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In this work we propose to study the problem of the measurement of long range interactions
which may exist due to the geometrical properties of spaces with curvature. All such fields
can possibly be detected by letting a test particle travel along the geodesic of the space. Usual-
ly this gives the geometrical structure of the gravitational field, translated by the presence
of the Christoffel symbols, in such a way that the principle of equivalenceissatisfied. Actually,
this is interpreted as part of more general situations, by supposing that the test particle has
a charge and is also able to interact with other fields, asfor instance with a scalar field. These
extra interactions are then studied from the geometrical point of view, similar to the gravi-
tational interaction with the mass of the test particle. However, the gravitational interaction
is peculiar among these several fields since it satisfies the principle of equivalence as a direct
conseguence o the covariance of the equations of motion under the manifold mapping group.

Propomo-nos a estudar o problema da medida de interacbes de longo alcance que possam
existir devido as propriedades geométricas de espacos curvos. Todos 0s campos désse tipo
poderiam ser detetados pelo movimento de uma particula de prova ao longo de uma geo-
désica do espago. Usualmente isso propicia o conhecimento da estrutura geométrica do
campo gravitacional (caracterizada pelos simbolos de Christoffel), o principio de equiva
|éncia sendo satisfeito. Tal situagdo pode ser considerada como caso especial de situagdes
mais gerais, supondo-se que a particula de prova tenha carga e possa interagir com outros
campos, como por exemplo um campo escalar. Essas interagcBes extras sdo entdo estudadas
de um ponto de vista geométrico, anadlogamente ao que s faz com a interagdo gravitacional.
A interagdo gravitacional, todavia, tem um cardter especial entre todas as outras interagOes,
visto que satisfaz o principio de equivaléncia, consequéncia direta da covariancia das equagdes
de movimento sob o grupo de transformacGes gerais de coordenadas.

|. The Affine Geodesic in Four-Space

The equation o the affine geodesic is obtained by the condition that the
tangent vector to the curve is always displaced parallel to itsalf. This con-
dition, which is the natural generalization of the concept of a straight
line in Euclidian space, is mathematically expressed by the covariant set
of equations,

: (1)

where u* = dx*/ds is the tangent to the curve, and all indices run from 1
to 4. Without modifying the covariant structure of (1), we may multiply
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the equation by the inertial mass m; of the test particle, that is, the particle
which follows the geodesic,

muu’, = 0. (2)

The equation (1) in explicit form is

d*x* dx” dx"

Q}T+rvps“ti? —ds—:01 )]
where the T, are the components of the affinity. Since both d* x*/ds*
and I'%,dx?/ds - dx°/ds are not vectors, the Eqg. (3) is covariant only due
to the fact that the non-tensor terms arising from both terms cancel each
other. This means that at most we are free to multiply the left hand side
by a constant. In Eq. (2) we have taken this constant to be the inertial mass
o the particle.

This peculiar property of the four-acceleration in curved spaces, which isre-
lated in part to the possibility of relative accelerated motions, implies the
statement of the principle of equivalence. Indeed, if we interpret I, u”u’
as the gravitational interaction on the test particle, the gravitational mass
which should act as the coupling parameter in front of I';,u”u” is equal
to the inertiad mass, upon imposition of covariance of the equation of
motion under the transformations of the manifold mapping group.

We use now a theorem of tensor calculus which says that any affinity is
determined up to an additive tensor with the same index structure. Exploi-
ting this result, we introduce a new affinity 15, by the following relation,

I, =T%, + A%, 4

The A, isa tensor field to be determined. Its explicit form is free to be
chosen. Before working out the possible relevant choices for this field,
it is interesting to analyse the covariance of (3) for this new choice of the
affinity. We have now,

e, B0 AT pe OO, (5)
S S

Calling the sum o the first two terms V¢, we know that this quantity is
a vector. The third term on the left hand side of (5) is also a vector. Let
us denote it by J'. In this form, we separate the three factors on the left
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hand side of (5) into two terms which transform as vectors, and which are
in principle not connected to each other. We have then

vty =0, (6)
with ve = d?x*/ds® t I ufue, (7
= Aj, ufu’. 8

Since J? transforms by itself covariantly independent of V", we are free
to introduce the following sum as a new possible expression for the J?,

