
Effect of Combined Static and Time-Dependent Quadrupole 
Interactions on Angular Correlation: Asymmetric Electric 
Field Gradient Case* 

P. DA R. ANDRADE** and J. D. ROGERSe** 
Instituto de Físic,ri, Unisersidade Federal do Rio Grande do Sul, Porto Alegre RS 

Recebido em 25 de Novembro de 1970 

We derive the form of the perturbation factor for the angular correlation of two successive 
7-rays when the intermediate state is subject to a non-axially symmetric static electric field 
gradient plus a small random time-dependent quadrupole perturbation. The Bloch-Wang- 
ness-Redfíeld theory of nuclear relaxation is applied to calculate the evolution of the density 
matrix, and a general form of the perturbation factor valid for odd and even-A nuclei is deter- 
mined. 

Determina-se a forma d o  fator de perturbação da correlação angular de dois raios gama suces- 
sivos quando o estado intermediário está sujeito simultâneamente a um gradiente de campo 
elétrico estático assimétrico e a uma pequena perturbação aleatória dependente do tempo. 
Aplica-se a teoria de relaxação nuclear de Bloch-Wangness-Redfield para o cálculo da evo- 
lução da matriz densidade que descreve a interação e determina-se uma expressão para o 
fator de perturbação válida tanto para os núcleos pares como para os ímpares. 

1.  Introduction 

Recently, the Bloch-Wangness-Redfield theorylJ of nuclear relaxation has 
been applied to the calculation of perturbation factors in angular corre- 
lations of sucessive gamma radiations in solids? The case of an odd-A 
nucleus in the presence of an axially symmetric electric field gradient and 
a weak time dependent perturbation has been treated. The main feature 
of the perturbation factor is the presence of a single relaxation exponential 
for each quadrupole frequency. The theory has been applied to discuss 
measurements of the time-dependent angular correlations of radiations 
from ~f l S 1  in the compound Hfl,(NH4), giving information about the 
molecular structure of this compound4. 

The calculation has been extended to the case of an even-A nucleus5 but 
still considering the electric field gradient as axiallp symmetric. In this 
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case the perturbation factor has a combination of exponentials for the 
relaxation of each frequency. It seems that recent results obtained by Glass 
and Kliver6 studying time-dependent angular correlations of radiations 
from .Ti44 in the compound BaEO, can be interpreted by this theory. 

In this work we apply the Bloch-Wangness-Redfield theory for nuclear re- 
laxation to determine the main effects on the perturbation factors of the 
angular correlation in the case of an electric field gradient which is not 
axially symmetric. In Section 2 we give the basic theory, in Section 3 we 
derive the expression for the perturbation factors and in Section 4 some 
comments are made. 

2. Basic Theory 

The angular correlation function of two successive gamma radiations 
emitted in directions specified by the wave vectors k ,  , and k ,  , respecti- 
vely, and separated by a time interval t during which a perturbation acts 
on the intermediate state can be written as 

W ( k , k , t )  = ~ ' ( ~ I P ( ~ I ,  t ) I a 1 ) ( ~ ' ( p ( k 2 ,  O ) ( a ) ,  
,Z' 

(1) 

where p(k,O) and p(k,O) are the density matrices of the firs? and second 
radiation respectively and both are defined in Ref. 7. 

If we define p*(t) such that 

p,,, ( t )  = eCiWa' ( t )  eim-I . (2) 

Then p*(t) may be determined from the solution of the relaxation equa- 
tion given by Redfield 

with 
(O, - o,,) = ( o p  - O,.). 

In general it is convenient to define operators G(t) and G*(t) such that 



The conditions for applicability of Eq. (3) and definition of the matrix 
elements Rra.pp, in terms of various physical models are discussed in the 
references (see e.g. Refs. 1 and 2). 

The perturbed angular correlation at time t can be written as 

where G,,,,""' ( t )  is the perturbation factor. 

