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In this work we propose to study the problem of the measurement of long range interactions 
which may exist due to the geometrical properties of spaces with curvature. All such fields 
can possibly be detected by letting a test particle trave1 along the geodesic of the space. Usual- 
ly this gives the geometrical structure of the gravitational field, translated by the presence 
of the Christoffel symbols, in such a way that the principle of equivalence is satisfíed. Actually, 
this is interpreted as part of more general situations, by supposing that the test particle has 
a charge and is also able to interact with other fields, as for instance with a scalar field. These 
extra interactions are then studied from the geometrical point of view, similar to the gravi- 
tational interaction with the mass of the test particle. However, the gravitational interaction 
is peculiar among these severa1 fíeids since it satisfies the principle of equivalence as a direct 
consequence of the covariance of the equations of motion under the maniFold mapping group. 

Propomo-nos a estudar o problema da medida de interações de longo alcance que possam 
existir devido as propriedades geométricas de espaços curvos. Todos os campos dêsse tipo 
poderiam ser detetados pelo movimento de uma partícula de prova ao longo de uma geo- 
désica do espaço. Usualmente isso propicia o conhecimento da estrutura geométrica do 
campo gravitacional (caracterizada pelos símbolos de Christoffel), o princípio de equiva- 
lência sendo satisfeito. Tal situação pode ser considerada como caso especial de situações 
mais gerais, supondo-se que a partícula de prova tenha carga e possa interagir com outros 
Campos, como por exemplo um campo escalar. Essas interações extras são então estudadas 
de um ponto de vista geométrico, análogamente ao que se faz com a interação gravitacional. 
A interação gravitacional, todavia, tem um caráter especial entre todas as outras interações, 
visto que satisfaz o princípio de equivalência, consequência direta da covariância das equações 
de movimento sob o grupo de transformações gerais de coordenadas. 

I .  The Affine Geodesic in Four-Space 

The equation of the affine geodesic is obtained by the condition that the 
tangent vector to the curve is always displaced parallel to itself. This con- 
dition, which is the natural generalization of the concept of a straight 
line in Euclidian space, is mathematicallq expressed by the covariant set 
of equations, 

where ua = dxa/ds is the tangent to the curve, and a11 indices run from 1 
to 4. Without modifying the covariant structure of (I), we may multiply 



the equation by the inertial mass mi of the test particle, that is, the particle 
which follows the geodesic, 

The equation (1) in explicit form is 

where the c, are the components of 

dx" 
ds 
-- = o, 

the affinity. Since both d2xa/ds2 
and l-p,dxp/ds . dxU/ds are not vectors, the Eq. (3) is covariant only due 
to the fact that the non-tensor terms arising from both terms cancel each 
other. This means that at most we are free to multiply the left hand side 
by a constant. In Eq. (2) we have taken this constant to be the inertial mass 
of the particle. 

This peculiar property of the four-acceleration in curved spaces, which is re- 
lated in part to the possibility of relative accderated motions, implies the 
statement of the principle of equivalence. Indeed, if we interpret T ~ , u P u "  
as the gravitational interaction on the test particle, the gravitational mass 
which should act as the coupling parameter in front of Tp,uBu" is equal 
to the inertial mass, upon imposition of covariance of the equation of 
motion under the transformations of the manifold mapping group. 

We use now a theorem of tensor calculus which says that any affinity is 
determined up to an additive tensor with the same index structure. Exploi- 
ting this result, we introduce a new affinity f",, by the following relation, 

The A;, is a tensor field to be determined. Its explicit form is free to be 
chosen. Before working out the possible relevant choices for this field, 
it is interesting to analyse the covariance of (3) for this new choice of the 
affinity. We have now, 

Calling the sum of the first two terms V, we know that this quantity is 
a vector. The third term on the left hand side of (5) is also a vector. Let 
us denote it by J". In this form, we separate the three factors on the left 



hand side of (5) into two terms which transform as vectors, and which are 
in principle not connected to each other. We have then 

V" + J" = O,  (6) 

with V" = d2 xa/ds2 + Ppa uPua, (7) 

J" = APauPua. (8) 

Since J a  transforms by itself covariantly independent of V",  we are free 
to introduce the following sum as a new possible expression for the J a,  

where the bj  are scalars and each term J*(" is a vector. 
written as, 

(9) 

