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Distorted momentum distributions of (p, 2p) reactions in 160 are calculated with a complex 
distorting potential consistent with the nucleon density distribution in the nucleus. A com- 
parison with conventional calculations using an equivalent but "non-consistent" potential 
shows considerable differences, in particular for the distorted momentum distribution of 
ihe 1s protons. Some more general aspects, important for the detaiied interpretation of quasi- 
free experiments, are pointed out and briefly discussed. 

Distribuições de momentum distorcidas obtidas de reações ( p ,  2p )  em 160 são calculadas 
com um potencial de distorção complexo consistente com a distribuição de densidade dos 
núcleons no núcleo. Uma comparação com cálculos convencionais em que se utiliza um po- 
tencial ótico equivalente mas "não consistente" mostra diferenças consideráveis, em parti- 
cular para a distribuição de momentum distorcida dos prótons 1s. Alguns aspectos mais 
gerais, importantes para a interpretação detalhada de experiências quase-livres, são salien- 
tados e discutidos resumidamente. 

1. Introduction 

Quasi-free (p, 2p) and (e, e'p) scattering experiments have clearly demons- 
trated the existence of "inner" nuclear shells, i.e., the 1s shell in lp nuclei 
and the 1s and Ip shells in 2s-ld nuclei. At present such experiments cons- 
titute almost the only source of information on the energy and momentum 
distributions of the single hole states in these shells. Reviews of this field 
are given in Ref 1; for later experimental results see, e.g., Refs. 2-7. 

In the theoretical analysis of quasi-free experiments one calculates the 
energy and angular dependence of the coincidence rate' of the two emer- 
ging particles on the basis of a nuclear model. In essence the angular cor- 
relation is given by the momenturn distribution of the overlap integral 
of the relevant states of the initial and final nuclei, distorted by the initial 
and final state interactions of the incoming and of the two outgoing par- 
ticles. This distortion is not essential in the case of (e, e'p) scattering at 
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300-1000 MeV, but it turns out to be quite important in the analysis of 
@, 2p) experiments. In this case the intensity may easily be reduced by 
orders of magnitude and also the shape of the distribution curves is in 
general seriously modified. It is therefore clear that for the detailed inter- 
pretation of the @, 2p) experiments these initial and final state interactions 
should be taken into account as well as possible; in general for such cal- 
culations a complex distorting potential is used. The first distorted wave 
calculation of this type was performed for the case of 'Li in Ref. 8; subsequent 
calculations have followed the same line. In most cases the semi-classical 
approximation has been used. 

One general drawback in a11 these calculations is that no care has been 
taken to match the nuclear wave functions with the distorting optical 
potential, i.e., the density distribution used to obtain the complex potential 
has not been derived from the nuclear wave function as it should. In Ref. 8, 
for example, single particle harmonic oscillator wave functions are used 
in the overlap integral, whereas a square well optical potential is chosen. 
In Ref. 9 on the other hand, exponential and harmonic oscillator wave 
functions are employed, whereas the distorting potential is Gaussian in 
shape. A similar situation is met in a11 other calculations. 

That this lack of matching of the wave functions with the distorting po- 
tential may be quite serious for (p, 2p) calculations is clear because of the 
following In the actual case of a strongly absorbing potential, the parts 
of the wave functions which extend to regions where the potential 
is small will give the main contribution to the quasi-free cross section; 
this non-overlap is, of course, strongly dependent on the relative shapes 
of the wave functions and the distorting potential. 

The purpose of the present paper is to investigate this effect. We take for 
simplicity a light nucleus, namely 160, and generate the nuclear wave 
functions from a given shell model potential; we then take the distorting 
optical potential proportional tÓ the nuclear density as calculated from 
these wave functions and compute the angular correlation. This "consis- 
tent" way of taking the distortion into account may then be compared 
with a calculation using the same parameters but a conventional shape 
for the distorting potential. 

Such a comparison shows that already for a nucleus as light as 160 the 
above mentioned effect is significant both with respect to the size and to the 
shape of the angular correlation cross section. For somewhat heavier 
nuclei the effect is likely to be even more pronounced. 



2. Calculation of Cross Section 

In this section we review the calculational procedure used to determine 
the distorted momentum distribution, and give the method employed to 
obtain the necessary parameters and the results for the distorted momentum 
distributions. 

