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The ground-state energy of a hydrogen atom is treated, according to Wigner, by the Rayleigh- 
Schrodinger perturbation method, where unperturbed wave functions correspond to a free 
particle in a spherical "box" of radius R. We have calculated the perturbed energy up to fifth 
order in eZ and as the sign of each term from the second approximation on remains negative, 
we may conjecture that the perturbation series is divergent for R co. It also appears that 
in this way it will be difficult to obtain a Stieltjes series in the coupling constant e'. We show 
that it is possible, by using the Rayleigh-Schrodinger-Lbdin variational energies, to obtain 
good values for the ground-state energy by adjusting conveniently the value of R. The Padé 
approximants give bad values for R -+ co. 

A energia do estado fundamental de um átomo de hidrogênio é tratada, como o fêz Wigner, 
pelo método de perturbação de Rayleigh-Schrodinger, as funções de onda não perturbadas 
correspondendo a uma particula livre em uma "caixa" esférica de raio R. A energia pertur- 
bada foi calculada até a 5." ordem em eZ e, como o sinal de cada termo a partir da 2." apro- 
ximação permanece negativo, pode-se conjeturar que a série de perturbação seja divergente 
para R -+ m. Parece assim ser dificil se obter uma série de Stieltjes na constante de acopla- 
mento e'. Mostra-se que é possível, utilizando-se as energias variacionais de Rayleigh-Schro- 
dinger-Lowdin, se obter bons vaIôres para a energia do estado fundamental para isso ajus- 
tando-se convenientemente o valor de R. Por outro lado, os aproximantes de Padé dão maus 
valores para R -t x. 

1. Introduction 

Under the title above, Wignerl discussed the Rayleigh-Schrodinger per- 
turbation theory of the energy values of a hydrogen atom, in s-state and 
in its ground state, by considering the electrostatic potential as a pertur- 
bation and the unperturbed states as those corresponding to a particle in 
a spherical "box" of radius R. 

He also made the observation that the zeroth and first order energies go 
to,zero as R -+ co, the second order going to a finite value and the higher 
ones going to infinity with an increasing power of R. 

The absolute value of this second order energy is about five times smaller 
than the correct value given by the Balmer formula. 
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In this paper we determine the perturbed energy eigenvalues of the funda- 
mental state of the hydrogen atom up to fifth order in e2. By numerical 
computation we found that in the perturbation series for the energy the 
sign of each term (with the exception of the unperturbed energy) is always 
negative, making it in our opinion improbable that the series is convergent 
for R -+ co (in Wigner's paperl the possibility is discussed that,although 
each term in the perturbation series from the third order on in e2 is more 
and more divergent for R -+ vo, the whole series could converge to the 
actual value as R -+ col 

As is known, given a perturbation series for the wave function, as well 
as for the energy, even if these expansions do not make sense, there are 
two ways of getting reasonable answers to the problem. The first one is 
by the use of a variational principle where we take as trial functions the 
perturbed wave functions2 ; in this case, the variational energy values are 
expressed as a function of the different terms of the energy expansion and 
of scalar products of the different terms of the wave function expansion 
in the coupling constant. The second m e  is by using Padé approximants3. 

The fact mentioned above about the constancy of sign in the different terms 
of the energy expansion, makes it improbable that the energy is a Stieltjes 
function3 in the coupling constant (or even the energy minus some of the 
first terms of the perturbation expansion). 

If we take non-diagonal Padé approximants, we obtain either the value 
zero or infinity for R -+ m. Now, for diagonal Padé approximants and 
R -+ co, the [ I ,  11 approximant gives a value which is 1/25 of the exact 
value. 

Therefore, in order to obtain a meaningful energy value, there remains the 
variational method, if we want to obtain results with the help of the terms 
of the Rayleigh-Schrodinger expansion. 

It is easy to see that the variational energies go to zero when R -+ z. There- 
fore it appears that is hopeless to try to obtain any reasonable result from 
a power series in e2 for the energy and the wave function for this kind of 
problem. 

We will prove in this article that if we put a bound system with a central 
potential in s-state in a spherical "box" of radius R, its ground state energy 
becomes smaller as R becomes larger. 



Using this fact it is then possible to choose the radius R in such a way that 
the variational energies become the smallest ones and give a better appro- 
mation to the energy values. 

We have obtained in this manner values very close to the Balmer formula. 
Nevertheless it is very difficult to use a similar trick for the Padé approxi- 
mants. It would be necessary to know better the analytic properties of 
the energy as a function of the coupling constant. Even so, it would be 
necessary to discover some inequalities which would help us to play with 
the radius R. Up to now it is an open problem. 

2. The Perturbation Series 

Let us consider the normalized eigenfunctions of a free particle in a sphe- 
rica1 "box" of radius R, 

1.) = = J 1 / 2 n R S i n k c r  (1) 
r 

with 
k,,=nn/R, n = 1 , 2  , . . . ;  (2) 

the boundary condition imposed is $(R) = O. We have the following values 
for the matrix elements of llr:  

(mll l r ln)  = {Ci[(m-n)z]-Ci[(m + n)n] 

- log (m- n) + log (m + n))/R, m > n, (3) 
and 

(m I 1 /r ( m) = [log (2mn) + y - Ci (2mn)]/R, (4) 

and y = 0.57721.. . is Euler's constant. 

