies are rather rare and only for large
A are greater than two.

We have shown that the polynomials(6-13) aredim[A] in number and have
also exhibited a set of operators to label these polynomials. To show that
they provide a basis for an IR of O,, it is enough to prove that when we
apply the projector #4 to the set Q2,,..1x, With the restriction (6-13b),
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we get no zeros and, moreover, that the resulting harmonic polynomials
are linearly independent. The proof that, in the set (6-13), there are no ele-
ments identically zero is given in Appendix 2. We have not however been
able to give a complete proof of the linear independence for any vaue
of A Indeed, we have shown that we get the same multiplicities for the
L valuesas given by (4-10), namely, the same asin the IR[A] of O, carried
by the polynomials Pt*#. On the other hand, it can also be shown that the
set (6-13), for fixed values of A and L, split into multiplets of S5 with the
right multiplicities'”. We also verified that, for 4 up to seven, the poly-
nomials (6-11) are linearly independent.

In order to exhibit the chain of O subgroups which provide theset of labels
which characterize the polynomials with permutational symmetry, (6-13),
we recall that the operator (1,2) U? labels representations of S,. Therefore,
the set of commuting operators (1,2) U2, L? and L, label IR's of S5 ® R;(L)
and S; ® R,(L,). We are then in the chain

06 = [S3 ® Ry (L)] = [S3 ® R, (L,)]. (6-16)

Since we need four labels'® besides A, we see'that the above chain is not
complete: the extra label is then provided by W?2.

The matrix elementsof U in the P'¥ basis are, up to a constant, given by
(5-5), since U and T are proportional to each other (cf. 6-14). The matrix
dements d W in the same basis are explicitly exhibited in Appendix 2.

As a fina comment, we should add that the projection technigue presented
above is convenient, in practice, when we are interested in getting only
a few polynomials of a given IR[4] of O, with permutational symmetry.
When, however, we want to calculate a large number of polynomials we
found it more convenient to use another method. We, first, construct the
P¥ bases (4-3)for p = AA-2,..., {$ and then express the QI*s in terms
o the P*'s. The effect of the projection operator 2 is just to omit, in
such an expansion, the PYs with p < A the result being a linear combi-
nation of P*'s. Since the P1*'s are orthonormal, the final expansion will
tell us directly the norm of the harmonic polynomials (6-13). Use o the
expressionsfor the matrix elements o W (Appendix 2) gives us its matrix
elementsin the basis (6-13). I n this way we have calculated the normalized
harmonic polynomials with permutational symmetry, (6-13), up to 4 = 6.
They are exhibited in Appendix 4.

We thank Profs. P. Lea Ferreira and V. C. Aguilera Navarro for interesting discussions.
We are pleased to acknowledge financial support from the Banco Nacional de Desenvolvi-
mento Econdnico, through Contract FUNTEC-63.
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Appendix 1. Basic Formulas for the Calculation of Matrix Elementsin the P!*! Basis

X, P =

Iml'm’

12
%[H—lJ {mlig|l+1m4+q)-

2043

(L AT gy [Glt e DG1-0T2 y
{ G+ (+3) Pimeam | =gy | &P i

112
+%——i— {mig|l-1m+ q)-
21-1

72 , . 172 _y z 12
) A==V +2)2-1+1+3) 2+1) A+I-F+DA+I+T+2) 2, o prA-1]
{ A+2)(2+3) Eimaim G+1(E+2) YW v

(Vx)q PE');l]l'm' =

A+ +DUA-TI-D@A-1+ T + 1)]?
_l: A+ D2+ 3) ] <IMIq|I+1m+q>PH1m+qlm

A+IA+T+T+2A+1-F+ ]2 - -
“[ drne-I (mig|l-1m+qy PO .,

whereq=+10 and x, = F L (xy t ix;), xo = x3 and similarly for the spherical com-

ponents o the gradient. To get the corresponding expressions in the other variable, one can
use a relation which gives the result of exchangingx and y, { and I', 7z and m*, in the PI* poly-

nomials, namely,
X oy
Lol [ P, = VPR,
m e m v
where n = {1 - [-I'); note that, by (4-8), 2n is an even number. The basic formulas above

are obtained by using the corresponding formulas for solid harmonics as well as recursion
relations for Jacobi polynomias®.

Appendix 2. Matrix Elements of W in the P'*! Basis

(1, [FLM{W|A I'LM) = 2i(-y*"+E.

-ﬂ(z+1_z'+2)(171+1'+2)[(1+1)(l’+1)(2—1—1’)(“l+l’+4)]“2!lt1 1 l 1»,”,5,-,',,“
L (v L +)
QAL+ T E+ D[+ DG T+ + DA+ - 1'+3)]‘/2{“’,1 ! 1'11} fret b
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-11 1. .
+(/1+l+l'+3)(/lflfl’+1)[l(l’+1)(1+l—l’+1)(,1—l+l’+3)]‘/2{ voL I,H}(),-v,_lo;,_,,ﬂ

-11 I R
f(i+l—l’+2)()wl+l’+2)[ll’(l+l+l’+2)(i—l—l’+2)]‘/2{ rL l,__l}o,-,,-lap,,,_l}].