The cross section for a coplanar symmetric (equal energies and angles 
for the outgoing protons) (p, 2p) process in the distorted impulse approxi- 
mation is given in the usual notationl by 

For a single-hole model, without spin-orbit splitting and the distortion 
being taken into account in a semi-classical approximation, the distorted 
momentum distribution P(q) is given by 

with 

9;"(4) = ( 2 ~ ) -  3'2 S e x p  (- iq . r) c' (r) Do@) Dl (r) D, (r) d3 r, (3) 

q = 2k cos f3 - ko being the momentum of the nuclear hole produced in 
the symmetric (p ,  2p) proces. In an extreme single-particle model, q is 
also the momentum the nuclear proton had in the nucleus before being 
knocked out and $:(r) is the wave function of the knocked-out proton, 
1 and m being the orbital angular momentum and magnetic quantum 
number of this proton. The number of protons in the shell 1 is denoted 
by N ,  and 

are the distorting factors of the incoming and the two outgoing (j = 1,2) 
protons with energy-momentum four-vectors (E,/c,&ko) and (E/c,&kj), 



Ikj( = k, respectively; the integrations in Eqs. (4) are to be performed over 
the classical paths of the particles. 

Following Refs. 10, 11, we express the complex potentials V, and VI(= V2) 
in the averaged forward nucleon-nucleon scattering amplitudes Ão and 
Ã1(= Ã2): 

ti2c2 - 
V,@) = - 4n - A,(O) p (r), n = 0,1,2. 

E (5) 

In this equation p(r) is the nucleon density, with jp(r)d3r =47cj," r2p(r)dr = 
= A -  1 (because the interaction of the knocked out nucleon has already 
been taken into account). One has thus for the distorting factors 

Do (r) = exP - A,(O) p(rr) ds, I" L, 1 
and 

The above procedure is the standard one; at this point one usually chooses 
somewhat arbitrarily a reasonable density function p(r) in Eq. (5) for the 
the distorting potential. 

The main point in the present calculation is to use in Eq. (5) the nuclear 
density as obtained from the/ nuclear single-particle wave-functions $:(r). 
For simplicity we take the same distorting potential for the 1s and l p  
knock-out processes and choose the density to be 

Rl,(r) and Rl,(r) being the 1s and l p  radial parts of the wave-functions, 
respectively. 

With the density (7), the distorted wave calculation is performed for wave- 
-functions generated by a square-well potential. The constants of these 
wave-functions have been determined using the separation energies of 
the 1s and lp protons as obtained in quasi-free experiments12, namely 
38 MeV and 17 MeV (the latter one being a weighted average over the 
lp,,, and lp,,, separation energies), and taking a value of 2.64 fm for the 



root mean square radius13 of 160. Two values for the depth of the square- 
-well potential were necessary to fit the separation energies, namely 50 
MeV and 40 MeV for the 1s and l p  states, respectively, and the radius of 
the potential turned out to be 3.5 fm. 

For the incident proton an energy of 170 MeV was taken and for the two 
outgoing protons equal (varying) angles and energies calculated from 
kinematics, were used. On the other hand, the real and imaginary averaged 
nucleon-nucleon forward scattering amplitudes have been taken always 
at 170 MeV (incoming protons), 76 MeV (outgoing protons from the lp 
shell) and 66 MeV (outgoing protons from the 1s shell) by interpolating 
the results of Ref. 11. One obtains 

ÃO(0) = 0.45 fm and &(o) = 0.40 fm 

for the incident proton, 

ÃjR(0) = 0.63 fm and Ã1(0) = 0.50 fm 

for the outgoing protons originating from the l p  shell and 

ÃJ(0) = 0.66 fm and Ãf(0) = 0.52 fm 

for the outgoing protons originating from the 1s shell. 

Expression (2) for P(q), using Eqs. (6) and the parameters above, has been 
calculated with the wave-functions $:(r) and the density p(r) as determined 
by Eq. (7); these momentum distributions have been obtained for points 
at intervals of approximately 0.1 fm-' . The radial functions, together 
with the radial distribution of the optical potential, are shown in Fig. la. 
Figures lb  and lc  show the corresponding distorted momentum distri- 
butions (full lines) and the undistorted ones (D,(r) = D, (r) = D,(r) = 1 
in Eq. (3)), multiplied by the indicated factors (dashed lines). 