Zb JO = wry’ Zb AZD )

where the b; are scalars and each term J*9 is a vector. The affinity (4) is
written as,

fza =T, + (1/m,) Zb AZD

giving rise to the covariant eguations o motion,
my(d* x*/ds? + T2, uPu®) + Y b;A20 Py = 0. (10)
j

The fact that, necessarily, a part o the affinity,I%,, is o the same geome-
trical nature as the four-acceleration, is, as we remarked previoudly, con-
nected to the equivalence principle, which states that locally we cannot
separate the effects of inertia from those of gravitation. We now set equal
I':, to the Christoffel symbols as a definition. In this form we are taking
into account the usual results of general relativity:

re, = {;;}, a1

As was mentioned in the introduction, the present work intends to inter-
pret other fields besides the gravitational as geometrical properties o the
space-time. Thus, we intend to go beyond the usual results of genera rela-
tivity but neverthelessall results of this theory are taken as vdid in the
limit where those extra fields do not exist. That was the reason for taking
the relation (11) as valid.

The covariant derivative o g,, is given by
Guvio = Guv.a = UuaGav=LiaGua—Dis 90, =N G,
which according to (11) takes the form
Guvio = ~Nia iy = DG 12
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2. The Motion For Charged Test Particles

In this section we establish a first possible choicefor the A, This geome-
trical object will be determined by physical considerations. In each situa-
tion where we need the A%, we want to describe a deviation from the
pure geodesic of the gravitational field. To clarity the situation, we have
to say that the sources of the gravitational fidd may be a certain mass
distribution which eventually may have an overal electric charge. A
test particle moving into this field is acted on by the gravitational force,
represented by the Christoffel symbols. However, such a force will contain
the contribution coming from the net charge of the source which contri-
butes to the g,,,. If the test particle has no charge, this will be the net force
acting on it. But if the test particle has a charge, it will interact not only
with the gravitational fid given by the {2}, but also with the electro-
magnetic fidd generated by the relative motion of the charges of the source.
It is this last situation which is treated here as a deviation from the pure
geodesic of the gravitational fidd.

This deviation from the geodesic generated by {1} may in principle be
due to various types of fields, as is suggested by the sum over fields which
is present in Eq. (10).1n this Section we consider just the contribution of
one term in this sum, by writing b; as equal to the electric charge o the
test particle and all remaining b, equal to zero. Then, b; A%V uu’ is equal
to the Lorentz force in presence o gravitation,

KDuwu = -F, g v

P

This relation may be solved for the A;'",
AYD = —Fp, g% g, u* + sF ", (13)

wheres is a constant. In the solution (13) we wrote the terms which contain
the presence of F,,, g,, and u®, that is, the presence of the physical quan-
tities under consideration. In other words, we neglect any other variable
on which we have no information from the physics of the system'.
The value for the constant s will be obtained by substitution o (13) into
Eq. (12) giving

guv;o' = (Fuv + Fvu)ua—S(Fuuuv + Fvauu)'

Since we do not want the length o vectors to be varied under parallel
displacement, as in the unitary fidd theory d Wey1? (since such a varia-
tion leads to unphysical consequences as was pointed out by Einstein),
we st the constant s equal to zero. Then,

Fvio = 0,
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similar to the result of genera relativity. Thus, for gravitational plus elec-
tromagnetic fieldsthe affinity has the form, as measured by the test particle,

ffm = {pao} _(e/mi)FBpgﬂagalul~ (14)

The fact that the affinity varies due to the presence of the electromagnetic
field, and that such variation is transmitted to the charged test particle
isa violation o the principle of equivalence, But this is not a new result
since it is known that charged test particles do not satisfy the law of free
fall.