In fhe particular case of an axially symmetric static Hamiltonian the labels 
a, a', etc. may be taken as the m quantum numbers for the projection of the 
angular momentum on the symmetry axis. The expression for the per- 
turbation factors then takes the particularly simple form 

The solution of Eq. (3) for this case and the resulting strucmre for lhe 
perturbation factors have been discussed in Refs. 3 and 5. 

In the case of a non-axially symmetric static interaction the quadrupole 
Hamiltonian in the principal axis system of the electric field gradient can 
be written as 

where 

and the asymmetq parameter is given by 

It is customary to choose the coordinate system in such a waj that 
I 1/,, 1 > 1 Vxx 1 > 1 I/,,), thus allowing values of v] between - 1 and + 1. 

As mentioned, when v = 0, the z axis is a symmetry axis and the eigensta- 
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tes can be labeled with the m quantum numbers. In this case the eigenvalues 
are given by 

and are degenerate for + m and - m. 

When is not zero the situation is somewhat different for odd-A and 
even-A nuclei. In the odd-A case the levels retain a two-fold degeneracy 
(Kramers degeneracy), although m is no longer a good quantum number. 
In the even-A case, on the other hand, the asymmetry will completely 
remove the degeneracy'. 

We now discuss the solution of Eq. (3) for these two cases. We note (Ref. 3) 
that there is a separation of the "diagonal" and "off-diagonal" parts of 
Eq. (3). The solution of the diagonal part of this system of equations for 
both cases is identical to the general solution given in Ref. 3. 

For even-A nuclei the solution for the off diagonal part of Eq. (3) is par- 
ticularly simple, since the complete remova1 of degeneracy implies that the 
sum in Eq. (3) is in reality restricted to the term with P = a, /3' = a'.  The 
resulting equations are of the form 

There is therefore a single exponential associated with each frequency in 
the perturbed angular correlation spectrum. 

For the odd-A nuclei the presence of the degeneracy must be considered. 
However, a repetition of the arguments given in Ref. 1 demonstrates that 
when different terms of the perturbing Hamiltonian can be considered 
incoherent the form of Eq. (10) also applies. 

3. Perturbation Factor 

The structure of the perturbation factors is somewhat more complex in 
the asymetric case. 



We write the expansion of the eigenfunctions in angular momentum eigen- 
functions as 

then we may write the matrix elements of the operator G(t) defined in 
Eqs. (4) and (5) as 

BP' 

The perturbation factors can then be obtained using (12) in the form 

( m  m1 I G(t)  I nn') = C ( m  I a )  (m' (a')* (nI / J )  (n' I B')* 
a,' 

where the factors (aa'(G*(t) lPP1) are to be calculated from the eigenso- 
lutions of the diagonal and off-diagonal parts of the Redfield relaxation 
matrix, Eq. (3). 

For the diagonal case one has3: 

('1 G*( t ) Jp )  = C bn crp e - +  (14) 
r 

where v is assigned to the pair of levels aa', and p to the pair BP. For the 
off-diagonal part one has simply 

Using the above solution in Eq. (13), the perturbation factor Gklk2BP ' ( t )  
can be written in a general form as: 



Calculation of the coefficients (mlcr) etc. deíined in Eq. (12) above is out- 
lined in Ref. 8. The expression for the perturbation factor (Eq. (16)) can be 
applied to interpret quadrupole relaxation effects to be expected from some 
typical relaxation mechanism in solids, such as molecular torsion oscilla- 
tions and planar and isotropic hindered rotationsl. 

4. Conclusions 

The modification of the perturbation factor due to time dependent inte- 
ractions can be seen to be especially simple for the time dependent parts 
of the perturbation factors since in the cases treated here each distinct 
frequency is multiplied by a single exponential. 

The relaxation involved with the frequency independent part of the per- 
turbation factor on the other hand will in general be given by a superpo- 
sition of various exponentials. The parameters involved in the relaxation 
must in general be obtained numerically from a solution of the Redíield 
equation. 

Angular correlation patterns in the presence of both asymmetry and re- 
laxation may be expected to appear quite complex, since already in the 
case of a static interaction with asymmetry the spectrum is not periodic8. 
The use of finite Fourier analysis techniques may be of assistance in the 
interpretation of such spectra. 
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