In order to see the effect of using a matched distorting potential, a fre- 
quently performed type of non-matched cal~ulation'~, namely using in 
Eq. (3) square well wave-functions $7 with a square well distorting po- 
potential, corresponding to a constant density in Eq. (5), has also been 
done. The root mean square radius of the distorting potential has been 
taken equal to the one of our matched potential, i.e., 2.64 fm for 160. From 
Eq. (5) follows that the volume integrals of both potentials are equal. 
The radial distribution of the potentials and the corresponding distorted 
momentum distributions are shown in Figs. 1 by the dot-dashed Iines. 
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Figure 1. a) Wave functions for the square well potential and radial distributions of the mat- 
ched and non-matched optical potentials; b) momentum distributions for 1s protons cal- 
culated with the indicated distorting potentials; c) same as b) for Ip protons. 



To see better the effect in the shape of the 1s distorted momentum distri- 
bution, this distribution has also been plotted in Fig. l b  with a normali- 
zation factor of 1.55 (thin dot-dashed line). 

Comparing the results calculated using the matched potential with the 
ones obtained employing the uncorrelated square well potential (with 
the same root mean square radius) one observes that the effect on the 
s-state is more pronounced, both in shape and in magnitude, than the one 
on the p-state. This is understandable because for the s-state, which is 
located more centrally in the nucleus, multiple scattering effects are more 
important than for the p-state, located more at the surface, and so are a11 
consequences of these effects. For this reason it is also to be expected that 
for nuclei heavier than the present very light 160 nucleus, it will be even 
more essential to correlate the distorting potential with the wave-functions, 
i.e., to use the density obtained from the wave-functions in expression (5) 
for the distorting potential. Work on 40Ca to confirm this statement is 
in progress. 

Specificallq, the main difference one observes in Fig. 1 is that the "matched" 
s-distribution is narrower and higher, which means a larger amount of 
low-momentum components; in particular, the decrease in the width is 
quite significant. Although to a smaller degree, similar effects are also 
present in the p-distribution. 

We have repeated the complete calculation with a harmonic oscillator 
potential instead of a square well generating the wave-functions from 
which, as earlier, the distorting potential is derived. For comparison we 
used a Gaussian distorting potential with the same root mean square 
radius. Qualitatively, the results of these two calculations (matched and 
conventional) were similarlq related as in the case just mentioned. 

4. General Remarks on Quasi-Free Scattering 

Quasi-free experiments have been a ver) useful to01 for the study of certain 
overall properties of nuclei, as the separation energies and momentum 
distributions of the individual nuclear shells. The results of this paper show 
however that in the present status of the theoretical analysis of (p,2p) expe- 
riments it is still too early to obtain detailed information on the parameters 



of models describing the nucleus; this would require better calculations 
of the distortion. As was convincingly shown in the experiments of Ref. 2 
this distortion is, at least for light nuclei, to a remarkable extent indepen- 
dent of the energy sharing of the two outgoing protons. This fact justifies 
the hope that the results of a distorted wave analysis could be stated in 
a relatively simple manner. 

One might hope that problems of detailed interpretation exist onlj for 
( p , 2 p )  experiments, where the distortion is serious, but not for (e ,e1p)  mea- 
surements where the distortion can be taken into account by a constant 
reduction factor. As a matter of fact not only the distortion but also the 
description of the final state of the nucleus is in most studies still chosen 
so crudely that details of nuclear models are not really tested. As this im- 
portant point seems not to be generaliy recognized, we make use of this 
opportunity to discuss it briefly and to give some examples. 

The essential factor in the quasi-free correlation cross section is given, 
to a probably good approximation, by the overlap function of the initial 
and the final nucleus modified by the distortion resulting from the initial 
and final state interactions. Because there is one extra outgoing nucleon, this 
overlap function is, except for the distortion, the matrix element of the des- 
truction operator corresponding to this nucleon (a real one and not a 
quasi-particle) between the initial and the final nucleus. As was pointed 
out in the original theoretical papers15~8~'6, it is only an approximation 
to take this overlap integral equal to the distorted single particle wave- 
function of the knocked out particle and it is not surprising that in general 
only a semiquantitative agreement with experimental r e s ~ l t s ' ~ ~ ' ~ ~ ' - ~  1s ' 

achieved. 