Therefore, the method treated here has up to now only the interest of
being a general procedure for the geometrization of other fields besides
the gravitational, but no new physical result was obtained.

3. The Motion for a Particle with Mesonic Charge

Following the method outlined previously, we give here a second possible
choice for the affinity. We consider in this section that a long range scalar
fieldis the agent giving rise to a correction in the expression for the affine
connection.

The interest towards the consideration of long range scalar fields was
recently raised by Dicke® in connection with a possible realization of
Mach's program. As is also known, scalar interactions can also be treated
relativistically in the framework o the five-dimensional unitary field
theory of Thirry* and KaluzaS. The type of approach treated here does
not require the introduction of extra dimensions into the manifold and,
as we will see, leads naturally to the equations o motion and the field
equations.

Similarly to the case for electromagnetic interactions, we consider that the
next term in the sum over fields in Eq. (10) comes from the presence o
a scaar fidd ¢(x):

0
by w X = e ¢ g,

" oxP

(see Note 6) which has as solution

o a Ax a o
80 = (112 2w, + (11 2 g, (19)
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Therefore, the affinity now takes the form

~¢1 ax a a 4 v 6 X
I}a={wkidmoFmg”gdu‘+&mﬂm»(5%g”gﬂgmuLﬂ4~a$gﬁgw)

(16)

In this expression, the term coming from the electromagnetic field is not
symmetrical, it has symmetric and skew symmetric parts. The term coming
from the relativistic scalar fiedd is symmetric.

In principle this process of summing over fields may be further extended
in order to consider any other interaction which may be of interest. For
our present purposes we stop in the second term of the sum.

4. The Curvature Tensor

In this Section we compute the Riemann tensor associated with the cor-
rected affinity. By convenience we consider only the correction coming
from the electromagnetic field. A look at EQ. (14) shows that, besides the
fieldF,,, thefour-velocity of the test particle also appears in the expression
for the affinity. The reason for this comes from the fact that the test particle
is the agent which measures the total field, and due to the structure of
the Lorentz force the u* appears in the affinity aslong as we intend to inter-
pret thisinteraction as geometry as we did here. As a consequence, the test
particle will modify the curvature of the field, and this modification appears
due to the interaction of the charged test particle with the electromagnetic
fidd generated by the motion of the source particles. Since this type of
interacttion is stronger than the interaction of the mass of the test particle
with the gravitational field of the source, such a reaction of the test par-
ticle on the total field, translated geometricaly, is natural. In other terms,
we may say that the field F,, cannot be interpreted as geometry unless
we have a charged test particle to measure this effect.

Nevertheless, we will see that such an interpretation leads to mathematical
difficulties, and in order to remove these difficulties we have to introduce
a new interpretation on the dynamics of the interaction.

First we calculate directly the components of the curvature tensor by
taking the affinity given by (14). We have, for any given vector k*,

ke =kt + Tkl
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The affinity given by (14)'is decomposed into its symmetrical and skew-
symmetrical parts, the latter representing the tensor of torsion:

e, =8, + T, (17)

Accordingly, the tensor k¥ decomposes into the sum o the two tensors,

. b
k;v = k\’ + kv

where

1)
ke = kY, + St K (18a)

@
ki = T k*. (18b)
The values for the affinity S*,, and for the tensor T*,, are given by
S* = (&= (e/2m) (F’ u, T F*, u), (19a)
T#,, = (e/2m) (F*, u, — F*, u,). (19b)
In the case where k” is equal to the fourvelocity of the test particle, we
see that the tensor of torsion 7*,; will not contribute to the equation

of motion.” The Riemannian curvature is generated by the affinity S*,;
according to the usual formula,

H m - .
K-k, = RE, K (20)

@)
A similar expression may be formed for the tensor k% :

2) (2) N y N
kl;;p - kf},a = Bu/lpa k* + L ”Zpd k;v . (21)