In the above expressions, { } stands for 6 - j symbols. To obtain those matrix elements, we
have made use of the formulas of Appendix-1. Note that W is diagonal in L and M since it
is a scalar wrt R, (L).

Appendix 3.

To prove that the polynomials (6-13) have a harmonic part, we first of all observe that the
polynomials (cf. 6-6)
Q ooy = 2 < imi'm | LL > &}, €)1, (n)

mm’

can be rewritten by making use of the following Ansatz:

QoojyLL = ZféqL'jj'(sz % E-MKL L, (A-1)
a7

where the K%, , constitute a basis for polynomials of angular momentum Lin six variables:

KL _ {Qi‘oqq’LL = (6 +)q(’7 4)‘1’ for (7)1+L = la
WL ~ T )T T (Er o= Eony), for (TR =1 and g, q =21 (A2

| 0oqq'LL

where ;4 = F %(;l +i,,) and ;4 = ;3 are the speherical components of ; (and similarly
2

for #). Since @7, ;... is harmonic and homogeneous separately in & and 7 (with degrees of

homogeneity j and j', respectively), we see that the functions in (A-1) can be written as

FHT = Y AR G P E Y (A-3)
afy

where a, 8,7 and the angular momenta q,q are the non-negative integral solutions of

20+y+qg=j 2B+y+q=j,
with gtdq =L for A+L=even (A-4)

qtg=Lt1 for itL=odd
and, of course, we have the relation j + j = i.In (A-3),the A coefficients are determined im-
posing that the polynomials Q2,,;..., be harmonic. We shall deal with conditions (A-4) in three
steps.
(i) For L=QE is even and j = and one has (since q=d = 0)

Qjojjuu = Z Ausy EXF P (E -,
apy

with 20 +y =2 + y=j. Thisimpliesa=g and y =j, j-- 2,...,{}. For odd j, therefore,
y # O which means that Q2,,,,, factors (¢ - #) out. Since (¢ - ) = (U2)(x* + y?), we conclude by
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recalling Eq. (4-13)in the text that QZ;;,, does not have a harmonic part. Such casesare, howe-
ver, excluded by restriction (6-13b), sinceodd valuesof jentail A = 2j = 4k + 2(k=0,1,2,..)
and therefore A—2u - L = 4k *+ 2, which contradicts (6-13b). For even j, however, y can be
zero and this means that Q7,,,,, does not factor (£ -4) out, i.e, that polynomial has always a
harmonic part.

(i) For L =1, the ¥ basis is
Kloyg =&, K(1)111='7+ for odd A
and
Ko ~ & no-Egn,)  for even A

Then, for odd i, we have according to (A-2):

QU =fieT & + 1517
Since, in this case, j and | must have opposite parities, from conditions (A-4) we see that, in
fio» ¥ =0 implies odd j and even j', while in f5;, y =0 implies even j and odd ;. So,
in any case, one of thef ; does not factor (£ - g) out: @21, , odd L. hasalwaysa harmonic part.
On the other hand, for even 1, j=j' and we have

Quoiiis ~SHIE o —Eon ).

Inf;,,y = 0impliesodd j. Therefore, for even j, the polynomial factors (£ . n) out and so does
not contain a harmonic part. Those casesare excluded, since for even j we shali have 2 - 2u -

- L= 4k- 1, which violates the restriction (6-13b). It is clear that, for odd j, the corresponding
polynomial has a harmonic part.

(iti) For any L > 2, the K basis has elements with even as well as odd valuesd g. Conditions
(A-4) imply then that, regardless of the parities of j and j, in some s of the expansion (A-i)
there will be terms with y = O, which therefore will not factor (¢ -#) out. We then conclude
that for L > 2 any polynomia Q7% ;.. has a harmonic part.

Note now that clearly (cf 6-6)
:vjj'LL = (éz)u(”z)v Qio};l‘jlfzv

Assuming that the Q polynomia on the RHS of the above relation satisfies the restriction
(6-13b}, in which case the discussion above has shown that it contains a harmonic part, it is
clear that Q2,..; also containsa harmonic part since the RHS factors do not involve (¢ - n).

Finally, as Q2 iia — (L )E~MQ2 ..., where L_ is the (- 1) spherical component of L, all
the conclusions above hold for any valuedf the z-component M since L. _ commutes with (£ - ).

Appendix 4. Harmonic Polynomials with Permutational Symmetry for A up to 6.