The affinity (4) is 

r;, = r;, + (l/mi) C bjA;'$ 
j 

giving rise to the covariant equations of motion, 

The fact that, necessarily, a part of the affinity, c,, is of the same geome- 
trical nature as the four-acceleration, is, as we remarked previously, con- 
nected to the equivalence principle, which states that locally we cannot 
separate the effects of inertia from those of gravitation. We now set equal 
r*,, to the Christoffel symbols as a definition. In this form we are taking 
into account the usual results of general relativity: 

As was mentioned in the introduction, the present work intends to inter- 
pret other fíelds besides the gravitational as geometrical properties of the 
space-time. Thus, we intend to go beyond the usual results of general rela- 
tivity but nevertheless a11 results of this theory are taken as valid in the 
limit where those extra fields do not exist. That was the reason for taking 
the relation (11) as valid. 

The covariant derivative of g,, is given by 

Sav;a = Spv,a - r ; a g ~ v - r t a g p ~  -Ai09dv - A L g p 1 ,  

which according to (1 1) takes the form 



2. The Motion For Charged Test Particles 

In this section we establish a first possible choice for the 4;). This geome- 
trical object will be determined by physical considerations. In each situa- 
tion where we need the Ai?), we want to describe a deviation from the 
pure geodesic of the gravitational field. To clarity the situation, we have 
to say that the sources of the gravitatíonal field may be a certain mass 
distribution which eventually may have an overall electric charge. A 
test particle moving into this field is acted on by the gravitational force, 
represented by the Christoffel symbols. However, such a force will contain 
the contribution coming from the net charge of the source which contri- 
butes to the g,,. If the test particle has no charge, this will be the net force 
acting on it. But if the test particle has a charge, it will interact not only 
with the gravitational field given by the {b), but also with the electro- 
magnetic field generated by the relative motion of the charges of the source. 
It is this last situation which is treated here as a deviation from the pure 
geodesic of the gravitational field. 

This deviation from the geodesic generated by {ky} may in principle be 
due to various types of fields,,as is suggested by the sum over fields which 
is present in Eq. (10). In this Section we consider just the contribution of 
one term in this sum, by writing b1 as equal to the electric charge of the 
test particle and a11 remaining b, equal to zero. Then, b1 A;',"uPu" is equal 
to the Lorentz force in presence of gravitation, 

This relation may be solved for the A;',", 

where s is a constant. In the solution (13) we wrote the terms which contain 
the presence of F,,, g,, and ua, that is, the presence of the physical quan- 
tities under consideration. In other words, we neglect any other variable 
on which we have no information from the physics of the systeml. 
The value for the constant s will be obtained by substitution of (13) into 
Eq. (12) giving 

g,v; 0 = V," + FVP)~U - sF," UV + FYU u,). 

Since we do not want the length of vectors to be varied under parallel 
displacement, as in the unitary field theory of Wey12 (since such a varia- 
tion leads to unphysical consequences as was pointed out by Einstein), 
we set the constant s equal to zero. Then, 



similar to the result of general relativity. Thus, for gravitational plus elec- 
tromagnetic fields the affinity has the form, as measured by the test particle, 

eu = (;I -(elmJFBpgBaga~u** (14) 

The fact that the afíinity varies due to the presence of the electromagnetic 
field, and that such variation is transmitted to the charged test particle 
is a violation of the principle of equivalence, But this is not a new result 
since it is known that charged test particles do not satisfy the law of free 
fall. 

Therefore, the method treated here has up to now only the interest of 
being a general procedure for the geometrization of other fields besides 
the gravitational, but no new physical result was obtained. 

3. The Motion for a Particle with Mesonic Charge 

Following the method outlined previously, we give here a second possible 
choice for the affinity. We consider in this section that a long range scalar 
field is the agent giving rise to a correction in the expression for the afine 
connection. 

The interest towards the consideration of long range scalar fields was 
recently raised by Dicke3 in connection with a possible realization of 
Mach's program. As is also known, scalar interactions can also be treated 
relativistically in the framework of the five-dimensional unitary field 
theory of Thirry4 and Kaluzas. The type of approach treated here does 
not require the introduction of extra dimensions into the manifold and, 
as we will see, leads naturally to the equations of motion and the field 
equations. 

Similarly to the case for electromagnetic interactions, we consider that the 
next term in the sum over fields in Eq. (10) comes from the presence of 
a scalar field 4(x): 

(see Note 6) which has as solution 



Therefore, the affinity now takes the form 

(16) 
In this expression, the term coming from the electromagnetic field is not 
symmetrical, it has symmetric and skew symmetric parts. The term coming 
from the relativistic scalar field is symmetric. 