The expressions for Ii",ap, B*,,, and L*,,, are

ﬁulap = Su/‘.z,p - Su/lp,a - Sﬂm St}.p + S#;p St/‘.a s (22)
Bu}ap = Tﬂ).:z;p - Tp/lp;a P (23)
L, =T, 0,-T",,0,. 24)
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After a straigtforward calculation, we find the following value for these
tensors:

R¥pou = R%p, P
+(F", F2 80+ F2, F7, 8, - F* F*, 8, F*,  Ouyu,) t(e/2m) {(F*,u, T
+ Fa;z l*y)m - (Fap U, + qu‘ up).u)) + (@/2]’";) {FAP[{;H} uu - {)a;i} uo‘] +
+ P ue= (et ud + FALO {5} = 05 {4 up + F2 [0, o} = 04 {ae}]

- Tﬂ).az,p - T”/'.p.a + Su;rr Tr/’.a - ST/’./) Tum - Stpz T”/'.r
- Sﬂzt ,Tr)‘p + ST/‘.'L Turp + Szzp T“/ir + Tllm Tr/'.a - TT}.() T“u
- Ttmc Tu}tr_ Tuar T(/'.p + TT/'.az T"rp + Trzp Tu/‘.r s (26)

+ (e?/dm?) {F*, F*, (8L u,u, — 0% u,u,) T

B

rap

L*; 0y = (e/2m) {0, [F¥, u; — F*, u,,}; Op [Fyu,=F"udy.  (27)
u
Of special importance is formula (25) giving the correction to the curva-
ture tensor R',,,, of the~pure gravitational field. We next compute the Ricci
tensor associated to R* and the corresponding scalar of curvature,
R We find,

R,, =R, t (?/4m?) {F*F u,ia, T F%, F*,u;u) +
+ (e/2m) [(F", u, + F*ou) - (F" u) ] + (e/2m) [(F?, u, + FYou) it
(Fz (A + Fau {p;;t})lll + FI/'. {p}ﬁ} uz—F;‘a({/"j)} /“u + {}.all} llﬂ). (28)

op s

pops

R =R T (¢2/4m}) F* Fip ¥ (ef2m) [2F, (2} 1P+ F* g7 { i} u, -
C2FA (2wt (ef2m) FY P ugu,) o (ef2m) g [(F2, u, T F 000~
“(F%imy) . (29

The present method is essentially a classical theory of measurement. By
letting a test particle travel along the region under consideration we obtain
the variousinteractions with the fields present. The structure of the geodesic
gives the information on the existence of those fields. The gravitational
field plays the fundamental role, since the remaining interactions are
translated as part of the correction to the Christoffel symbols, and to the
corresponding tensor of curvature, that means, they are taken as new fields
in the framework of the geometry of the space.

At the same time, the motion of the test particle also gives us the structure
of the interacting fields in this region. Indeed, from (29)a interaction term
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is present, and is proportional to the charge o the test particle. The four-
velocity of the particle is also present.

The Lagrangian density for the whole system may be taken as the product
of \/-g by R It is given by the expression

L =/~gR + (/4m?) /=g F** F,, + (e/2m)/~ g 1,
with the interaction term

| = 2F%, {2 P F B g (- 2FF (2 h et e/ am) B P -

Lon ' Lip

(\‘,/——g g")

)
_@(szlly+ Fo up) + —~—==—LF* u,, (30)