The polynomias with permutational symmetry are here designated by § (symmetric), A
(antisymmetric), F (up component of a mixed representation), or G (the down component).
Along with their explicit expressions in terms d the Jacobi coordinates, we have given their
expressions in terms of the P¥,,, polynomials, in which the upper index 4 has been om-
mited and, to make the reading easier, we used parentheses to separate the 1 i' labelsfrom the
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others. When, for given values of A and L, a certain §; representation appears more than
once, we have used dashes to distinguish them. Their linear independence follows from the
fact that they have different valuesfor the pair (u?, w?). For A = 5 and 6, pairs of polynomials
corresponding to the mixed representation, with the same A, u? and L, occur: they are not
eigenfunctions of W and their w? eigenvalues have to be obtained by diagonaization. We
listed only polynomiais with M = L since those with M < L can be obtained by successive
applications o the ladder operator L.. We finally recdl that

A=0

Soo = P(omoo = (1/ﬂ3)1/2; ul =w? =0

A=1

Fiy = Puoyy = 6/m)2x,; ut =1, W= (10
Gii = Poyyrs = (6/2°) 2y, 5 uy = 1, w? = (10)

L=2

1 . 2
Fap = T(P(ZO)ZZ =Piozy22) = 23/m%) (4 - i) u? =4, wh = (28)°
V2
Gyp =~ Papn = -4G3/%) P x, v, u? =4, w? = (28)?

1
S22 = —2(P(20)22 + P2)22) = 2(3/753)1/2()‘1 +y)ut=wt=0

7

A= P(u)u = 2(6/11:3)1/2(x+ Vo—Xoy4); b = w? =0
Foo = P(omoo = 2(1/753)1/2(7‘2“}’2); ut =4, w? = (64)

Goo = Pnyoo = —4(1/73) 2 (x-y); w? = 4, w? = (64)
A=3

Sz = %(P(soyss'\/?; P(12)33) = 2(5/n3)1/2x+(x2+ - 3,‘/1); u? =9, wh = (54)2
Azy = %(P(03)33 _\ﬁP(ZIﬂS) = 2i(5/n3)”2 Vs (,Vf» “33‘1); u? = 9, w? = (54)2
Fi3 = %(\/gp(som + Pigyzz) = 2015/ 2 x , (x% + y2); ut =1, w? = (18)?

Giz = %(\/Sp(oam + Poyyss) = 2(15/2°) 2y, (x2 ), w? =1, wP = (18
Fy = P(12)22 = 4(10/n3)1/ZY+ (x+Yo=Xo¥+); u? = 1 w? = (18)2

Gr2 =~ Ppiyp = —4(0/mH P x  (x, Vo= Xoyi); uP = 1, wP = (18)

i
S11 = %(Puz)u —\/EPao)u) =2(3/m*)' 2 [(x® - y¥)x, “2(x-y)y.]; wr =1, w? = (134
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1
Ay = ﬁ(P(Zl)ll + \/EP(OUH)= =G/ P -y ye + 2(x0y)x,]; uf = 1, w? = (134)°

1
Fu= _7(\/513(12)11 + Pugyun) = —(6/1°) 2 [By* - x)x, —4(x-y)y,]; u? = 1, w? = (58)?
3

; 1
Gy = ‘3(_\/5})(21)11 + Poyia) =6/ 2 [3x% ~y) v, —4(x y)x, 15 u? =1, w? = (58)?

A=4

Faa = 5(/2 Piaoyss + /2 Pasysa =23 Pasyes) = B0/mY)"2(x * + v4 —6x3 v2) 5 12 = 16, w? = (88)?
1

Gys = ﬁ(P(xs)u—P(sl)u) = 4(30/7*) x, y, (3 = ¥2); u? = lo, w? = (88)

1
Fay = ﬁ(P(40)44‘P(04)44) =2(30/m%)' % (x4 - v4); u® = 4, w? = (44)?

-1

G = 75(})(31)44 + Plisyaq) =—4030/m) 2 x, v, (x3 + V3); P =4, w? = (44
Sss =1(/6 Piaoyss + /6 Posyes + 2Panas) = 310/ 203 + v3IP; u? = w? =0
Faz = Payaa = 12(10/%) 2 x v, (x . vo - Xov4); u? = 4, w? = (44)?

1
Gs3 = \‘/—E(P(al)sa*Pusna) = 6(10/m%) 1 (x5 VR (X Vo= Xovi); ut = 4, w* = (44)?

i
Aszz = ﬁ(P@un + P(13)33) = 6i(10/7z3)1/2(x2+ + .Vi)(x+ Vo—XoVi); ut =w? =0
1
Fpy = 2\/5“(\/§P(22)22—\/§P(20)22 + \/gp(oz)zz) = 6(5/T Y 2[(x* - y?) (x2 - v3)~d(x - y)x, v, ]; u? = 16, w® = (228)2
1
Gy = ‘—2\/5(—\/51)(31)22 + \/gpas)zz—\/ 14 P1y)25) = 12(5/72%) 2 [(x* - y?)x e vy + (XYY (x2 - ¥2)]; w2 = 16, w? = (228)?