In principie this process of summing over fíelds may be further extended 
in order to consider any other interaction which may be of interest. For 
our present purposes we stop in the second term of the sum. 

4. The Curvature Tensor 

In this Section we compute the Riemann tensor associated with the cor- 
rected affinity. By convenience we consider only the correction coming 
from the electromagnetic field. A look at Eq. (14) shows that, besides the 
field F,,, the four-velocity of the test particle also appears in the expression 
for the affínity. The reason for this comes from the fact that the test particle 
is the agent which measures the total field, and due to the structure of 
the Lorentz force the ua appears in the afinity as long as we intend to inter- 
pret this interaction as geometry as we did here. As a consequence, the test 
particle will modify the curvature of the field, and this modification appears 
due to the interaction of the charged test particle with the electromagnetic 
field generated by the motion of the source particles. Since this type of 
interacttion is stronger than the interaction of the mass of the test particle 
with the gravitational íield of the source, such a reaction of the test par- 
ticle on the total field, translated geometrically, is natural. In other terms, 
we may say that the field F,, cannot be interpreted as geometry unless 
we have a charged test particle to measure this effect. 

Nevertheless, we will see that such an interpretation leads to mathematical 
diffículties, and in order to remove these difficulties we have to introduce 
a new interpretation on the dynamics of the interaction. 

First we calculate directly the components of the curvature tensor by 
taking the affinity given by (14). We have, for any given vector k, ,  



The affinity given by (14)'is decomposed into its symmetrical and skew- 
symmetrical parts, the latter representing the tensor of torsion: 

Fpv l  = SPVA + T p , , A .  ( 1  7) 

Accordingly, the tensor kyv decomposes into the sum of the two tensors, 

where 

The values for the affinity S",,, and for the tensor T",, are given by 

S",, = { t A )  - (e/2mi) (F
p

v  + F p k  u,), (194 

In the case where k
p  

is equal to the fourvelocity of the test particle; we 
see that the tensor of torsion T',, will not contribute to the equation 
of motion.' The Riemannian curvature is generated by the affinity Spv ,  ! 
according to the usual formula,' 

( 2 )  
A similar expression may be formed for the tensor k t  : 

(2) ( 2 )  
k;;, - k;;, = B",,, k" LV",,, kfV . 

The expressions for l?",,, , B",,, and L"".,, are 



After a straigtforward calculation, we find the following value for these 
tensors : 

R?,,,, = R',,,, + (e2/41n2) (Fz j .  F2,, (d; 14, u,  - 6; 14, [L,) + 
+ (F", FApd;  + F Z,  Fi.,i3; - F ' ~  F ~ ,  6; - FZ,, F ~ ,  6);) inji u Y )  + (e/2rni) ((F",i4, + 

+ F", I*,),,, - ( F z p  i*, + Fz,  u,),,; + (e/2mi) {Fi.p[ifo) I*,, - {&I i*,] + 
- r , í x 1 I U  + F Z , [ ~ T I ~ . \ - ~ P { ~ . \ ]  1 +-F';.[{,';,~u,-{;~:u,I+FA,r~:{,",:-~,,,,i p p kppi '  , paf 

Of special importance is formula (25)  giving the correction to the curva- 
ture tcnsor R",,,, of the pure gravitational field. We next compute the Ricci 
tensor associated to l?",,, , and the corresponding scalar of curvature, 
R. %'L find, 

l?,, = R,, + (e2/4mz) { F " ~  Fj,, inP ia,, + F Z,  F',, u ,  u,) + 
+ (e/2mi)  [(F",  11, + F", in,),, - (F", in,),,] + (e/2mi) [(F'., i*, + F'., i l p )  {j!,2,1( 

' ( " 1  1 (F", i;,) + F",, i,'.,)) 1 4 ,  + FZj.  i,';,) i*,- F", (, ,,,, I 11, + (j:,) flp). (28)  

l? = R + (e2/4rnz) F"'. F,, + (e/2mi) [2Fip { G )  irP + FZA g P p  i,';) ti, - 

- 2F A,  znP + (e/2rni) F", ~ ~ 9 4 ~  i*,] + (e/2mi) gm [ (Fzp  i*,, + F", - 

- (F", i*,),,] . (29)  

The pment  meihod is esseniiallq a classical theorq of measurement. Bq 
letting a test pa:ticle trave1 along the region under consideration we obtain 
the various interactions with the fields present. The structure of the geodesic 
gives the information on the existence of those fields. The gravitational 
field plays the fundamental role, since the remaining interactions are 
translated as part of the correction to the Christoffel symbols, and to the 
corresponding tensor of curvature, that means, they are taken as new fields 
in the framework of the geometry of the space. 