J-a NS

where we have dropped a surface term, since F,, vanishes at
infinity. The interaction Lagrangian density (30) contains the
fourvelocity u* of the test particle. Thus, it may appear that there is no
reason for taking R \/:q as the full Lagrangian, since we have to know
the {5} and the F,; in the equation of motion for obtaining the «*, but
u* is present in the field equations together with {;%} and F,,;. What this
means is that these equations have to be solved simultaneously. First we
try to write the relation (30) in terms only of the fields. We integrate (10),
for the case of the Lorentz force, along the geodesic of the particle,

wr(x(s)) = f (Fgp g™ wr = { 2} uP w7y ds' + 0. (31

By substitution of this integral into (30), in principle we may get the inte-
raction term as function only of the fields, now not only locally but also
depending on the previous history of the particle. Equation (31) is an
integral equation for the u*, and may be solved by an iteration process
(see Appendix). However, there are two difficulties. First the resulting
field equations will be non linear integro-differential equations. In parti-
cular, the field equations for the F,, become non linear, since quadratic
(and higher powers) terms in F,, appear as sources o the field. Conse-
guently, this method is much too complicated for any practical application.
Second, the integral written in Eq. (31) has no geometric meaning in curved
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spaces. The u® written at the left hand side of (31) does not represent a
geometrical object. As a consequence, the substitution of the solutions of
(31) into (30) will generate field equations which are not covariant under
the group of general coordinate transformations of general relativity. This
last difficulty may be overcome by introducing a coordinate condition.
In some sense we have substitututed the overall curvature of the space
by a sum over histories, represented by the several terms of the Neumann-
Liouville series giving the solution of the integral equation (31).

5. Conclusion

In this work we have treated the problem of introducing other long range
interactions besides the gravitational as a part of the whole affinity of
the space. As was shown, this may be done in a simple form. The further
interpretation of this new affinity as the generator of the curvature tensor
leads to certain difficulties. The resulting field equations become much
too complicated, and the origina geometrical idea has to be substituted
by a different interpretation of the interaction. The four-dimensional space
is not interpreted as possessing an overal curvature, but instead is flat
and the interaction between the fields at a given point will depend on
the history of the fieldsalong a time-like "geodesic” arriving at this point
at the instant of measurement. Nevertheless, the Riemann tensor coming
from the gravitational field is till there, but it is not interpreted as a cur-
vature. It can be, at most, interpreted asalocal curvature since at the region
where the field becomes infinity no coordinate condition can be consis-
tently used. From the mathematical point of view we can say that the
u* of (31) is a pseudo-vector and therefore it possess an interpretation
only by means of linear transformation groups.

The reason for obtaining a non-covariant formulation in the present
treatment may also be seen from the following argument: We intend to
measure the interactions by means of a test particle, but this particle pre-
sently is identical® to all the remaining particles forming the sources.
Indeed, it generates an action back on the other elements of the source
similarly to all the other particles of the source. If the process of measu-
rement were instantaneous we could still hope to obtain a covariant for-
mulation, But if the process calls for a finite extension in time (and space)
asis the case in Eg. (31), we lose the covariance, since then we are taking
a particular frame of reference, where the test particleisat rest (or ismoving
with constant velocity, as is the case for the first approximation of the
series expansion of (31)).
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Appendix

We give here the solution of the integral eguation (31). This solution will be presented only
to the first order of approximation of the Neumann-Liouville series. Writing,

P = Fmg”a, Yo, = {\7).}7

we obtain:

s s

wis) = @ + i ( dz¢*y(z) + 4°8 ( dzy”,,(z) + [ dz ( d2’¢’x(2)¢”l(12’)u’(2’) +

* so * so “s0 so

+ 28" [ dz [ dz' y*,, (z)l//"xv(z’)u"(z’)uv(z’) +

so “so

+[dz

0

dz' %, (2,0 (2)uP (2')u’ (z') + 28° [ dz [ dz " (2) 7 (2) u' (2) +

0 so %o

ML—§

+ {dz { dz' [ A2y, (297, (Y (@) ¢ (@) +

*so “'so 0

+2 [ dz [ dz’ [ dz" lﬁ“v,_(z)¢“p(z’)u"(z’)wlxﬁ‘(z”)u"(z”)u"(z") +

*'so so so

+ f dz f dz f A2 Y 3 (DU o (2P (Y (W g (V0 (VP (2.

“so “so “so
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