, 1
oo F22= ‘"\75(})(20)22 + Pozyzz) = 2(6/72%) ' [(3x% - TyHxh + (77 =3y ¥2]; u? =4, w? = (128)



] 1
S Gz = 7(1’(3”22 + Puapa) = 4(6/7) 22082 + y)x, vy =5 y) (63 + v3)]; u? = 4, wP = (128)°
Sy = _‘2\/>(P(20)22 + V10 P, P(oznz) = (6/7753)1/2 [20(x-y) x4 vy + (6 -9yD)x% + 2 -xHyi]; u? =0, w® = 1680

Ayp = 2 \//g(\/ip(sl)zz—ﬁpus)zz —\/éP(u)zz) = 4i(15/n3)1/2[(x2—y2)x+ ye— &y 5 -] u? =0, w? = 1680

Fyp =~ ey = 24(1/“3)1/2(7‘ V(XsYo—Xey4); u° =4, w? = (144)2
Gy =~ Puyu= 120/m) P (2 —y%) (x4v0 - Xo ¥4 )5 4P = 4, w? = (144)2

1
Soo = -ﬁ(\/z Pazjo + Pooyo) = —(3/n) 2 [8(x-y)* + x* + y*-6x?y’]; u? = w? =0
1
Foo = %(“ P22y00 + ﬁP(OO)OO) = 6(1/n*)'7? [(XZ—Y2)2‘4(X'Y)2]§ u? =16, w? = (288).2

Goo = Punoe = 4(6/m°)'?(x - y) (x* ~y?); u® = 16, w? = (288)

A=35

Fys = %(P(smss‘\/l—ﬁp(u)ss + \/§P(14)55) = (@2/m*)' 2 (% - 10x% v + Sx, 085 u? = 25, w? = (130)°
Gss = 4(P(05)55 fP(zs)ss + \[P(41)55) = - (@) 2 (5x% y, - 103 v} + v3); u? =25, w = {130
S5 =%(/5 Psopss — \/§P<32)55 =3Pay5) = (2LO/m*) 2 (x5 - 2x3 ¥3 ~ 3x, vi); u? =9, w? = (78)?

Ass = -5 (/3 Posyss ~v/2 Payss =3 Panyss) = 110/ 2 338y, =262 v + 33); ® = 9, w? = (78

1, w? = (26)

i

1

Fos = r/g(\/g Pisoyss + Puayss + ﬁp(az)ss) = 2(105/m) 2 (x5 + 2x% 3 + x, p8); of
1

Oss = m(\/g P(os;ss + P(41)55 + \/Eptzs)ss) = 2(105/7‘3)1/2@1 ve + 25505 + Vi) u = 1, w? = (26)2

Sqa = %(\/§ Pazas— Priajas) = 4(@2/m 2y, (3% - VR) (X Yo—Xovy)s uE =9, wh = (78)
Asq = ‘%(‘\/jP<23>44 + Piiyaa) = 4i(@2/mV P x (X% - 3V3) (X4 Vo —Xo ¥4 ); uP =9, w? = (T8)?



Fia=3(Pagyas + \/§P(14)44) = 1204/ Py, (x5 + Vi) (x4 vo-Xovs); P = 1, w? = (26
Gas = —5(Po3yas + \/§P(41)44) =—12(14/7%) 2 x, (x% + ¥3) (Xavo—Xova);-u® = 1, w? = (26)* .

1
Fyy = \7———(— V35 Paoyss + 9Py + /14 P(32)33”\/EP(14)33)= 2(35/3"3)1/2 [ -y?)x, (x5 -3v%) + 2(x-y) v, (V3 -3x3)]; wP =25, wP=(346)
Giy = \/_0(\/ P(os)ss 9P(z1)33 + \/ P(23)33 \/ P(41)33)=—2(35/3n3)”2[(x yz)V+(3x+ V+)+2(X ¥)x 4 (x+—3v+)] u —25 w :(346)2

1
Saa = 40( NV TOP0y33-3/2P 1233 +\/_P(32)33+3\/§P<14)33)—2(70/37’5 PRI -2y)xd -3y (X3 +v3) +3x%x, vi ] P =9, wh = (222)

i
Ay = —=={(/T0Pp333 + 3 \/ip(zl):ss + \ﬁP(zs)as + 3\/_P(41)33)—21(70/371:3)1/2[—3()( V)x: (3 + ¥+ 3y xh v, (2P -y)3]; w? =9,
~ 140 ’VZ — (222)2
1

F,, =
33 \/W)

1
Gi3 = ——= (/315 P(03)33 + 17P(21)33_3 J14 P(23)33‘9\/ 10P(14)33) = 2(105/117'53)1/2 [6(x “Y)xy _(SXZ“YZ),‘M](X%L +vi); ur =1
/1540

(/315 Pz + 17TP 235 + 3 /14 Pgpyzs + 9 /10 Pigyss) = 2(105/11°) 2 [(x7 - Sy*)x, + 6(x-y)v. J(xF + v3); v =1