The ground-state energy of the hydrogen atom as a perturbation series 
in a sphere of radius R is given by 



where we have used (1)-(5) in the Rayleigh-Schrodinger expansion for the 
energy. 

By numerical computation, we obtained 

w0 = 1, O, = - 2.4377, O, = - 0.5398, 

O, = -0.3028, O), = -0.1491, W, = -0.047, (7) 

which shows that, from the second term on in (6), a11 the oi(i = 1,2,. . . , 5 )  
have a constant negative sign. 

As was mentioned in the introduction, this fact makes it somewhat implau- 
sible that the series (6) could converge to the exact value for R -, m. 

3. Variationa! Principle in the Rayleigh-Schrodinger Perturhation Theorj 

Introducing in the expression E = (4 I H I $)I(+($) the perturbation 
series 45 = 4, + 4, + 4, + . . . , 4 ,  being the eigenfunction of the unper- 
turbed problem while 4 , ,  cb2,. . . are higher order corrections (4, propor- 
tional to e'), we obtain the following variational energies (see Lowdin2), 
according to the substitution 4 = 4,, 4 = 4, + 4, and 4 = 4, + 4, + 4,, 
respectively : 

Now it is easy to see that (4,14,) - R 2,  (4, 1 - R 3,  (42 1 42) - - R ~ ,  etc. Therefore, we see from (6) and (8) that the variational energies 
c;, i:, . . . go to zero for R --+ co without giving a good approximation 
for the exact value of the gound-state energy of the hydrogen atom. 

In order to obtain a useful approximation we shall demonstrate a simple 
theorem. 



4. A Theorem 

Let us consider the radial Schrodinger equations for s-waves in a central 
potential V (r): 

uf + [E,  - V(r)]ul = 0, (9) 

ug + [E,  - V(r)]u ,  = 0, (10) 

where u ,  is the ground-state solution which corresponds to a sphere of 
radius R, ,  while u, is the corresponding solution for a sphere of radius 
R,. E,  and E, are the associated energies. 

Assume for definiteness that R ,  < R,. We have the boundary conditions 

Multiplying (9) by u, and (10) by u, ,  subtracting the two resulting expres- 
sions and integrating from O to R,, we obtain 

~2 ( R I M  (R,)  = (E2 - El)  (12) 

where we have used the boundary condition (11). 

Now as u ,  and u, have definite signs, which we will choose to be positive, 
and u; ( R )  < O, it follows that the left hand side of (12) is negative. There- 
fore E, < E,,  since the integral in (12) is positive. 

Thus, when we increase the radius of the sphere containing the hydrogen 
atom, its ground-state energy becomes smaller. Then we can write: 

where E is the ground-state energy of our hydrogen atom in the whole 
space and E(R)  is the corresponding quantity in a sphere of radius R. 

5. Use of the Variational Principie 

We will see now that the variational expressions (8) for the energies, toge- 
ther with (13), will allow us to obtain very good approximate values for 
the gound-state energy of the hydrogen atom. 
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As E(R) < E ~ ( R )  for given R, we have from (13) that 

This expression suggests taking for every i a value of R which makes 
&*(R) minimum and thus gives an approximation for E. By introducing 
(6) and (7) into (8) we obtain the following minimun values of $(R): 

in units of me4. These values should be compared with the exact value 
E = -0.5. The corresponding values of R are 0.82, 0.85 and 0.94 in units 
of 7c2/2me2 (h = 1). 

We see that in this way the knowledge of the expansion (6) (and the cor- 
responding one for the wave function) can give much information a b o h  
the exact value of the ground-state energy of the hydrogen atom. 

We wish to make the following two remarks: a) in order to obtain (14), 
it is not necessary to make use of the theorem discussed above since i t  is 
sufficient to take for r < R the trial function 4, + 4, + 4, + . . . with 
R as the variational parameter and zero for r > R. Certainly we have the 
same expressions (8) and (15); b) it is interesting to notice that if we take 
more terms in the perturbation expansion for the trial function 4 we obtain 
variational energies which are improved as is seen in (15). 

6. The Padé Approximants 

From the expansion (6), with the values (7), and if the tendency of the 
coi to continue negative at higher order remains, it is improbable that 
the enrgy E, as a function of the coupling constant e 2,  is a Stieltjes function'. 

Let us try to apply Padé approximants to E - E, - E , .  The non-diagonal 
approximants give either the value zero or infinity in the limit R -+ x. 
The [I, 11 approximant gives also a bad result: its value is only 1125 of 
the exact one, although the sign is correct (and therefore this result is 
worse than the 2lfd order perturbation energy). 

It would be interesting to extend the calculations from the sixth-order 
energy on, in order to see the corresponding signs. 
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