At the same time, the motion of the test particle also gives us the structure 
of the interacting fields in this region. Indeed, from (29)  a interaction term 



is present, and is proportional to the charge of the test particle. The four- 
velocity of the particle is also present. 

The Lagrangian density for the whole system may be taken as the product 

of & by E. It is given by the expression 

with the interaction term 

I = 2F", .(;I irP + F", @"i;) 14, - 2Fi , {zp} uP + (e/2ini) F", F"" i ! ,  i r ,  - 

where we have dropped a surface term, since F,, vanishes at 
infinity. The interaction Lagrangian density (30) contains the 
fourvelocity u* of the test particle. Thus, it may appear that there is no 
reason for taking l? & as the full Lagrangian, since we have to know 
the (h) and the FEp in the equation of motion for obtaining the u\ but 
U* is present in the field equations together with {;?) and FE8. What this 
means is that these equations have to be solved simultaneously. First we 
try to write the relation (30) in terms only of the fields. We integrate (10), 
for the case of the Lorentz force, along the geodesic of the particle, 

By substitution of this integral into (30), in principle we may get the inte- 
raction term as function only of the fields, now not only locally but also 
depending on the previous history of the particle. Equation (31) is an 
integral equation for the um,. and may be solved by an iteration process 
(see Appendix). However, there are two dificulties. First the resulting 
field equations will be non linear integro-differential equations. In parti- 
cular, the field equations for the F,, become non linear, since quadratic 
(and higher powers) terms in F,, appear as sources of the field. Conse- 
quently, this method is much too complicated for any practical application. 
Second, the integral written in Eq. (31) has no geometric meaning in curved 



spaces. The ua written at the left hand side of (31) does not represent a 
geometrical object. As a consequence, the substitution of the solutions of 
(31) into (30) will generate field equations which are not covariant under 
the group of general coordinate transformations of general relativity. This 
last difficulty may be overcome by introducing a coordinate condition. 
In some sense we have substitututed the overall curvature of the space 
by a sum over histories, represented by the severa1 terms of the Neumann- 
Liouville series giving the solution of the integral equation (31). 

5. Conclusion 

In this work we have treated the problem of introducing other long range 
interactions besides the gravitational as a part of the whole affinity of 
the space. As was shown, this may be done in a simple form. The further 
interpretation of this new afinity as the generator of the curvature tensor 
leads to certain difficulties. The resulting field equations become much 
too complicated, and the original geometrical idea has to be substituted 
by a different interpretation of the interaction. The four-dimensional space 
is not interpreted as possessing an overall curvature, but instead is flat 
and the interaction between the fields at a given point will depend on 
the history of the fields along a time-like "geodesic" arriving at this point 
at the instant of measurement. Nevertheless, the Riemann tensor coming 
from the gravitational field is still there, but it is not interpreted as a cur- 
vature. It can be, at most, interpreted as a local curvature since at the region 
where the field becomes infínity no coordinate condition can be consis- 
tently used. From the mathematical point of view we can say that the 
ua of (31) is a pseudo-vector and therefore it possess an interpretation 
only by means of linear transformation groups. 

The reason for obtaining a non-covariant formulation in the present 
treatment may also be seen from the following argument: We intend to 
measure the interactions by means of a test particle, but this particle pre- 
sently is identical

g 
to a11 the remaining particles forming the sources. 

Indeed, it generates an action back on the other elements of the source 
similarly to a11 the other particles of the source. If the process of measu- 
rement were instantaneous we could still hope to obtain a covariant for- 
mulation. But if the process calls for a finite extension in time (and space) 
as is the case in Eq. (31), we lose the covariance, since then we are taking 
a particular frame of reference, where the test particle is at rest (or is moving 
with constant velocity, as is the case for the first approximation of the 
series expansion of (31)). 



Appendix 

We give here the solution of the integral equation (31). This solution will be presented only 
to the first order of approximation of the Neumann-Liouville series. Writing, 

we obtain: 
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