Fis = \/—_(4\[1112)33 37 Pasyss + 3/5 Prays) = 210/ 2 [(x - y) 3x% — vy - (2x2—y?)x, v -y?x3]; u? = 1
3= ﬁ«zxﬁams—aﬁms)ss +3/5 Puyys) = 210/m) 2 [~ (x-y) (x3 - 3vd)x,y + 2=y xd v, -x203]; P = 1
Sy =- j%(zﬁ Piayzs + 33/2 Puapa) = 4B0/m P 22— y)y, + 2 9)x, ] (Xs Vo= Xov4); 42 =9, w? = (246)
Ay = —j}:oa V3 P332 Paiea) = 4G/ L7 -y x, — 20 7). (s Vo~ Xova); uP = 9, wh = (246)°
Fa = %(—ﬁ Pizyzz + /2 Py = 8(5/m) 2 [B(x- y)xy — (X2 =y, ] (x4 vo—Xov4): u? = 1, w? = (138)?

Gy = —(/3 Pisyen + \/EP(ZI)Z’ =38 5/713)1/2[(" -2y%)x, +3(x- Y)V+](X+ Yo—XoVi); ut =1, w? = (138)

f

= = EBPQZ)“ + Py + \/gpuo)u) =203/m 2 {[- x*-3y* + 8x2y? - 12(x - y) ] x, + 2(x ) (% 4+ ¥ v} wP =1, w* = (82)



-1
R 6u= JE(3P‘23)‘1_P<21)11 + /5 Porys) = 203/ 3x* - y* + 8x2y? - 120y ]vs + 2009 (62 + ¥AxL )5 u? = 1, wE = (82
3 1 ‘
= ﬁ(“Pazux—zp(u)u +./5 Paoyn) = 3@/ {[0F —y?) —4(x - y) T x, —4(x ) (6 - y?). +} u? =25, w” = (466)
, 1
o= \/T(-)(P(um = 2Py “\/§P<01)u) =3/ {[- P -y + 4x V) ye -4y EE-yHxL}; ut =25 w? = (466)°

1
Sy = \/?76(_ 3Pagyiy + 4Pz + \/§P<10)11) = (6/m*) 2 {[x* + 5y* - 6x*y* - 12(x - Y1xs +8(x- )2 -y)v.}s b =9, wh = (3027

i
A = ﬁ(— 3Pusy1-4Payy + \/gP(onu) = i(6/m*) 1 {-8(x y) (x* - 2y%)x, + [5x* + y4_6x,2y2‘12(x')')2]}; u? =9, w? = (302)°

A=6
Ses = flﬁ (Pisorss = Posyss + /15 Pasyss =v/15 Prazyss) = 2014/ (x —15x4 3 + 15x2 %4 —3%); u? =36, w? = (180)°
Age = i—(m Pianyss — /3 Psiyes —~/3 Pusyss) = 4i(04/m%) 2 (= 3x% + 10x2 v2 —3v4)x, v, ; u? = 36, w? = (180)?
Fes = '1_(\/3 P(60)66*\/gP(«u)ss—\/gP(za)ss + \/ip(os)ss) = 4QUm 2 (x4 -6x2 2 + vi)(xE + ¥2); 1 = 16, w? = (120)
\/ (Pes1yos ~ Persyss) = 16172 (x4 — v4)x, vy § u? = 16, w? = (120)?
Foe = 7(\/_ Psoye6 f—P(DG)GG + Puazes = Praayes) = 2 210/7!3)“2(x+ v - Vi ut =4, w = = (60)*
e = —ﬁ(\/S Pisiyss + /3 Pasyss + /6 Panes) = —4Q210/m) 2 (x3 + viPx, v,y u? = 4, w? = (60)
See = 4 (\/5 Psoyes T+ \/5 Pogyes + \/3_P(42)66 + \/§P(24)b6) =405/ + v W = w2 =0

1
Fss = '\75(”(42)55 Piayss) = 16(T0/n*) 2 (x4 - v3) X4 Vi (X4 Vo—Xo¥4); u2 = 16, w? = (120)*



S8

Gss = - (Pispyss + P(15)55“\/€P(33)55) = —4(70/753)“2("1 -6x3 ¥4 + .Vi)(xk"o—xo;h); u? = 16, w? = (120)?