Severa1 a u t h o r ~ ' ~ - ~ ~  have studied more detailed properties of the overlap 
integral, but in the literature the single particle picture is often taken ver] 
seriously even in drawing detailed conclusions from the experiments. 

We believe however that for such conclusions to be warranted, the overlap 
integral has to be better understood. There are of course the modifications 
coming from the fact that the single particles should be taken to be quasi- 
-particles, but at present we want to discuss another aspect which is more 
related to the typical reaction mechanism itself. 

As long as one studies the angular correlations connected with a more or 
less sharp peak in the energy spectrum, one clearly selects those cases in 
which the final nucleus is in a more or less long lived state. This means that 



the nucleons in the final nucleus will have already adjusted to the absence 
of the knocked out nucleon, and therefore the overlap integral will deviate 
from the value given by the single particle wave-function. As one really 
compares different states of the final nucleus, resulting from a single state 
of the initial one, it is anyhow more natural to consider instead of the 
single particle state in the initial nucleus, the various states the hole can 
have in the final nucleus. This hole is moving in a complex single-hole 
potentia122,23 instead of in a single particle potential and already this 
simple improvement in the approximation gives the analysis new aspects 
of which we mention some. 

a) The real part of the hole potential in the final nucleus is not necessarily 
identical to the single particle potential of the initial nucleus and therefore 
a direct cornparison of both seems to be a doubtful undertiiking Anyhow 
the finite lifetime of the hole state (as given by the energy width of the final 
nuclear state) will make the hole potential of an inner-shell state complex; 
this e f f e ~ t ~ ~ , ~ ~  alone may considerably influente the momentum wave- 
-function of the hole which in this case is the overlap integral. 

b) In the comparison of the separation energies of the inner shells, it is 
clear that one does not measure differences of binding energies of single 
particle states in the initial nucleus, but of single hole states in the final oneZ4. 
Therefore it seems more natural to attempt to calculate directly the bin- 
ding energies of the hole in the final nucleus than to compare the experi- 
mental results with single particle energies of the initial nucleus corrected 
with "rearrangement energies". From the obsewed widths in the energy 
spectra, one knows that this correction has an imaginary part which is 
strongly dependent on the shell consídered and the real part might have 
a similar dependence. This makes the comparison of calculated single 
particle energies with experiment very indirect and doubtful. In contra- 
distinction, the complex energy of the hole state has an immediate expe- 
rimental meaning. 

c) Recently2' the single particle picture has been taken so literally that 
even the Jastrow correlations which the knocked out particle had before 
it was ejected have been directly introduced into the single particle appro- 
ximation of the overlap integral Predictably this procedure results in 
bumps in the momentum distributions at momenta corresponding to 
about the inverse of the hard core radius. We believe this effect not to 
be real and sketch the reason as seen from two points of view. 

In the usual interpretation, taking the overlap integral equal to the Fourier 
transform of a single particle state, one should not forget that one wants 



the cross section in which the residual nucleus is in a certain, more or less 
stationary, state. The high momentun transfers corresponding to the 
Jastrow correlation of the knocked out particle will in general demand 
the taking up of this momentum by the correlated particle in the residual 
nucleus and wíll thus either lead to a prornpt ejection of this nucleon or 
to an additional excitation of the residual nucleus. These events are in 
practice (and even in principle) hardly distinguishable from multiple scat- 
tering effects and will not contribute to the energy peak but to the smooth 
background in the energy spectrum. This argument restricting the effect 
of short range correlations was already given in the paper where the (e,e1p) 
experiment was proposed. 

In the less crude approximation of taking for the overlap integral the 
momentum distribution of the hole in the final nucleus, there seems to 
be no reason to expect 'that this hole in the alreadv rearranged nucleus 
will remember that the missing particle had a hard core. 

These arguments are based on the fact that one is studying one quasi- 
-stationary state of the final nucleus in which the rearrangeinents have 
already taken place. Of course short range correlations may affect the cross 
section if a sum over the final nuclear states is performed. 

Summarizing, we believe that the theoretical description of the distortion 
of the waves which represent the incoming and outgoing particles, as well 
as of the final nuclear states, have to be improved before reliable conclusions 
on details of nuclear models can be drawn from quasi-free experiments. 
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