1
2ﬁ
1
Fss = ﬁ(szyss + P(24)55) = 16(70/n3)1’2(xﬁ + _v2+)x+ Vi{XsVo—XoV4); u? = 4, w? = (60)2
1
ﬁ(P(suss_PuS)ss) = 8(70/n3)1/2(xi — V) (XeVo—Xxovse); uF =4, wh = (60)?
i
* 2\/5

Spy = —1
44 4\/-2—1

Gss =
(\/gp(snss + \/§P(15)55 + \/EP(33)55) = 4iQL/m P (% + Vi)Y (xe vo—Xovy); W =w =0

[2 \/5 (Pazyas = Payaa) = T(Paoyas + Posyas) + 3 /22 P(22)44] =2Q10/Nm 2 [P - y?) (x4 —6x5 v5 + vE)-8(x-y) (x5 - vi)x, v.l;
u? = 36, w? = (488)2

** \/_ (Psiyas + Praspss) + 23/ 7T (Payyaa— Pusjea)—3 \/6 P33jaa] = 41210/117%) 2 [—(x - y)(x% ~6xF v} + 332" -y (3 —vi)x. vi s
u® = 36, w* = (438)?

Foo = —=(Puzys + Paayaa— f Poya— fP(o4)44) 46/ P [x2(5x4 + 1253 V3 =903 ) +y2 (-9x% + 12x% vh +564)-28(x-y)(x + v )Xy i 1

2\/_ W = 16, w? = (340)°
1
Gaa = 6 [\/7 (Ps1yaa— Pisyaa) + 1 (P(31)44—P(13)44)] = 8(6/11=)"? [7x-y) (x5 -1 + B2 -1yd)xi v, + (11x* - 3y x, .Vi];
2 =16, w? = (340)?
BV U Puopua + 3/ 11 Poayas + 7\/5P(22)44) = 12(5/372* 2 [(3x2 - 11yH)xt + (11x2=3yHvt - 142 -yH)x3 vi]; ut = 4

o
NG

Gy = 111 ——=5 VT (Pis1yaa + Pusyaa) + /462 Pz, -8 (P(31)44—P(13)44)] = 24(5/37m*)!7? [4("2 + Y%, V. -7(x-y) =3+ V%r)](xi + v3);
u> =4
Sea = == [/5 Puuzyas + Pasyss) + (Puaoysa — Proaas)] = 430/ A [(x* - 13y7) x4 + (v2 - 13x%)v8 — 12> + y)xd v} +
2\/5 +28(x-Y) (X3 + y3)x, v, ]; u? =0, w? = 6160
i . )
Aga = ”‘[\/ 11 (P(51)44"P(15)44)'\/7(P(3x)44 + P(13)44)] = 8i(@2/m) 2 [(x* - yH) (A + yD)x ey - P (3 -y u? =0, w? = 6160
Fia = 755 [02V/55 (Pranes = Paass) + /11 (Prsopss + Prowyad) +9 V2 Pagas] = 230/13m%) 2 [56(x - y) (x4 - ¥3) x4 v — (k2 — 15y?)x4 -

4y - 2@ -y xA v+ (15x2 + y)i ] ul =4



Giy = 12\/_[—5./ T(Ps1yes + Pasyas) + 3 /462 Payae + 26 (Pasyss = P, 1yea)] = 1200621712 2 [T (x - y) (x§ - 6x% v3 + v%)~
- (6x% - 22yHx3 v, + (22x - 6yHx, ¥3]; u = 4

Fy3 = ‘“[\/g(P(ztz)as’P(u)sa) + 3\/§P(22)33] = 8(70/n*)}? [ -yHx, v, + (X'Y)(x+ —.V+)] (Xe Vo—XoVe); U2 = 16, w? = (372)2

2\/?
1
G 22? [—\/_6P(33)33 + \/—7(P(3x)33"Pus)33)] = 4(70/713)1/2 [Ax-y)x, v, “("2 -yI% ‘.V%r)] (X4 Vo— Xo¥4); w = 16, w* = (3720
1 '
Fy = _ﬁ(P(42)33 + Paay33) = 16(1/n%)'7? [7("')’)("1 + V1) -20% + ¥R x, v ] (e Vo= XoV4); u? =4, w? = (240)

, i
O _ﬁ(POI)BB + Piyapg) = 8(1/7173)1/2 [(5"2—9)’2)’&L + (9x2—5y2)y§,] (X4 Vo—XoV+); u? =4, w? = (240y

1 .
Sy = 2\'/? [=3(Pu2y3s— Poayas) + V10 Pay33] = 2414/ [(x - y) (X3 - V3~ (P =) x4 v T (X Vo - Xo v} 5 uP =0, w? = 15120
Asy = ‘2;[\/§ (Panyss— Pusss) + /14 P(33)33] = 4i(10/3z*)' 2 [(3x* - Hy?)x% + (- 11x* + 3y)vi + 28(X- )Xy Vi) (s Vo= XoV4);
Vs w? =0, w2 = 15120
1
Fay=- ﬁ[up(n)zrp(u)n) + /6 (P0y22 — Prozy22)] = 4(10/231%)2 {[- 3x* - 7y* + 32x*y? - 98(x- y)2]x% + [7x* + 3y*-32x%y* +
+98(x VEVE + 56k y)(x2-yH)x, v, ) ut =4
Gy, = [\/—P(az)zz 8 (P@x)zz P(xa)zz) + 3.1 P(ll)ZZ] = 8(10/2317T3)1/2 {4(’( y) [( ax* + 3y2)‘<+ (3" —4YZ)V+] + [19("‘t + )'4)—
51
~ 60x2y? + 2(x - yP]x,v,) Ut =4

[ﬁ(P(ZO)zz + Poz2y22) + ﬁ(P(42)22 + Paay2)] = 4(10/7r3) 2 (8(x - y) (X + ¥ x4 v, — [x* - 8x7y% + Sy* + 14(x - y)*] x5 -
~[5x* —8x2y +yt YR ur=wh =0

S, =
22 \/ﬁ)

Shy = 2\/»—[ \[(P(42)22*P(24)22) V30 P, + 7(P<20)22"P(02)22)] = 2(10/m) 2 {[(x* - y*)* - 4(x - Y15 - V3-8 -y (x- W) x, v}
2 =36, w? = (684)?
Apy =7 [ 2Pg33p0 + V2t (Panza = Puaza) +3 \/ép(u)zz] = - 4i(10/m%)' P { [0 -y - 4(x - 9 T xy ve + 207 -y (9 (55 - v}

u? = 36, w? = (684)°



1
Fy, = ﬁ [- «/5 (Pazy2z + Pagyan) + \/3 (P02 + Prozyz2)] = 4(5/21%) 2 {16(x* + y2) (x - y) x4 ve + [B3x* - 14x7y? + 11y* - 28(x - y)*]x% +
+ [11x* - 14x%y? + 3y*-28(x - ¥)2]v3}; u® = 16, w? = (480)*

1
22 = —=(Pauy22 + Pusyza) = 16(5/217%) 2 {(x - y) [(5x* - 9y%)x% + (9x* - 5y)vi] - 2x* -y x, v, )5 w? = 16, w? = (480)

S

1 :
Fiz = Tﬁ [-9 \/i(P(n)zz = Paayaz) + 5/ 10 Py, + \/i(P(ZO)ZZ - P(oz>22):| = 2(30/2037%)*2 {168(x - y) (x* —-y*)x, v, + [x*-34x7y? +
+49y* -840 ?xd + [-49x* + 3y2 oy + 8400y VA) s W =4
1
G3y = ——=[-6/21 P33,20 = 27T(P31y22 — Prasy22) + 7/14 Py1y22] = 4(30/2037) 72 {(x - y) [(- 18x? + 66y*)x% + (66x% - 18y*)v3] +

10./29

+ [17(x* + y*) - 50x?y* - 84(x - y)*Ix, vy }; u® =4
Ay = _ﬁ(ﬁp(ss)u + \/ip(u)u) == Bi(3/m* )P [x* —4x7y? + y* + 6(x ¥ ] (X4 vo—Xovy); W =w? =0

Fiy = Paays = 48(2/n%)2 (X 3) (% ¥ (x Vo~ Xov4): u? = 16, w? = (512)?
1

Gy = %(\/2 P33yt —\/§P(1 ni) = - 122/n?)1? [(xz_yz)z —4(x 'Y)Z] (x4 Vo—xovy); uf =16, w? = (512
| .
Foo = ﬁ(P(zz)oo + Piooy00) = =22/ P x* - 10x7y* + y* 4+ 12(x -y ] (kP -y?); wF = 4, w? = (256)°
1 .
Goo = ——=0BP3300 + Pii1yo0) = 42/mP R [x*~ 10k y? + y* + 12(x-y)*] (x-y); v = 4, w? = (256)?

Ji0

1
Soo = —(P(22)00—P(00)00) = 2(2/m?)'? [(X2 -y - 12(x )’)2] (XZ—Y2)§ u =36, w* = (768)2

NG

= (= Pasyoo + 3P0 = 42/ P[4 Y1 302 ~yRT (X - y); uF = 36, w? = (T68)?

A
oo oo \/—16
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4. The Hamiltonian (2-1)is also invariant under reflection of any number of coordinate axes.
It is then invariant under O,, the orthogonal group in six dimensions. We come back to
this point in Section 6.

5. Homogeneous polynomials of degree 4 are components of symmetric tensors of rank
A with respect to Uy or, moregenerally, GL,. On the other hand, homogeneous and harmonic
polynomials of degree 4 are components of (irreducible) symmetric tensorswrt R,, i.e., tensors
which are also traceless. Such tensors are associated to one-row Y oung diagrams, 4 giving the
length of the row.

6. Thehyperspherical coordinates), ,¢,,8,,¢,inE, suitablefor our problem aredefined by

I
i

xy = rcos ysinf cose, | y, = rsin zsinéd, cosg,
xy =TrcoszsSnfysing, | y, =rsinysinf,sng,
X3 = rcosy cos0, vy =rsinycosf,,

r=x A+ Y00, <m 0<p; <2, 0< 4 <72

In terms o these coordinates, the solid angle element reads dQs = sin? x cos® x sin 8y
Sin 6, dy df, db, dp, dp, = Sin? 3 coS? y dQ(X) dQ4(Y).
7. By "accidental degeneracy" one means the existence of an extra degeneracy, i.e., a multiplet
of E which cannot be accounted by the symmetry group one is using. In other words, it means
the existence of a larger symmetry group having the symmetry group one is dealing with as
asubgroup. Furthermore, the irreducible representation of the larger symmetry group, carried
by the eigenfunctions of a multiplet corresponding to a given energy E, splits into multiplets
of the symmetry subgroup, i.e., such a representation is reducible with respect to the subgroup.
A well known example is provided by the potential ¥(r} ~ L: when r is the six-dimensional
distance, the largest symmetry group is R, = R, and several representations [i,]df R, are
present in the same R, multiplet of given energy E.
8, A. Erdelyi et a.: Bateman Manuscript Project {Addison — Wedey, USA, 1962). E. D.
Rainville: Specia Functions (Macmillan, USA, 1960).
9. The linearly independent homogeneous polynomials of degree in six variables constitute
a basis for the most degenerate IR [A] of Uy, the unitary group in six dimensions. Corres-
ponding to the realization (2-3) for the R, generators, we have for the thirty Sx generators o
U, the redlization

d

af
6 =x; axf.’

>

ij=1,2,3; o, = 1,2. The first-order Casimir invariant is simply

YEE =1V,
and the higher order ones are functions o (r- V), not providing therefore new labels to dis-
tinguish different IR’s. For homogeneous polynomials of a given degree 4, the above Casimir
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operator has the value 2 and thisshows that the representation they carry isirreducible, being
characterized by a single label 8 ‘Weyl’s dimension formula for U, gives then

dm = (l * 5)

2

for n=6.

10. By [x] we mean the greatest integer smaller than x. We believe that this notation will not
te confused with the one used in the text to denote IR’s.

11. The argument of course is relevant only for 2 < 2, since homogeneous polynomials of
degrees zero and one are necessarily harmonic.

12. D. M. Brink and G. R. Satchler: Angular Momentum (2™ ed., Clarendon Press, Oxford).
We followed their definition of reduced matrix elements.

13. The mixed representation is a two-dimensional IR carried by a pair of functions which
are neither completely symmetric nor antisymmetric under S; : they have what is called a
niixed symmetry. See, e.g,, M. Hamermesh, Group Theory (Addison-Wesley, 1962, USA).
Using definitions(2-2) for X and y, it is smple to show that

()= D6 w6)-+ (546

where (i, j)is the transposition r; < r). Since (1,2) and (1,3) are generators of S, (i.e., their pro-
ducts giverise to all elements o S,), the above relations completely definethe mixed represen-
tation we chose to adopt, and they show that the Jacobi vectorsx and y transform like the' up"
and "down" components of the mixed representation. More generally, in the text we denote
by Fand G a pair o functions which carry the mixed representation of Ss, with the 2 x 2
niatrices given above.

14. To show that, one determines the multiplicity of each Lvalue in the set (6-13) and the
result is that it coincides with the value given by (4-10).

15. By scalar we mean, in this paper, a scalar with respect to R; (L).

16. This operator is related to the Bargmann-Moshinsky operator @ (cf. Ref. 1) by the relation

W =4Q-365,-1L* + 12)U.

17. The linearly independent homogeneous polynomials, of given 2 and L (A, in number),
can be distributed into .#}(S) symmetric, .#%(A) antisymmetric and .#7(M) mixed represen-
tations of S;, where of course #% = #3(S) t .ak(4) + 2 .44(M). The numbers .#? are
given in the paper o G. Karl and E. Obryk, Nucl. Phys. B8, 609 (1968). From the reduction
(4 - 13), oneseesat once that the corresponding numbersfor harmonic polynomialsare given by

MENS) = MYS)~ ML),

the same holding for the other representations of S;.
18. The basic states of a general representation of O4 can be labelled by a set of integers or
half-integers

Ry, By, B35 May, Mag 5 Mag ] M3y My, Myq,
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where n,, n, and n, characterize the irreducible representation (1 R)and the m's distinguish
states within a given |R. These numbers are related by the following branching laws:

nyZ Mgy 2y > My, > ),

Hlgy 2 M3y 2 Myy 2 M3y 2 My,

M3y 2 Myy = My,

Myy 2 My = —Myy.

For the IR of O, carried by the harmonic polynowials (6- 13), onehasn; = Zand n, = ny = 0.
The above branching laws then require that m,, = m;, = O and we see that only four tabels
are needed to specify completely a basic state of the most degenerate | R [4] of O4, making
five labels altogether. The above labels correspond to the mathematical chain O¢ > 05 = Oy
> 0, o 0, which has not been used in this paper. (cf. Supplement ! of I. M. Gelfand, R. A.
Minlos and Z. Ya. Shapiro: Representations of the Rotation and Lorentz groups and their
Applications, Macmillan, USA, 1963).
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